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Automatic Detection of Fire Smoke Using Artificial
Neural Networks and Threshold Approaches Applied

to AVHRR Imagery
Zhanqing Li, Alexandre Khananian, Robert H. Fraser, and Josef Cihlar

Abstract—In this study, satellite-based remote sensing tech-
niques were developed for identifying smoke from forest fires.
Both artificial neural networks (NN) and multithreshold tech-
niques were explored for application with imagery from the
Advanced Very High Resolution Radiometer (AVHRR) aboard
NOAA satellites. The NN was designed such that it does not only
classify a scene into smoke, cloud, or clear background, but also
generates continuous outputs representing the mixture portions of
these objects. While the NN approach offers many advantages, it is
time consuming for application over large areas. A multithreshold
algorithm was thus developed as well. The two approaches may
be employed separately or in combination depending on the size
of an image and smoke conditions. The methods were evaluated in
terms of Euclidean distance between the outputs of the NN classi-
fication, using error matrices, visual inspection, and comparisons
of classified smoke images with fire hot spots. They were applied to
process daily AVHRR images acquired across Canada. The results
obtained in the 1998 fire season were analyzed and compared with
fire hot spots and TOMS-based aerosol index data. Reasonable
correspondence was found, but the signals of smoke detected by
TOMS and AVHRR are quite different but complementary to each
other. In general, AVHRR is most sensitive to low, dense smoke
plumes located near fires, whereas smoke detected by TOMS is
dispersed, thin, elevated, and further away from fires.

Index Terms—AVHRR, classification, fire, neural networks,
smoke.

I. INTRODUCTION

B IOMASSburningemitsa largeamountofgreenhousegases
and aerosols into the atmosphere. Approximate estimation

showed that the annual amount of COreleased into the atmos-
phere due to biomass burning is about 114 Tg in the tropics [28]
and 62.3 Tg in boreal zone [37]. Trace gases and aerosol parti-
cles produced by fires play important roles in atmospheric chem-
istry, cloud microphysics, temperature, and radiation balance in
theloweratmosphere.Firecanthus impingesignificantlyonlocal
weather and climate [7], [19]. Fire impact on weather is mainly
due to the attenuation of sunlight by smoke particles, which is
usually short lived. Robock [35] attempted to relate temperature
forecast errors to large fire events occurring in the world’s major
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boreal forests in Canada, China, and Siberia. It was found that,
without considering the direct influence of the fires, temperature
prediction in a nearby region tends to be overestimated by 1.5–7
Cduetothecoolingeffectofsmoke.Toalesserextent,smokecan

have an impact that extends far beyond the region of fire activity.
Smoke plumes may travel over hundreds, or even thousands of
kilometershorizontallyandreachuptothestratosphereundercer-
tain atmospheric circulation conditions [9]. A major fire episode
in northwestern Canada was found to influence significantly air
quality in the southeastern U.S. and eastern seaboard [39].

The climatic impact of smoke is twofold: cooling due to
smoke particles and warming due to greenhouse gases. Smoke
particles scatter and absorb incoming solar radiation, thereby
having a cooling effect at the surface, but warming effect on
the atmosphere [23]. Since the magnitude of the scattering
effect outweighs that of absorption, smoke has a net cooling
effect at the top of the atmosphere-surface system [14]. Smoke
can also modify the short wave reflective properties of clouds
by acting as cloud condensation nuclei [31]. Under a limited
supply of water vapor, an increased number of nuclei result in
smaller cloud droplets that have higher reflectivity than larger
cloud droplets [18]. The cooling due both to the direct and
indirect effects of smoke could potentially offset the warming
effect of increasing COcontent [28], but they act on different
temporal and spatial scales. The latter has a much longer
lifetime and covers larger areas. Understanding such numerous
and complex effects of smoke on weather and climate requires
a good knowledge of the spatial and temporal variation of
smoke and its optical properties, which is only feasible by
means of satellite observation. Discrimination of smoke on
satellite imagery is a prerequisite to study and retrieve physical,
chemical, and optical properties of smoke.

Identification of smoke is by no means a trivial task using
spaceborne data. As is demonstrated later, there is a large
overlap in the spectral signature of satellite measurements
between smoke and other scene types such as clouds and
background surfaces. So far, very few investigations have
focused on the identification of smoke except for some studies
that used somewhatad hocapproaches to identify smoke for
pursuing other research themes. The most commonly used
method of identifying smoke is to assign different colors to
different channels or channel combinations [5], [32]. The
resulting false-color images can provide visual separation
of smoke from other objects. For example, Kaufmanet al.
[17] assigned AVHRR channel 1 to red, channel 2 to green,
and inverse channel 4 to blue, generating a composite image
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showing smoke plumes. Such an approach can hardly be
used for automatic processing masses of satellite imageries.
Another popular approach is thresholding. Christopheret al.
[4] examined various AVHRR channels and their combinations
for distinguishing smoke. He then applied a texture analysis to
these channels and their combinations.

This study developed new remote sensing methods for de-
tectingsmoke.Unlikemanypreviousstudiesdealingmainlywith
tropical fires [17], [30], [4], the methods proposed here address
smoke from boreal forest fires, although the principles of the
methods are applicable to other types of biomass burning as well.
Due to relatively poor knowledge and limited investigations on
boreal fires,moreattentionneedstobepaidtothisbiome.Wehave
developedasuiteof remotesensing techniques forsystematically
monitoring and studying boreal forest fires, including the detec-
tion of hot spots [22], [25], mapping of burned areas [26], [8],
and identificationof smokeplume(thisstudy), retrievalof smoke
optical properties [38], and studying the radiative impact of
smoke on Earth’s radiation budget [23], [24]. The algorithms are
designed for routine operational application to daily satellite data
from the advanced very high resolution radiometer (AVHRR)
aboard the National Oceanic and Atmospheric Administration
(NOAA), Washington, DC, series of satellites.

Data used in the study are introduced in the following section.
Section III describes the algorithms, which employ both neural
network and threshold techniques. The performance of the al-
gorithms is evaluated by various means that are also addressed
in this section. Section IV presents some routine products gen-
erated by applying the algorithms to AVHRR data obtained in
1998. The smoke product is compared with fire hot spots and
an aerosol index data set derived from the total ozone mapping
spectrometer (TOMS) aboard on a different platform [12], [13].

II. DATA

This study employs AVHRR images from NOAA-14 acquired
in 1998, while the algorithms have also been used to process
AVHRR data covering Canada in other years. NOAA-14 has
a daytime overpass around 2–3 PM in Canada with a viewing
plane of 45 relative to the principal plane. After the data were
received at the Prince Albert station in Saskatchewan, they were
radiometrically calibrated and geometrically referenced using
the geocoding and compositing (GEOCOMP) AVHRR data
processing system [36]. The calibration for visible (ch. 1) and
near-IR (ch. 2) measurements was based on the method of Rao
and Chen [33], with their coefficients updated from time to
time. The thermal channels (3–5) were calibrated using onboard
blackbody references. Pixel locations were first computed from
an orbit model that takes into account spacecraft orbit, velocity,
attitude and altitude, earth rotation and curvature. Daily AVHRR
images composited across Canada (57004800 pixels) were
used. The data contain top of atmosphere reflectance in channels
1 and 2 ( , ) and brightness temperatures in channels 3 to 5
( , , and ).

These channels exhibit some distinction in the characteristics
of smoke, clouds, and underlying surface, which is the basis of
smoke identification. On the other hand, there exists a consid-
erable overlap in the magnitude of observations between smoke

Fig. 1. Relative variability of the spectral signals of smoke, clouds, and clear
land surfaces for five AVHRR channels and some of their combinations. (a)
Means and standard deviations for all three subjects, (b) relative maximum and
minimum values for smoke (curves) and clouds (shaded area), and (c) same as
(b) but the shaded area represents clear land.

scenes and for other scene types, most notably between cloud
and land. Fig. 1 illustrates the overlapping of spectral signa-
tures in all the channels and some channel combinations among
three distinct scene types [Fig. 1(a)], namely, smoke and clouds
[Fig. 1(b)], and smoke and land [Fig. 1(c)]. For different chan-
nels to be comparable, relative values () are used that are com-
puted from the absolute values () according to

(1)
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where and denote the maximum and minimum ob-
servation values. thus varies between 0 and 1. Fig. 1(a) shows
the mean and standard deviations, while Fig. 1(b) and (c) are the
maximum (top curves) and minimum (bottom curves) values.

The figure reveals the potential and limitations in separating
smoke from clouds and land using AVHRR data. In general,
the reflectance and brightness temperature of dense smoke have
intermediate values between those of clouds and land. The re-
flectance of smoke is usually less than that of clouds, but higher
than that of the underlying surface, while the converse is true for
brightness temperature. From Fig. 1(a), it appears possible to
differentiate smoke from most clouds and land based on the rel-
atively large difference in brightness temperatures in channels
3–5 ( , , ). The ratio of the reflectance at channels
2 and 1 ( ) is useful to identify smoke over land, and the
difference between and is useful to separate smoke
from clouds. Overall, the three thermal channels are superior to
the two shortwave channels. Although reflectance of smoke is
generally less than that of clouds, the latter has so large a range
of variation that it is difficult to use it to discriminate smoke
pixels from cloudy pixels.

In fact, it is a general problem facing any classification using
AVHRR that the large ranges of variation in all AVHRR chan-
nels cause the overlap between different scene types. This is il-
lustrated more clearly in Fig. 1(b) and Fig. 1(c), which show the
entire ranges of variation in terms of relative maximum and min-
imum values, with the curves denoting smoke and shaded areas
for clouds [Fig. 1(b)] and for land [Fig. 1(c)]. It is observed that
the reflectance and brightness temperature for smoke, clouds,
and land overlap considerably. Although the number of overlap-
ping pixels is small relative to the total number of land or cloudy
pixels, it is comparable to, or even greater than, the number of
smoke pixels. The spectral overlap is due partially to turbulent
diffusion processes associated with smoke and clouds, which
produces large variability in the parameters and leads to fuzzy
boundaries between different scene objects.

The results shown in Fig. 1 were obtained by analyzing
AVHRR data acquired across Canada. For regional studies, the
overlap range is smaller depending on smoke amount and cloud
thickness, meteorological conditions, as well as the spatial
and temporal distributions of fires and smoke. In some special
circumstances, smoke, clouds, and land are readily separated
by reflectance and brightness temperatures using even single
channel measurements, but in general this is very difficult.

III. A LGORITHM

In order to cope with a variety of smoke conditions, the detec-
tion algorithms proposed in this study are based on both artifi-
cial neural networks and multithreshold approaches. Each con-
sists of two major steps: identifying potential areas covered by
smoke using the neural networks or threshold classifier, then re-
moving false-classified pixels by applying additional tests, tex-
ture analysis, and spatial filtration. The threshold and texture
parameters were chosen and optimized following thorough in-
vestigations and analyses of the spectral signature and texture
of smoke, clouds, and land with allowance for their spatial and
temporal variability.

A. Neural Network Method

The neural networks (NN) approach has the capability
to learn patterns whose complexity makes them difficult to
analyze using other conventional approaches [3], [10], [20],
[21]. The NN is useful for smoke identification due to its ability
to find and learn complex linear and nonlinear relationships in
the radiometric data between smoke, clouds, and land.

In the present study, a commercial NN package, named Neu-
roSolutions Professional from NeuroDimension, Inc., is used.
The multilayer perceptron (MLP) neural network of NeuroSo-
lutions package used for the image analysis is a two-layer for-
ward feed network (FFN) with five inputs from the five channels
of AVHRR, one hidden layer with ten processing elements, and
one output layer. The output layer included three neurons. The
number of neurons in the output layer is equal to the number
of desired parameters of the output vector, which are “smoke,”
“clouds,” and “land” in this study. Individual computational el-
ements of an FFN are referred to as neurons or processing el-
ements (PE). Each neuron consists of a vector of modifiable
weights or connection strength. The task of a neuron is to map
a given input vector into a single output that is transmitted to
other neurons. Each element of an input vector is multiplied
by a corresponding weight and added together to produce a net
input. The neuron uses an activation function to transform the
net input into a single output. In our NN, we used two kinds of
activation functions. The hyperbolic tangent activation function
is used for the hidden layer, and an additional softmax activa-
tion function is used for output layer [29]. The softmax function
is used to interpret the output of the NN classification in terms
of posterior probabilities whose outputs for all classes sum to
one. Neurons are arranged in successive layers with connections
between the neurons of two layers but with no connections be-
tween neurons within the same layer. In this layer arrangement,
data flow is unidirectional starting from the input layer. Weights
are commonly computed by minimizing the difference between
network outputs, once a set of input data vectors or patterns have
been propagated through the network. The network was trained
to distinguish smoke from clouds and the underlying surfaces,
including both land and water, with the standard backpropaga-
tion method.

The training data were selected from AVHRR images con-
taining active forest fires. Input parameters to the NN include
reflectance from channels 1 and 2, and brightness temperatures
from channels 3, 4, and 5 without considering any of their
combinations. Training pixels were obtained from representa-
tive polygons containing smoke, clouds, land cover, and water.
Three outputs were generated by the NN corresponding to the
three types of classified objects (smoke, cloud, and land). Each
output is encoded to denote one classified object [27], [2]. To
this end, in the training data, an input vector of a class was
assigned a desirable output. To encode the outputs, a softmax
output activation function was used. According to the softmax
activation function, the output vector for smoke, clouds, and
land categories was represented using binary encoding as
shown in the matrix in Table I.

To train the NN and test its performance, we employed
AVHRR images containing forest fires in northern Quebec in
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TABLE I
ENCODING MATRIX USED IN THENEURAL NETWORKSCLASSIFICATION

TABLE II
MEANS AND STANDARD DEVIATIONS OF THENN OUTPUTS FORPRESELECTED

SCENE TYPES OFSMOKE, CLOUD, AND LAND

July 1998 and in northern Saskatchewan and Manitoba in the
middle of August 1998. The training data set included dense
and thin smoke, different types of clouds, and various land
cover types typical of the boreal forest zone. The total number
of pixels used for training and testing the NN was more than
200 000. 30% of the pixels were randomly selected from each
class and used for training the NN, while the remaining pixels
served as test samples. The averaged NN output values are
presented in Table II. In accordance with the softmax function
of the NN output, the values in the diagonal describe the prob-
abilities of correct classification or the resemblance to a “pure”
scene. The off-diagonal values denote the probabilities of
misclassification or deviation from a pure scene. The diagonal
values in the Table are close to unity, as the data include rather
pure scenes: dense smoke, thick clouds, and clear land. In the
case of optical thin smoke or cloud, the output values are more
dispersed due to class mixing.

Fig. 2(a) shows an output image from the NN classification of
a large smoke plume (400 100 km ) observed on August 30,
1998 in northern Saskatchewan. The image is a three-band false
color composite based on the three NN outputs, with “smoke”
in red, “clouds” in green, and “land” in blue. Also presented in
Fig. 2(b)–(d) are the frequency histograms of each output value.
Here the -axis shows the percentage of the number of pixels,
and the -axis shows the corresponding outputs of the NN (en-
coding values). They demonstrate sufficient separation in the
NN outputs between smoke and the other two scene types. The
majority of smoke pixels have an NN output larger than 0.5,
while the outputs for land and cloud are infrequently larger than
0.5. The red color in the image corresponds to relatively thick
smoke that dominates the image. In the yellow-green portion
of the image lie pixels that are attributed more to clouds. Note
that these clouds were probably formed inside a smoke plume.
The violet part of image corresponds to optically thin smoke
( ), which has a spectral signal influenced by the under-

Fig. 2. (Top) False color composite image of smoke, clouds, and land
generated by assigning the NN outputs of smoke, clouds, and land to red,
green, and blue colors, respectively. (Second panel) Frequency histograms
corresponding to each NN output for smoke, (third panel) clouds, and (bottom
panel) land.

lying land surface. Reduced smoke concentration due to turbu-
lent diffusion of the smoke plume leads to gradually decreasing
values of the NN output for “smoke” and increasing values of
the NN output for “land.”

Fig. 3 shows changes in the NN output along a transact across
a smoke plume starting at the core of the plume and moving to-
ward its edge. It illustrates gradual changes in NN outputs for
smoke and land during a transition from smoke to land. The ver-
tical lines show the range of variation. Reflectance in AVHRR
channel 1, which is proportional to smoke concentration and
the NN output for “smoke,” shows a strong correlation. The
spatial variations of the NN output for smoke across a plume
follows the Gaussian distribution due to turbulent diffusion [1].
The visible radius of the smoke plume in the study area is ap-
proximately 60 km. At this distance, smoke optical depth is re-
duced to approximately 0.1, leading to reflectance close to that
of the land background ( 0.07–0.08). The NN output for
“smoke” also decreases to its background value around 0.1 near
the boundary of the smoke. Fig. 3 also shows that the NN out-
puts for “smoke” and for “land” are negatively correlated with
a combined value near unity. Therefore, the NN approach does
not only identify smoke, but also provides information on its
loading.
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Fig. 3. Comparison of the NN outputs and channel 1 reflectance along a
transact between smoke and land. The bars show the range of variability.

B. Noise Reduction

Although the NN is powerful enough to make optimal use
of all signals pertaining smoke, its performance is inherently
limited by the input satellite data as demonstrated in Fig. 1. To
reduce inevitable false classifications, additional tests are nec-
essary to eliminate noisy pixels from the “smoke” NN output.
The majority of misclassified smoke pixels are located near the
boundaries of relatively warm clouds over land covered by ice
and snow such as the Rocky mountains in British Columbia
and Alberta. A number of discrimination tests are employed to
reduce the noise levels in the “smoke” outputs. The first test
uses a median filter (5 5 or 9 9 pixels). It computes the me-
dian value of the output of smoke index within a rectangular
filter window surrounding each pixel. The median filter smooths
image data, preserves the edges of a smoke plume, and removes
small clusters of noisy pixels produced by small clouds and
randomly distributed sources of underlying background. The
second test eliminates “smoke” pixels of output lower than 0.1.
The third test eliminates false smoke pixels caused by cloud
boundaries using difference in spatial variance between smoke
and noise. Spatial variance is computed from the standard devi-
ation of “smoke” output values within a 55 pixel neighbor-
hood. Since smoke is normally more homogeneous than cloud
boundaries, this test rejects false alarm pixels of the “smoke”
channel with variance larger then 1.1. In addition to the above
threshold tests, one special screening is applied. It is designed
to eliminate false smoke pixels occurring over areas covered by
permanent ice and snow, reflective barren land (bare soil and
rock), and some individual pixels that have very low contrast
between smoke and other scene types in all AVHRR channels.
This test resorts to the use of a land cover classification derived
from AVHRR data [6].

Fig. 4 shows a false-color composite of the image over
Canada with fires and smoke observed in Northwest Territories
on July 16, 1998. It illustrates the final results of the NN

classification separating smoke, clouds, and land. Smoke is
shown in yellow, clouds in pink and white, and land in green.
It was created by combining two NN outputs (“smoke” and
“clouds”) in red, reflectance from channel 2 AVHRR in green,
and output NN of “cloud” alone in blue. Fire pixels, detected
using the algorithm of Liet al. [25], [26], are shown in red. The
color image and smoke mask illustrate the potential of the NN
to identify dense and thin fresh smoke located close to the fires.
In some cases, it is difficult to confirm the presence of smoke
due to the lack of independent ground-truth data. For example,
to the right of fresh smoke plumes there is a long stretch feature
also selected as smoke. Since there are no adjacent hotspots,
it is difficult to confirm these “smoke” pixels, which have the
same or similar spectral and textural properties as smoke. They
may be dispersed downwind smoke, clouds mixed with smoke,
or clouds having the same parameters as smoke. The problem
stems partly from the use of a large training data set that covers
the whole country. Of consequence, the radiometric signatures
of the three typical scenes overlaps, rendering uncertainties in
the classification. To solve the problem, we also used multi-
threshold approach to fine tuning the classification on a regional
basis, which can also be run alone for fast operational detection
of smoke from AVHRR composite image over Canada.

C. Multithreshold Tests

The multithreshold approach is based on differences in the
reflectance of AVHRR channel 1 and channel 2 and in the
brightness temperature of channel 4. Like the NN technique,
it involves two major steps: marking potential smoke pixels
and removing false pixels. Both steps are accomplished using
threshold tests. The first employs thresholds of the ratio of
AVHRR channel 1 and channel 2 reflectance (and ) and
a brightness temperature of AVHRR channel 4 ( ):

and (2)

Pixels passing this test are considered to be either smoke or
cloud. Otherwise, they are deemed land pixels. The second test
employs channel 4 to further separate smoke and cloudy pixels

(3)

Pixels passing this test are regarded as clouds as they are usually
higher and colder than smoke. The third test is introduced to
eliminate warm nonbright clouds from “smoke” pixels

and (4)

Fig. 5 shows a flowchart of the multithreshold tests. The
threshold values were established using the training database
from AVHRR observation of forest fires over Canada in 1998
[25], [26]. If the threshold approach is run standalone, i.e., the
NN approach is not run ahead, the various screening processes
described earlier ought to be applied including median spatial
filtering, variance testing, and background checking using a
land cover mask.

Fig. 6 (left panel) shows a smoke image produced using
the threshold algorithm applied to the AVHRR image across
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Fig. 4. Forest fire and smoke across Canada on July 16, 1998, identified by the neural networks. Smoke plumes, clouds, and clear land are shown in orange,
white/gray, and green, respectively.

Canada on August 11, 1998. By assigning the combined
“smoke” and “clouds” masks in red, reflectance from channel
2 AVHRR in green, and cloud mask in blue, this creates a
composite image where smoke appears orange, clouds white
and grey, and land green. Shown on the right panel is an
image over a much smaller region encompassing most of the
fires occurring in Saskatchewan and Alberta on the same day,
identified by the NN. There were more than a dozen of large
fires over an area of 1000 km. The image shows not only the
thick smoke plumes, but also the widespread, persistent smoke
haze. Some thin smoke is not clearly seen over land, but it is
readily discernible over dark water bodies. The overlapped
clouds and smoke are also successfully separated.

D. Performance Evaluation

Relative to the use of individual AVHRR channels and their
simple combinations, both the NN and multithreshold ap-
proaches described above have improved capability to identify
smoke plume and to produce images providing visual contrast
between smoke, clouds, and the underlying background. To
demonstrate this quantitatively, the degree of separation is
measured by the three-dimensional (3-D) Euclidean distance
between each pair of scene objects. Of course, our main interest
here is the separation between smoke and cloud, and between
smoke and land, although distinctions between cloud and other
two subjects are useful for other studies. Each of the objects
is designated by three variables (, , ) that are assigned
three basic colors (red, blue and green) to generate false
color images. These variables include the outputs of the NN

classification and the combinations of AVHRR channels used
in the threshold algorithms. For comparison, some selected
individual channels are also tested, which were employed in
some previous studies. Since the images are linearly enhanced
in this study, the Euclidean distance defined in the following
quantifies the capability of separation between two subjects (
and ):

(5)

Note that all the variables (, , ) are normalized to the
same scale (0–1). The distances between three pairs, namely,
smoke-clouds, smoke-land, and clouds-land are computed and
shown in Fig. 7. The figure indicates that the combination of
three NN output channels produces the best visual contrast be-
tween smoke, clouds, and land. Other methods may render good
separation between one pair of objects but often fail for other
pairs.

In addition, the classification accuracy of the algorithms is as-
sessed using an error matrix [15] which describes probabilities
of each scene type being correctly identified (diagonal elements
in the matrix), and misidentified into different categories (off-di-
agonal elements). From this matrix, the overall accuracy and
commission and omission errors can be computed. The overall
accuracy was computed as the ratio of the sum of numbers in
the diagonal divided by the total number of all scenes. The com-
mission error is the ratio of the number of cases misclassified as
one scene divided by the total number of this scene, while the
omission error is the ratio of the number of scenes misclassified



LI et al.: AUTOMATIC DETECTION OF FIRE SMOKE 1865

Fig. 5. Flowchart of the multithreshold algorithm.

into other scenes divided by the total number of this scene. To
this end, 13 nationwide AVHRR images of 44004400 pixels
with significant fire activities were selected. Each of the selected
images contain at least 300 fire pixels with more than 25 000
identifiable smoke pixels and 50% cloud cover. The smoke de-
tection algorithms were applied to these images. The resulting
masks of smoke, clouds, and land were compared against results
obtained by a supervised classification. Table III is the error ma-
trix including the statistics of the NN classification. Reference
data given in the columns represent the real number of pixels
belonging to each category identified by supervised classifica-
tion, i.e., the sums of the elements appearing in the same column
are deemed as true. The numbers in the rows are classification
results obtained by the NN. Also included in the table are the
overall classification accuracy, omission, and commission er-
rors. Both the commission and omission errors for smoke scenes
are in the neighborhood of 27%, which are considerably larger
than for clouds and land. This is because the areas of cloud and
clear land scenes are much larger than that of smoke. It should be
noted that this accuracy assessment contains uncertainties due
to absence of real ground truth information.

IV. A PPLICATION

Smoke from forest fires is the primary disturbance to the rel-
atively low loading of background aerosols across the world’s
major boreal forests in Canada and Russia. These forests are
subject to widespread periodic burning induced primarily by
lightning. On average, tens of thousands of fires occur each year
across the boreal zone [16]. Because of the high biomass con-
tent, boreal forest fires tend to be more intense and last much
longer than tropical fires. As a result, smoke from these fires
can usually travel a long distance and extend to a high altitude.
For example, Hsuet al.[12] found a close linkage between fires
occurring in western Canada and the high loading of absorbing
aerosol over Greenland using aerosol index (AI) data derived
from the TOMS. The AI is a measure of the wavelength-de-
pendent reduction of Rayleigh scattered radiance by aerosol ab-
sorption relative to pure Rayleigh atmosphere [11], [13]. The
AI was defined such that positive values generally correspond
to UV-absorbing aerosols situated 1.5 km above the Earth’s
surface. TOMS is not sensitive to boundary layer absorbing
aerosols [11]. Using several spaceborne data sets such as the
Polar Ozone and Aerosol Measurement (POAM) III and Strato-
spheric Aerosol and Gas Experiment (SAGE) II, Frommet al.
[9] found that aerosol from large fires in Canadian and Russian
forests can travel over half the globe and extend into the strato-
sphere (15 km).

While both studies referred to AVHRR images, no direct
comparisons were made against either fire hot spots or smoke
plume. Since the observation principles and characteristics of
these instruments (TOMS, POAM/SAGE, AVHRR) are very
different, comparisons of different fire smoke products provide
a means of validation and/or consistency check and more
complete information concerning the smoke. Note that the
smoke identified by AVHRR is usually fresh and located near
fire locations at relatively low altitudes, whereas that identified
by TOMS or POAM/SAGE is older and located at higher
altitude away from the fire origin. If correctly identified, smoke
detected with these sensors should correspond to each other
with lags in time and space dictated by atmospheric circulation
conditions.

We implemented the smoke detection algorithm as described
above to process daily AVHRR imagery across Canada during
the entire fire season (May–October) for a few years. In this
paper, only the results obtained for 1998 are analyzed. As is
shown in Fig. 8, there were two major fire episodes in 1998
that occurred in July and August. The one in August is rather
intensive and widespread, which was studied by Hsuet al.
[12], [13] using TOMS AI data. For the sake of compar-
ison, the same episode is investigated here. Fig. 9 presents
side-by-side comparisons of AVHRR-based hot spots (left
panels), smoke-cloud-land composite images (middle panels),
and TOMS-based aerosol index images (downloaded from the
NASA/TOMS home page: http://toms.gsfc.nasa.gov). It is seen
that on August 3, there was widespread fire activity across
western and southern Northwest Territories and scattered fires
in Yukon Territories, Manitoba, and Ontario. Almost all of the
fires detected by satellite are confirmed by Canadian forest fire
agencies [26]. Smoke associated with these fires was detected
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Fig. 6. (Left) False-color composite image of forest fires (red), smoke (orange), clouds (white and gray), and land (green) identified by the multithreshold approach
across Canada on August 11, 1998. (Right) Regional false-color image classified by the NN in northern Alberta and Saskatchewan on the same day.

Fig. 7. Euclidean distance between smoke and clouds, smoke and land, and
clouds and land, determined by three variables (the outputs of the NN and
multithreshold algorithms, AVHRR channels and their combinations) that
characterize the three subjects.

by both AVHRR and TOMS in northern Northwest Territories.
TOMS detected a massive smoke plume with AI more than 2.7
over a large area (length 800 km, width 250 km). Presum-
ably, the fires detected by AVHRR in the south are fresh and
the associated smoke is light and close to the ground, leaving a
very weak signal to be detected by AVHRR. By contrast, the
smoke detected in the north by both AVHRR and TOMS is from
older fires and has been elevated to higher altitudes. This is in
agreement with the atmospheric circulation condition as shown

TABLE III
STATISTICS OF THECLASSIFICATION RESULTS

Fig. 8. Number of fire hot spots detected daily across Canada in 1998.

in Hsuet al. [12], [13]. On this day and several days following,
a high-pressure ridge resided in western Canada and the U.S.,
accompanied by prevailing wind blowing northeast. As a result,
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(a)

(b)

Fig. 9. Comparisons of satellite detected fire hot spots (left) from AVHRR, (middle) smoke AVHRR, and (right) aerosol index from TOMS on a series of days
in August 1998.

two days later (August 5), smoke extended to eastern Canada
according to AVHRR. TOMS detected smoke around Hudson

Bay and across the northern Atlantic with higher values of AI.
This may be attributable to increasing altitude of smoke as it
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(c)

Fig. 9. (Continued.) Comparisons of satellite detected fire hot spots (left) from AVHRR, (middle) smoke AVHRR, and (right) aerosol index from TOMS on a
series of days in August 1998.

travels eastward, as implied by the atmospheric circulation
condition [12], [13]. However, such a signal is not detected
using AVHRR due both to reduced smoke density and to an
extensive large cloud cover. On August 7, AVHRR detected
several low and dense smoke plumes, whereas TOMS missed
almost all of them. On August 10, the smoke is widespread
in northern Saskatchewan as revealed by AVHRR-based hot
spots and smoke, which is also captured by TOMS. On August
11, the smoke intensified and moved to the northeast. It is
interesting to note that TOMS detects smoke with stronger
signals downstream, whereas AVHRR is easier to identify
smoke near the fire origin.

The above analyses demonstrate the feasibility of smoke de-
tection using both AVHRR and TOMS. More importantly, the
two sensors and methods have very different sensitivities and
response to smoke located in different layers. It is fortunate that
the two methods complement each other. The linkage of smoke
detected by the two sensors may be better established using a
chemical transport model coupled with an atmospheric circula-
tion model that can trace the movement of smoke species.

V. SUMMARY

Smoke from wildfires is an important source of atmospheric
aerosols and chemicals, especially in the boreal forest environ-
ment. Smoke aerosol has a significant impact on atmospheric
chemistry, weather and climate. To better understand these
impacts requires a good knowledge of smoke distribution and
temporal variation. On regional or global scales, this may only
be achieved using satellite remote sensing techniques. So far,

there have been few studies dedicated to the identification of
smoke using satellite imagery data with automatic procedures.

This study developed satellite-based classification algorithms
and used them to automatically process large volumes of daily
AVHRR imagery data acquired across Canada during several
fire seasons. The spectral characteristics of smoke relative to
other major scene types (clouds and land background) were
first investigated. While both the AVHRR visible and infrared
channels convey certain information pertaining to smoke, they
are not distinct enough from nonsmoke scenes due to large
overlaps of signals, although a combination of the channels
may work under certain conditions over a small region. To
alleviate these difficulties, both neural networks (NN) and
multithreshold approaches were explored. The NN approach
has the capability of learning from training data sets and
handling complex relationships between various channels in
linear or nonlinear forms. Moreover, it provides quantitative
and continuous indices of smoke as well as other objects. The
smoke index provides a measure of both the concentration of
smoke and the mixing with other scene types (i.e., smoke/cloud,
smoke/land, and smoke/land/cloud). The main disadvantage of
the NN approach is that it is time consuming to process large
images like those covering entire Canada (it should be noted
that training is most time consuming. Once trained, the network
can classify scenes relatively quickly). In addition, when
employed over such a large area, misclassification is inevitable.
A multithreshold approach was thus also introduced that
has certain advantages (quick processing) and disadvantages
(categorized output) relative to the NN. Both approaches suffer
from limitations inherent in the characteristics of the input
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satellite data. They also have greater difficulty in identifying
thin dispersed smoke compared to fresh dense smoke. For
handling large data volume, an effective approach is to apply
the threshold method to identify dense smoke and then to
apply the NN to deal with thin smoke. The performance of
the algorithms was evaluated in terms of Euclidean distance
between the output channels using error matrices and visual
inspection and comparisons of classified smoke images with
fire hot spots detected using independent algorithms.

The algorithm has been applied to process daily, Canada-wide
AVHRR data. The output smoke images for 1998 were assessed
with reference to AVHRR-based hot spots, and TOMS-based
aerosol index images. Overall, the three types of images show
a reasonable correspondence. Both AVHRR and TOMS can de-
tect smoke downwind of fires but have rather different response
and capability. AVHRR-based detection is more sensitive to the
density of smoke, while TOMS is also affected by the altitude of
smoke. AVHRR can detect most smoke near the origin of a fire,
which is often missed by TOMS unless the smoke is dense and
widespread. However, AVHRR is not effective for monitoring
older, highly diffuse smoke distant from a fire source.
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