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[1] Ground-based radiation measurements are frequently used for validating the
performance of a model in simulating clouds. Such important questions are often raised as:
(1) How well do the measurements represent model grid mean values?; (2) How much of
model-observation differences can be attributed to inherent sampling errors?; and (3) What
scale does modeling need to be performed in order to capture the cloud variation?
We attempt to address these questions using surface solar irradiance data retrieved from
the Geostationary Operational Environmental Satellite (GOES) and measured at the
Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. The
satellite retrievals are used to mimic ground measurements with various spatial densities
and temporal frequencies, from which the sampling errors of the ground observations are
quantified and characterized. Most of the differences between point-specific
measurements and area-mean satellite retrievals originate from ground sampling errors.
We quantify these errors for different months, model grid sizes, and integration intervals.
In March 2000, for example, the sampling error is 16 W m�2 for instantaneous irradiances
averaged over an area of 10 � 10 km2. It increases to 46 and 64 W m�2 if the model
grid size is enlarged to 200 � 200 km2 and 400 � 400 km2, respectively. The sampling
uncertainties decrease rapidly as the time-averaging interval increases up to 24 hours
and then level off to a relatively small and stable value. Averaging over periods greater
than 5 days reduces the error to a magnitude of less than 15 W m�2 over all grid sizes. The
sampling error also decreases as the number of ground stations increases inside a grid,
but the most substantial reduction occurs as the number of ground sites increases from 1 to
2 or 3 for a grid size of 200 � 200 km2. This means that for computing grid-mean surface
solar irradiance, there is no need for an overly dense network of observation stations.
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1. Introduction

[2] Radiation measurements have been widely used for
evaluating cloud parameterization schemes and model
simulation results [Morcrette, 2002]. Radiative quantities
are affected by numerous atmospheric (e.g., cloud) and
surface (albedo) variables on a range of scales from
thousands of kilometers to hundreds of meters [Rossow et
al., 2002]. General circulation models (GCMs) typically
have fixed grid cell sizes of tens to hundreds of kilometers.

Such scale differences pose a serious challenge in compar-
ing observation data and modeling results [Randall et al.,
2003]. For computational efficiency and accuracy, impor-
tant subgrid details in cloud and radiation processes must be
parameterized. Improving cloud and radiation parameter-
izations in GCMs is of paramount importance and has been
the central goal of the Atmospheric Radiation Measurement
(ARM) program of the United States Department of Energy
[Ackerman and Stokes, 2003; Stokes and Schwartz, 1994].
At present, the most critical requirements to advance the
parameterization of radiative processes for use in GCMs are
(1) the quantitative description of radiative energy under a
wide range of meteorological conditions; (2) the identifica-
tion and the investigation of the processes controlling the
radiative balance, with a special emphasis on the role of
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clouds in modulating the radiative balance; and (3) intensive
observations of cloud and radiation at a variety of temporal
and physical scales.
[3] To meet these needs, ARM has spearheaded major

efforts to acquire measurements on the scale of GCM grid
boxes, in order to define the physics underlying some
parameterizations used in GCMs. In the ARM Vision
2000 report, the modeling working group (MWG) recom-
mended that more cloud and radiation data sets, incorpo-
rating more detailed information on their spatial and
temporal distributions, be produced for direct use by the
modeling community [Randall et al., 2000]. The inability
of the MWG to test parameterizations of subgrid micro-
physical processes was attributed to insufficient subgrid
measurements of cloud, surface and radiative quantities.
This view is also echoed by theARM InstantaneousRadiative
Flux working group, which calls for more emphasis on
resolving spatial variability rather than focusing on point-
specific measurements [Ellingson, 2000]. Given the long
history of ground-based measurements in the ARM program
and in other field programs, a major task is how to connect
these local point-specific data with global models under a
wide range of large-scale conditions [Randall et al., 2000].
[4] Single-column modeling has been the primary tool

connecting GCMs and data collected in the field [Randall et
al., 2003]. A single column model (SCM) includes the bulk
of the physics of a GCM and can be run in isolation from the
rest of the GCM. In a SCM, a grid column of a climate model
is isolated and supplemented with more detailed models
simulating cloud and radiation processes. Data collected in
the field can then be used to evaluate the performance of the
improved parameterizations. However, the SCM suffers
from the same coarse-resolution problem as a GCM when
it comes to resolving cloud variability. A cloud system

resolving model (CSRM) has high spatial and temporal
resolutions and is useful for testing some radiative param-
eterizations over a wide range of space and time domains
[Browning et al., 1993]. For example, several CSRM and
SCMs were compared for multiday simulations of convec-
tion during the TOGA-COARE experiment [Krueger and
Lazarus, 2000]. Some CSRMs are now running at very high
resolutions (down to a kilometer or less). As illustrated by
Randall et al. [2003], field data can be used to combine
CSRMs and SCMs in order to develop improved GCM
parameterizations. Krueger and Burks [1998] developed and
used an empirical relation between TOA-pixel and surface-
pixel solar fluxes using satellite and point surface measure-
ments to estimate 3-hourly area-averaged surface fluxes.
[5] The ARM program provides test beds for different

climate regimes. Under study here is the Southern
Great Plains (SGP) Cloud and Radiation Test Bed region
spanning central Oklahoma northward into southern Kansas
(Figure 1). This region includes the Central Facility (CF)
where the bulk of the instrumentation is located and
23 extended facilities with basic instrumentation such as
flux radiometers spread nonuniformly throughout the SGP
region. Despite the high density of this network, several
outstanding questions still confront us: (1) Can cloud
behavior be understood from the deployed instruments?;
(2) What type of measurements, and at what density, are
required to specify the boundary conditions for SCMs?;
(3) What, if any, guideline should be followed for adding
observation stations (permanent and mobile) and for decid-
ing their locations?; and (4) At what scale does modeling
need to occur in order to capture the physical properties that
drive the system? To answer these questions, we need to
understand system-scaling behavior due to inhomogeneous
cloud and surface cover.

Figure 1. Distribution of the ARM extended facilities (left panel) and different model grids used in the
study (100 � 100 km2, �200 � 200 km2, 300 � 300 km2 and 400 � 400 km2, right panel).

D15S19 LI ET AL.: SAMPLING ERROR IN SOLAR RADIATION DATA

2 of 11

D15S19



[6] Radiation observation networks that cover the areas
of typical mesoscale weather systems (e.g., the Oklahoma
Mesonet) may resolve the large-scale variability of the
solar radiation field, but are insufficient to acquire statis-
tics for comparison with high-resolution models such as
CSRMs. Satellite observations offer an alternative source
of information that can be used to study problems such as
the spacing of ground-based observation stations [Perez et
al., 1997]. In this study, we take advantage of the high
spatial and temporal resolution of the Geostationary
Operational Environmental Satellites (GOES) data set
from which surface solar net irradiance (SSNI) is re-
trieved. The retrieval can be used to (1) mimic ground-
based measurements made at varying spatial densities and
temporal frequencies, and (2) characterize the uncertain-
ties of the simulated SSNI caused by cloud variability at
different scales in different seasons. Such scale-dependent
statistics of observation uncertainties provide constraints
on model-observation comparisons and are thus valuable
for improving and validating cloud parameterization
schemes.
[7] The following section introduces the retrieval models

and input data used to estimate SSNI on different spatial and
temporal scales. Section 3 presents the results concerning
the observation uncertainties and their ramifications on
determining the scales upon which informative validation
can be performed for testing cloud parameterization
schemes and model simulation results.

2. Models and Input Data

2.1. Satellite Inversion Model

[8] The SSNI was calculated using the models of Li et al.
[1993] and Masuda et al. [1995]. The model of Li et al.
[1993] essentially connects the net solar radiative fluxes at
the top of the atmosphere (TOA) and at the surface through
a linear relationship that is a function of the TOA albedo,
solar zenith angle and precipitable water amount. This
relationship is independent of cloud optical thickness and
surface albedo so it can be used under both clear and cloudy
sky conditions. The Li et al. [1993] model has been used to
generate a global climatology of SSNI [Li and Leighton,
1993] with an accuracy of 5 W m�2 for monthly mean
fluxes [Li et al., 1995]; good accuracies were also reported
in other studies [Conant et al., 1997; Ramanathan et al.,
1995; Waliser et al., 1996, 1999; Jing and Cess, 1998]. The
model is currently used as one of the Cloud and the Earth’s
Radiant Energy System algorithms generating the global
SSNI [Wielicki et al., 1996].
[9] For instantaneous and daily mean SSNI, larger errors

are expected to occur due to a lack of the explicit inclusion
of factors such as cloud top altitude and heavy aerosol
loading [Li, 1998; Feng and Leighton, 2003]. Masuda et al.
[1995] introduced corrections to the Li et al. [1993]
algorithm to explicitly account for these two particular
influences. Clouds at different altitudes affect atmospheric
absorption, hence the SSNI, in different ways [Li and
Moreau, 1996]. Aerosols also play a role in determining
the absorption of solar radiation in the atmosphere. The Li et
al. [1993] algorithm includes a nominal aerosol with an
optical depth of 0.05 at 550 nm, which is inaccurate for
heavy aerosol loading or where the aerosol is strongly

absorbing. Correction terms accounting for these two
important atmospheric influences on the SSNI were imple-
mented in this study.

2.2. Input Data

[10] TOA albedo data are from the high-resolution
(approximately 4-km pixel-level data) GOES-8 data set.
This satellite data set, generated by the NASA Langley
Cloud and Radiation Research Group, uses visible and
infrared radiances to derive various cloud and radiation
products [Minnis and Smith, 1998]. The lack of onboard
calibration requires a careful postlaunch calibration,
followed by a narrowband-to-broadband conversion, in
order to obtain broadband fluxes from the narrowband
uncalibrated digital readings. Both data processes are sub-
ject to uncertainties [Trishchenko and Li, 1998]. As a result,
the GOES-8 products have been revised several times.
Good accuracy in radiation quantities was demonstrated in
the later versions as described in the work of Minnis et al.
[2002]. Employed here were data sets covering the periods
of March, May, July, August, September, October, and
December of the year 2000 (ftp://angler.larc.nasa.gov/public
/products/armsgp/visst-pixel-bin/goes8/). They encompass
an area of approximately 400 � 400 km2 centered on the
SGP CF site in north-central Oklahoma with a time resolu-
tion of about every half-hour on a daily basis. In addition to
TOA broadband albedo, the data set provides cloud macro-
physical properties such as cloud top height and pixel
cloudiness and cloud microphysical properties such as
effective radius.
[11] Another input parameter to the satellite inversion

models is precipitable water (PW) and this quantity was
interpolated from the 2.5� � 2.5� global National Centers
for Environmental Prediction (NCEP) reanalysis [Kalnay
et al., 1996]. This data set covers the period from 1948
to the present and each file contains data for one year
with values of precipitable water given at four times
during each day (0, 6, 12, 18 UTC). For the simulations
performed here, the subset of data encompassing the SGP
region for the year 2000 was bilinearly interpolated to
determine PW at the GOES data grids. A more extensive
PW data set is available from the SGP where 5-min
averages of microwave radiometer (MWR) retrievals have
been made on a continual daily basis since about 1994
[Liljegren and Lesht, 1996] at the CF and four facilities
located at the perimeter of the SGP region. Although
these data are more accurate, they do not have the spatial
coverage needed to determine the PW over the entire
SGP region. Another source of PW data is the network of
Global Positioning System stations located within and
around the SGP grid [Rocken et al., 1995]. These data
have a better spatial coverage than the MWR data but are
still inadequate. For the year 2000, for example, many
days of data are missing. To evaluate uncertainties in the
SSNI due to PW, we derived the SSNI using PW data
from the NCEP reanalysis and the SSNI from the MWR.
For March 2000 at grid sizes of 4 � 4 km2 and 400 �
400 km2 (where the CF value for PW was used for all
pixels), the standard deviations between the two retrievals
are small (2.2 and 2.8 W m�2, respectively).
[12] Aerosol optical depths at 550 nm were derived from

the Aerosol Robotic Network (AERONET) [Holben et al.,

D15S19 LI ET AL.: SAMPLING ERROR IN SOLAR RADIATION DATA

3 of 11

D15S19



2001] atmospheric extinction measurements taken at
wavelengths of 340, 380, 440, 500, 670, 870 and 1020 nm
at the CF. Data from 1994 until September 2001 were used
to derive the Ångstrom exponent, allowing us to interpolate
the aerosol optical depths to 550 nm. The mean value of the
derived aerosol optical depths at 550 nm is 0.138. The
values of aerosol optical depth derived from AERONET
measurements taken at the CF were assumed to be repre-
sentative of the entire SGP region, given that aerosol
loading is not expected to vary greatly over this generally
rural area. There may be exceptions during the spring
season when aerosol loading could be increased by agricul-
tural burning in preparation for reseeding.

2.3. Methodology

[13] Unlike ground-based point measurements, satellite-
measured radiances are areal means over the footprints of
the satellite pixels. Averaging the pixel-level data produces
mean fluxes over grids of any size. Therefore, through use
of high-resolution satellite data, one can gain further insight
into the statistics of the spatial variability of the solar
radiation field. Also, frequent observations, such as those
provided by a geostationary satellite, facilitate the exami-
nation of the temporal variability of the solar radiation field.
[14] To that end, we calculated means of SSNI over grids

of different size and over different time intervals. The
number of pixels within a grid can range from a single
pixel to several thousand pixels. The model of Li et al.
[1993] was first applied to each individual pixel and the
correction factors accounting for the effects of aerosols and
cloud top height on atmospheric absorption were added,
depending on whether the pixel was identified as clear or
cloudy. If the pixel was identified as clear, the aerosol
correction factor was added. If the pixel was identified as
cloudy, the cloud top height correction factor was applied.
Different grid sizes centered on the CF were selected. The
SSNI was computed for every half-hour during the daytime
for all the days when satellite data were available. Grid sizes
were chosen to be representative of various SCM and GCM
modeling schemes (10 � 10, 20 � 20, 50 � 50, 100 � 100,
200 � 200, 300 � 300, and 400 � 400 km2). From the
daytime SSNI calculated for each half-hour, temporally
averaged SSNI were computed for various scales. Time-
averaging intervals chosen in this study were 1, 2, 4, 8 hours,
daily, 5 and 10-day means, and monthly means.

3. Results

3.1. Validation

[15] The values of satellite-retrieved SSNI were first
validated against ground-based observations. From satellite
retrievals at half-hour intervals, a mean SSNI was computed
over an area of 4 � 4 km2 centered on the CF and averaged
over one hour using data from three time points (the time
point closest to the satellite observation and the time points
before and after). Although the size of the region was
selected in a somewhat ad hoc manner, it represents the
bulk of the sky area exposed to a radiometer. The mean
satellite-retrieved fluxes over this 4 � 4 km2 area were
compared to the average of the ground measurements taken
within the 1-hour interval. The observed SSNI was com-
puted from surface downwelling and upwelling irradiances

(corrected for the thermal offset) measured at the Solar
Infrared Radiation Station at the CF. To reduce uncertainties
resulting from surface albedo, the average values of
the surface albedo measurements made from the 10-m and
60-m towers were used. The surfaces below the towers are
covered by grass and wheat. Note that surface albedo
measurements generally have a very limited spatial cover-
age, which may introduce significant uncertainties in solar
radiative transfer calculations [Li et al., 2002]. The mean of
the albedo measurements from the two towers better repre-
sents the surface reflective characteristics surrounding the
CF [Michalsky et al., 2003].
[16] In Figure 2, comparisons of the SSNI estimated from

satellite data and surface observations are presented. In
general, the two sets of data agree fairly well, especially in
terms of relative differences. Biases range from �14 W m�2

to 27.0Wm�2 and the root mean square errors (RMSE) range
from 30 W m�2 to 48 W m�2 with the smallest biases
occurring in March and the smallest RMSE in September.
Seasonal changes in surface albedo may play an important
role in the biases, while the RMSE is dictated primarily by
cloud variability. In September 2000, uniform cloud systems
dominate the region [Dong et al., 2000] so there is less
variability in the solar radiation field hence less deviation
from the point measurements. To a large extent, the scatter in
the plots is caused by mismatches between satellite estimates
and ground measurements in time and space. Satellite esti-
mates were averaged over a 4� 4 km2 area including the CF.
They are not necessarily centered on the exact location of the
instrument. Also, the frequencies of the satellite estimates and
the surface observations differ significantly. The one-hour
averages of satellite-estimated SSNI were calculated from
three data points separated by 30 min. Observations of
downwelling surface fluxes have a temporal resolution
of 1 min and surface albedo measurements have a
temporal resolution of 15 min. Thus the ground data
contain more information concerning the temporal varia-
tion of the SSNI. On the other hand, satellite estimates
better describe the spatial variation of the SSNI.
[17] The scatter seen in the comparisons thus stems from

both physical causes and statistical sampling errors. The
latter is linked primarily to cloud variability, with possible
minor contributions from other factors such as surface
inhomogeneity. To gain further insight into the discrepan-
cies related to data sampling, two comparisons are made
over a grid of 400 � 400 km2. Table 1 presents the mean
and RMSE differences for the comparisons between the
means of satellite retrievals averaged over the entire grid
and surface observations made at all radiation measurement
stations within this grid. While the biases are generally
compatible with those shown in Figure 2, the RMSEs are
reduced substantially. The reduced RMSEs, albeit still
significant, are attributed almost exclusively to the sampling
uncertainties. This is clearly seen from Table 2, which gives
the statistics of comparisons between two satellite retrievals
only (no ground measurements are involved). One retrieval
is the mean of all pixels falling inside the 400 � 400 km2

grid, while the other is the mean of the retrievals over 4 �
4 km2 smaller regions surrounding all ground stations
located within the grid. Note that the latter data may be
regarded as simulated surface observations. Since the two
sets of data were all retrieved from satellite data using the
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same algorithm, their differences attest to sampling uncer-
tainties. Note that the RMSE values given in Tables 1 and 2
are rather close to each other in general. This implies that
the bulk of the differences are caused by sampling errors
that are associated with cloud variability. This finding is
helpful in devising a useful tool to investigate observation
sampling errors, as described in the following section.

3.2. Spatial Sampling

[18] The sampling uncertainties incurred by using single-
point data to represent the means over grids of varying size

were first examined. Such single-point measurements have
been widely used in validating GCMs with grid box sizes of
�200 � 200 km2 [e.g., Wild et al., 1995].
[19] Point measurements of SSNI at the CF were simu-

lated and compared with areal means of SSNI in order to
evaluate the representativeness of single-point data with
respect to regions of varying sizes typical of model grid
cells. Table 3 gives the means and RMSE differences for the
March 2000 comparisons between single-site and areal
mean SSNI data estimated from the GOES data. The
single-site estimates were simulated by averaging SSNI

Table 1. The Mean and RMSE Differences Between the Surface

Solar Net Irradiances Estimated From All Pixels Over the 400 �
400 km2 Grid and Those Averaged From the 21 Ground-Based

Radiation Observation Stations Located Within This Grid

Month RMSE, W m�2 Mean Difference, W m�2

March 23.9 �4.9
July 24.2 30.7
September 19.3 21.3
December 34.4 �19.0

Figure 2. Comparisons of surface solar net irradiance observed at the CF and estimated from satellite
(averaged over a 4 � 4 km2 area centered on the CF) for the months of March, July, September, and
December. Units are W m�2.

Table 2. Same as Table 1 Except That Values of the Ground

Observations Are Replaced by Satellite Retrievals Over 21 4 �
4 km2 Areas Surrounding Each Radiation Observation Station

Month RMSE, W m�2 Mean Difference, W m�2

March 28.3 �8.0
July 24.0 �3.7
September 10.6 1.3
December 15.7 �8.3
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retrieved at individual pixels over a 4 � 4 km2 region
surrounding the CF (a proxy for ground observations at the
CF). The areal mean SSNI values are averaged over areas of
varying size (10 � 10, 20 � 20, 50 � 50, 100 � 100, 200 �
200 and 400 � 400 km2), typical of grid cells for cloud
resolving models up to GCMs. Since any errors in the
single-site and areal mean estimates caused by the retrieval
algorithm are virtually identical, their comparison should
not suffer from any large systematic difference. This
explains why the mean differences are small and exhibit
little trend. As the grid size increases, the RMSE increases
dramatically, suggesting that more variability in the SSNI is
captured.
[20] A similar result was shown in the work of Long et al.

[2002] using cloud amount data from their Surface Cloud
Grid product. A 0.25� � 0.25� grid of cloud amount over
the ARM SGP area was generated using the shortwave flux

value-added product from all radiation measurements sites
within the SGP region as input. An analytic approximation
interpolation technique developed by Caracena [1987] was
used to create the 0.25� � 0.25� grid extending over the
SGP region. From comparisons of daily averages of the
cloud amount derived from the shortwave flux analysis at
the CF with the daily averages of cloud amount from the
Surface Cloud Grid product over areas of increasing size,
they found that the CF data became less representative of
the larger area.
[21] Note that the RMSE values given in Tables 1 to 3

represent the inherent uncertainties of ground-based obser-
vations due to spatial sampling. As a result, one may not
reduce model observation differences below these ranges.
For example, the results presented in Table 3 for March
2000 imply that the best accuracy one may achieve with a
model of 10 � 10 km2 resolution would be 16 W m�2,
which increases to 46 and 64 W m�2 as the model
grid increases to 200 � 200 km2 and 400 � 400 km2,
respectively.
[22] The RMSE computed for any fixed grid is contingent

upon the temporal averaging intervals. Figure 3 shows the
RMSE as a function of grid size for different averaging
intervals (instantaneous, 1 hour, 4 hours, 1 day, 5 days and
10 days) in March, May, July, September, and December. In
general, the RMSE varies considerably from month to
month, indicating that the variability of SSNI has a strong
dependence on season. The least variability occurred in
September and December over all averaging intervals and
grids. For a grid of 400 � 400 km2, the RMSEs calculated
from instantaneous data and data averaged over 4 hours for

Table 3. The RMSE and Mean Differences From Comparisons of

Surface Solar Net Irradiance Estimated at the CF (Averaged Over a

4 � 4 km2 Area) and Over Larger Grids of Varying Size From

10 � 10 km2 to 400 � 400 km2 for March 2000a

Grid Size, km2 RMSE, W m�2 Mean Difference, W m�2

10 � 10 16.2 �0.4
20 � 20 19.8 0.9
50 � 50 27.4 0.1
100 � 100 34.4 �0.7
200 � 200 46.5 0.6
400 � 400 64.2 1.6
aThe surface solar net irradiances were averaged over an hour.

Figure 3. The standard deviation of the SSNI differences between satellite-simulated ‘‘point
measurements’’ and mean values averaged over grids of varying size up to 400 � 400 km2 for
instantaneous values and values averaged over different time intervals in March (stars), May (squares),
July (diamonds), September (triangles), and December (circles).
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these twomonths are less than those for othermonths bymore
than 25Wm�2. July shows the most change in the magnitude
of the RMSE as the averaging interval increases, presumably
caused by the prevalence of small convective clouds. How-
ever, as the averaging interval increases, the difference among
different months diminishes. This is because cloud systems
have certain temporal scales. As the averaging interval is
increased, more changes in the cloud field, hence the SSNI
field, are captured. For a one-day averaging interval, the
RMSE decreases substantially relative to its value averaged
over hours, but the differences among various months are still
significant. For typical GCM grid boxes of 200 � 200 km2,
the daily sampling errors range from 16 to 28 W m�2 in
September and July, respectively. They decrease to 10Wm�2

or less if the model grid is reduced to 10 � 10 km2. For
the 5-day average, however, the differences among all the
months almost vanish.

3.3. Temporal Averaging

[23] Physical processes in the atmosphere occur at
various scales in both space and time domains. The physical

state of the atmospheric system can change substantially
over time. It is thus important to determine appropriate
timescales upon which solar radiative quantities are aver-
aged so that errors incurred in matching model estimates
and measurements are minimized. Figure 4 shows the
variation of the sampling errors in the SSNI as a function
of the averaging interval for different grid sizes and months.
A sharp decrease in the sampling error occurs as the
averaging interval increases to a day. Beyond one day, the
error tends to level off to a stable value of small magnitude.
Note that in Figure 3, an interesting feature appears with
regard to how the dependence of the RMSE on grid size
varies with the averaging interval. For averaging intervals
less than a day, the dependence follows a log function,
which gradually transforms into a linear function for inter-
vals longer than a day. This is probably associated with
cloud scales. Small-scale clouds exhibit high-frequency
variations that last for relatively short periods of time,
whereas large-scale clouds, which influence longer-
term averaging, show much slower temporal variation.
For intervals of 10 days or longer, this dependence is very

Figure 4. Similar to Figure 3 but plotted as a function of the averaging period (1 hour, 2 hours, 4 hours,
8 hours, 1 day, 5 days, and 10 days) for different grids and months.
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weak, as most cloud systems have a lifetime shorter than
10 days.
[24] It follows from the above discussions that the

sampling error depends on the grid size and the month
chosen. The statistics shown in Figures 4 and 5 provide
objective measures of what would be an acceptable error
for climate modeling purposes. For example, for a grid of
100 � 100 km2 in March, increasing the averaging period
from one hour to two hours reduces the sampling error from
34 to 29 W m�2. In September, for the same grid size and
averaging period, the sampling error would reduce from
22 to 19 W m�2. If the time interval used for averaging is
greater than five days, the errors remain steady and very
small (less than 10 W m�2) for all grid sizes. Overall, the
highest magnitudes in the RMSE tend to occur in summer
(July) when cloud systems are more complex and variable
in both time and space [Lazarus et al., 2000; Dong et al.,
2000]. Thus use of the point measurements for validating
a model would result in large uncertainties unless the
measurements are averaged over a long time interval. So
temporal averaging of the SSNI is an effective means of
minimizing matching errors if the physical process under
study is not unduly sensitive to time passages.
[25] Figure 5 shows the difference between the monthly

mean SSNI over different grid sizes and the monthly mean
SSNI simulated at the CF for the months of March, May,
July, September, and December. The magnitude of the
sampling errors is less than 10 W m�2 for all months shown
and grid sizes chosen and the magnitude of the error
diminishes to less than 3 W m�2 for typical GCM grid
boxes with areas of 200 � 200 km2 for March, May and
July. While the magnitude of the errors agrees well with the
general requirement of an accuracy of 5 W m�2 for climate
studies [Suttles and Ohring, 1986], it would be an unreal-
istic goal for certain regions/months, such as September
2000 over the 400 � 400 km2 SGP area. In this case, the
inherent sampling error in monthly mean surface observa-

tions is 8 W m�2, exceeding the required accuracy for
climate studies.

3.4. Multiple Ground Stations

[26] Since single-point measurements do not well
represent areal means over a large grid, multiple radiation
stations distributed over a large grid around the CF improve
the spatial representation of the SSNI, as they capture more
of the variability in the SSNI field. Questions remain,
however, as to how much improvement in accuracy is
gained as the number of stations increases, and how many
stations are really needed to meet certain accuracy require-
ments. To address these issues, grids of different sizes
centered at the CF were selected (100 � 100, �200 �
200, 300 � 300, and 400 � 400 km2), each containing 1, 7,
12, and 21 observation sites, respectively. These grids
and the locations of the observation sites are illustrated in
Figure 1.
[27] For each particular grid size, satellite-estimated SSNI

was calculated over 4 � 4 km2 regions centered on each site
(a proxy for actual surface measurements). The mean values
averaged over all sites inside a particular grid are compared
to the satellite-estimated areal means over the entire grid.
Figure 6 presents the RMSEs calculated for 1-hour and
daily means in March, July, September, and December for
the grid sizes of 100 � 100, �200 � 200, 300 � 300, and
400 � 400 km2. The sampling error is the largest for the
100 � 100 km2 grid in which there is only one station (the
CF). For other grid sizes, the magnitudes of the RMSE vary
significantly with month, from about 6 W m�2 (September)
to more than 17 W m�2 (March) for the daily means, and
from 10 W m�2 (September) to 30 W m�2 (March) for the
hourly means. The December values fall somewhere in
between.
[28] Similar calculations were also conducted for a fixed

grid size of about 200 � 200 km2 using data from different
combinations of the radiation measurement stations
contained within this grid. In addition to the CF, the grid
encompasses radiation measurement stations located in
Ashton, Kansas, and Byron, Pawhuska, Ringwood, El
Reno, and Meeker in the state of Oklahoma. The number
of observation stations used ranges from 1 (the CF) to 7 (all
stations). Intermediate combinations of the stations used
consist of the CF plus an increasing number of the other
stations (for 2 stations, CF and Byron; for 3 stations, CF,
Byron and Ashton; for 4 stations, CF, Byron, Ashton, and
Pawhuska; for 5 stations, CF, Byron, Ashton, Pawhuska,
and Ringwood; for 6 stations, CF, Byron, Ashton,
Pawhuska, Ringwood, and El Reno). The RMSE for March
2000 was calculated and plotted as a function of the number
of surface stations for instantaneous, 1-hour, 4-hour, 1-day,
5-day and 10-day means (Figure 7). In general, the RMSE
decreases as the number of observation sites increases.
However, the reduction is more significant when using 2
or 3 sites, after which the RMSE more or less levels off (and
sometimes increases a bit due to random sampling). This
means that for computing grid mean SSNI, there is no need
for an overly dense network of observation stations. The
number of stations required is contingent upon the averag-
ing period and month. The shorter the averaging interval,
the more stations are needed to reduce the RMSE of the
SSNI. Mean SSNI values averaged over one day remain

Figure 5. Difference between monthly mean SSNI
simulated for ‘‘point measurements’’ and areal mean values
as a function of grid size varying from 10 � 10 km2 to
400 � 400 km2 in March (stars), May (squares), July
(diamonds), September (triangles), and December (circles).
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generally stable as the number of stations increases from 1
to 7. Similar analysis for other months (not shown) reveals a
more significant reduction in the magnitude of the RMSE as
the number of sites increases.

4. Summary

[29] Radiation measurements have been widely employed
for evaluating cloud parameterization schemes and model
simulation results. Different data have been employed to
obtain the estimates of area-averaged surface solar radiation
for time intervals ranging from an hour to a few days in
order to validate model results. The data include (1) tempo-
ral averages of ground-based measurements, (2) spatial
means of satellite-based estimates, and (3) a combination
of the two, in which the point measurements are used to
correct any biases in the satellite estimates.
[30] In this study, we take advantage of the high spatial and

temporal resolution of a recently processed Geostationary
Operational Environmental Satellite data set of cloud
properties to simulate ground-based measurements of the
surface solar net irradiance (SSNI). By averaging the GOES
retrievals in space and time,, we can characterize the obser-
vation uncertainties of SSNI caused by cloud variability at

Figure 6. The standard deviations of the SSNI differences between satellite-estimated areal means and
simulated point-specific values averaged over all stations falling within the grids of 100 � 100, �200 �
200, 300 � 300, and 400 � 400 km2 containing 1, 4, 7, and 21 sites, respectively. Only hourly and daily
averaged values are given.

Figure 7. The standard deviation of the differences
between grid-averaged SSNI and the means of simulated
surface observations at 1–7 stations falling within a grid of
200 � 200 km2 for March 2000.
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different scales for different months. Such scale-dependent
statistics of observation uncertainties provide critical con-
straints on model observation comparisons, and are thus
valuable for improving and validating cloud parameterization
schemes. The Department of Energy Atmospheric Radiation
Measurement program’s observation network in Oklahoma
and Kansas provided a useful test bed for this study. In terms
of spatial averaging, a single observation site (the Central
Facility) does an increasingly poor job of representing areal
means of SSNI as the grid size increases. Averaging the SSNI
at more observation sites results in a decrease in error as the
grid size (and number of observation sites) increases. As for
temporal averaging, increasing the time interval also leads to
a general decrease in the sampling error. Averaging over
periods greater than 5 days smoothes out the error to a
generally stable magnitude of less than 15 W m�2. Use of
multiple observation sites helps capture the variability of the
SSNI field.
[31] When modeled radiation quantities are compared to

ground observations, the inherent uncertainties due to
sampling errors must be taken into consideration. Such
inherent uncertainties are simulated from our satellite
retrievals, which are given as functions of model grid size,
averaging period, number of observation stations, and
month. If the differences between modeled and observed
radiation quantities are comparable to or less than the
corresponding inherent uncertainty, no further insight may
be gained with regard to any model’s deficiencies. Such
statistics are thus valuable for validating models when
testing their parameterization schemes.
[32] In evaluating the performance of a model using

surface or satellite data, one should bear in mind the pros
and cons of each data set, noting that ground observations
have the highest accuracy and frequency, while satellite
estimates provide the most extensive spatial coverage and
uniform quality. A combination of the two types of data set
is thus recommended for model evaluation. Not only are the
ground observations useful for validating satellite retrievals,
they may also be used to remove any biases caused by
infrequent sampling, especially for regions outside the
coverage of the geostationary satellites.
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