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My dissertation focuses on studying instabilities of different time scales using 

breeding and data assimilation in the oceans, as well as the Martian atmosphere.  The 

breeding method of Toth and Kalnay finds the perturbations that grow naturally in a 

dynamical system like the atmosphere or the ocean. Here breeding is applied to a 

global ocean model forced by reanalysis winds in order to identify instabilities on 

weekly and monthly timescales. The method is extended to show how the energy 

equations for the bred vectors can be derived with only very minimal approximations 

and used to assess the physical mechanisms that give rise to the instabilities. Tropical 

Instability Waves in the tropical Pacific are diagnosed, confirming the existence of 

bands of both baroclinic and barotropic energy conversions indicated by earlier 

studies.  



  

For regional prediction of smaller timescale phenomena, an advanced data 

assimilation system has been developed for the Chesapeake Bay Forecast System, a 

regional Earth System Prediction model.  To accomplish this, the Regional Ocean 

Modeling System (ROMS) implementation on the Chesapeake Bay has been 

interfaced with the Local Ensemble Transform Kalman Filter (LETKF).  The LETKF 

is among the most advanced data assimilation methods and is very effective for large, 

non-linear dynamical systems in both sparse and dense data coverage situations.   In 

perfect model experiments using ChesROMS, the filter converges quickly and 

reduces the analysis and subsequent forecast errors in the temperature, salinity, and 

velocity fields.  This error reduction has proved fairly robust to sensitivity studies 

such as reduced data coverage and realistic data coverage experiments.  The LETKF 

also provides a method for error estimation and facilitates the investigation of the 

spatial distribution of the error.  This information has been used to determine areas 

where more monitoring is needed. 

The LETKF framework is also applied here to a global model of the Martian 

atmosphere.  Sensitivity experiments are performed to determine the dependence of 

the assimilation on observational data.  Observations of temperature are simulated at 

realistic vertical and horizontal levels and LETKF performance is evaluated.  Martian 

instabilities that impact the assimilation are also addressed. 
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Chapter 1: Introduction 

 

Introduction 

Mathematically, forecasting the behavior of a physical system is an initial 

value problem which requires a numerical model approximation of the system and an 

estimate of the current system state.  For a complex, chaotic system, such as the ocean 

and the atmosphere, errors in the initial state estimate are amplified by instabilities in 

the system, eventually causing a significant decrease in forecast skill.  To accurately 

forecast a complex system, it is important to understand the timescales and dynamical 

causes of these instabilities and to be able to correct the resulting errors.  One method 

of addressing this issue is to use a number of slightly different initial states and follow 

their trajectories.  The resulting difference between the ensemble members describes 

the uncertainty in the forecast.  The breeding method utilizes the difference between 

model runs beginning from slightly different initial conditions to identify and isolate 

instabilities of different timescales.  Ensemble Kalman filter methods use the 

difference between members of an ensemble to estimate the forecast uncertainty. 

 This dissertation explores breeding and data assimilation over different 

dynamical systems.  Chapter 2 presents a new method of computing energetics using 

breeding and then applies this method to the study of instabilities in the global ocean.  

Bred vector energy equations are used to address the question of what are the main 

dynamical causes of Tropical Instability Waves in the tropical Pacific and Atlantic 

Oceans as well as an instability in the South Atlantic off the coast of South America.  
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Data assimilation in the Chesapeake Bay using the Local Ensemble Eransform 

Kalman Filter (LETKF) is studied in Chapter 3.  This chapter studies the feasibility of 

an ensemble Kalman filter system in the Chesapeake Bay and evaluates the current 

observational network for the purpose of assimilation.  The LETKF is also applied to 

a Martian General Circulation Model in Chapter 4 and the predictability of the 

Martian atmosphere is addressed.  The chapter addresses the question of whether the 

LETKF effectively improves the state estimate on the Martian atmosphere using a 

realistic satellite observation distribution.  A discussion of the results and future 

research is presented in Chapter 5.  An appendix presents preliminary results from an 

assimilation and forecast system in the global ocean. 

 Each chapter constitutes a separate project and the results from each are being 

written up in separate papers.  A paper containing the main results from Chapter 2 has 

been accepted to GRL pending small revisions and papers on the Chesapeake Bay 

and Mars data assimilation projects are currently being written. 

The Breeding Method 

The breeding method was originally developed both for application to data 

assimilation (to identify the growing component of the analysis error (Yang et al., 

2008)) and to provide a set of plausible initial conditions for ensemble forecasting of 

atmospheric motions representative of the growing errors in the analysis (Toth and 

Kalnay, 1993, 1997). Here the method is extended to provide an alternative method of 

computing the energetics of the global upper ocean which has advantages of being 

simple to implement and computationally inexpensive. 
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The breeding method begins with an arbitrary small perturbation of the initial 

state of an unstable system, such as the ocean, represented by a numerical model.  

This model is integrated forward for a time interval, Δt, beginning from both the 

perturbed and unperturbed (or control) initial state.  The vector difference in ocean 

state variables between the two resulting nonlinear forecasts is called the bred vector. 

At Δt this bred vector is rescaled to the size of the initial perturbation and then is 

added to the control simulation to form the perturbed initial state for a new 

simulation. Examples of norms for rescaling are the root mean square difference of 

sea surface temperature (SST) or the kinetic energy of the perturbations.  Twin 

simulations beginning with the control and newly perturbed control initial state at Δt 

are then integrated forward from Δt to 2Δt to create a new simulation pair. The bred 

vector at time 2Δt is then computed, rescaled, and the process is repeated. After a 

short spinup and when carried out over many cycles, the resulting time series of bred 

vectors has been shown by Toth and Kalnay to isolate and identify the components of 

the system that grow most rapidly on a time-scale of Δt or longer, and to separate 

them from other rapidly growing components that saturate in times shorter than Δt. 

By varying Δt (hereafter known as the "breeding interval"), Peña and Kalnay (2004) 

showed how to isolate instabilities of different temporal scales. The bred vectors 

created by this process are essentially non-linear generalizations of Lyapunov vectors 

and, like Lyapunov vectors, they are independent of the norm chosen for rescaling 

(Toth and Kalnay, 1997; Kalnay, 2004).  Equivalent results can be obtained with any 

norm; however, given a norm, rescaling the BVs to different sizes as measured by 

that norm controls the degree of nonlinearity in the BV evolution.  In addition, the 



 

 4 
 

time interval can be chosen to select phenomena which have not reached error 

saturation in that interval.  It is through tuning these two parameters that the breeding 

method can be used to isolate different types of instabilities (Peña and Kalnay, 2004; 

Chikamoto et al., 2007; Vikhliaev et al., 2007). 

Data Assimilation 

Introduction 

While data assimilation has been performed on ocean models and planetary 

models for many years, the schemes used have usually not been as sophisticated as 

those used on their atmospheric counterparts.  Many ocean data assimilation efforts, 

including most of the operational systems have used some type of optimal 

interpolation (Mellor and Ezer, 1991; Fana et al., 2004).  In the Chesapeake Bay, 

salinity data from a ship-towed vehicle was assimilated by Xu et al. (2002) using a 

nudging method.  While some improvements were seen, it was also noted that the 

nudging method introduced errors from disrupting the system balance, something that 

advanced assimilation methods do a better job of preserving (Xu et al., 2002).   

Recently, a number of global and coastal scale assimilation efforts have been 

undertaken using advanced methods (e.g., Lermusiaux et al. 2006; R. Hoffman et al. 

2008; Wunsch and Heimbach 2007).  The majority of these systems utilize an 

assimilation system related to three or four dimensional variational (3D-Var and 4D-

Var) methods (Wunsch and Heimbach 2007; Stammer et al. 2002), while a few have 

used ensemble Kalman filter methods (R. Hoffman et al., 2008; Fukumori, 2002). 

Studies of the Martian atmosphere have used similar assimilation methods.  

Banfield et al. (1995), one of the earliest studies, assimilated simulated observations 
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using a Kalman filter approach with a fixed covariance matrix.  Simulated 

observations were also used with the analysis correction scheme (Lewis and Read, 

1995; Lewis et al., 1996, 1997).  Houban (1999) assimilated real Thermal Emission 

Spectrometer (TES) temperature observations with a 4D-VAR scheme using an 

approximation of the tangent linear model.  The assimilation run was very short, but 

some promising analyses of the zonal mean were shown.    TES temperature 

observations were also assimilated by Zhang et al. (2001) using the steady state 

Kalman filter of Banfield (1995).  Results from this study were mixed and there was 

not convincing evidence that the filter was converging sufficiently. 

Data assimilation methods which focus on state estimation, such as most 

Kalman filter based methods, attempt to improve forecasts by improving the accuracy 

of the current state estimate (which is the initial condition) (Hunt, 2007, Houtekamer, 

1998). In a data assimilation scheme, an estimate of the current state is derived by 

combining current observations and a previous forecast, which is referred to as the 

background. This state estimate, hereafter called the “analysis”, is then used as the 

initial condition for the model, which, in turn, creates a new forecast. Data 

assimilation proceeds in this manner, alternating between a forecast step, where the 

model predicts the future state of the system, and an analysis step, where observations 

taken at this future time are incorporated and the analysis is created. 

Both the background and the observations have errors, and the analysis step 

consists of a statistical procedure that takes these errors into account in determining 

the analysis state. Since the estimate takes into account the observations and the 

background state, in addition to the relative covariances of each state, approximations 



 

 6 
 

of the covariances must be derived. In most of the currently used data assimilation 

techniques, such as 3D-VAR and 4D-VAR, the background error covariance is 

assumed to be constant in time and is approximated using a climatological average. 

While this is a reasonable approximation, it does not account for the day-to-day 

variations in the background error covariance that naturally occur. In contrast, 

Ensemble Kalman Filters (EnKFs) estimate the background error covariance using 

the sample covariance of an ensemble of forecast states (Hunt, 2007, Houtekamer, 

1998, Whitaker, 2002). One of the significant advantages of the ensemble methods 

over variational schemes is that ensemble methods account for ”errors of the day” 

much more effectively by allowing the background error covariance to change at each 

step (Kalnay, 2003, Hunt, 2007). 

The Local Ensemble Transform Kalman Filter 

In this thesis the data assimilation framework of the Local Ensemble 

Transform Kalman Filter (Hunt et al., 2007) is utilized.  Data assimilation in general, 

and the LETKF in particular, has a longer history in atmospheric science than in 

either oceanography or planetary science.  Among the reasons that ocean and 

planetary data assimilation has lagged behind that of the atmosphere are that 

observational data is much more sparse and that weather prediction has a much larger 

daily human impact. With the advent of newer, more sophisticated, observing 

methods, however, the observational coverage of the ocean is increasing and along 

with it the potential gains in forecasting skill through effective and efficient data 

assimilation.  Similarly, a new generation of Martian satellites in the 1990s has made 
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Martian data assimilation a promising tool for increasing our understanding of the 

Martian climate. 

The central problem in oceanic and atmospheric modeling is the same in that 

both systems can be modeled through a set of partial differential equations. These 

equations, along with boundary values given by the current state of the system, form a 

well-defined initial value problem whose solution can be used to predict the state of 

the system at subsequent times. In practice, these equations will never be exact due to 

unavoidable errors in parameters such as friction or viscosity coefficients, as well as 

approximations made to facilitate computation. There will also always be errors in the 

estimation of the current state of the system due to instrumental errors, the lack of full 

observational coverage, and representativeness errors.  Even if the equations and 

boundary conditions were exact, however, the chaotic nature of these systems means 

that even the inherent errors caused by discretizing the equations and solving them 

numerically would lead to large errors over a long forecast.  

Despite the grim long term outlook, accurate forecasts can be made over 

reasonable time intervals and are very valuable. Improvements to forecasting skill can 

be made in a number of ways and serve to both improve the forecast on a particular 

day and to increase the length of usable forecasts. As discussed above, data 

assimilation methods, such as the LETKF, attempt to improve forecasts by improving 

the accuracy of the current state estimate. In the LETKF, this synthesis of background 

and observations is accomplished using a Bayesian maximum likelihood estimate. 

Before delving into the mechanics of the LETKF, however, it is necessary to 
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introduce both the notation used and the original Kalman filter, on which the LETKF 

is based. 

The Kalman filter was first introduced in 1960-61 as a method for estimating 

the true state, denoted x௧ , of a dynamical system (Kalman, 1960; Kalman and Bucy, 

1961).  As described above, this method is a statistical procedure which combines 

observations, y௢, with the background state estimate, x௕, to create the analysis 

estimate, x௔. Because the statistical estimate assumes that the background and the 

analysis have Gaussian and unbiased errors, x௕and x௔ have corresponding covariance 

matrices P௕ and P௔, respectively. In practice, there is never an observation taken at 

every grid point of the model nor is any individual observation exact. Thus we 

assume that y௢ ൌ ሺx௧ሻܪ ൅  where the operator H is the (possibly nonlinear) map ,ߝ

from model space (which here is considered to be a discrete grid) to the observation 

space and the error term ߝ is a Gaussian random variable with covariance matrix R. In 

practice, the linearization, H, of the transformation H is frequently used to simplify 

the computation. For this reason, H is used in place of H in the subsequent equations. 

The linear Kalman filter then creates the analysis and its corresponding covariance 

using the following equations: 

x௔ ൌ x௕ ൅Kሺy௢ െ Hx௕ሻ (1.1)

P௔ ൌ ሺI െ KHሻP௕ (1.2)

where K ൌ P௕H்൫HP௕H் ൅ R൯
ିଵ

 is the Kalman filter gain matrix.  In a completely 

linear case, this least-squares approach yields an optimal analysis.   Although 

atmospheric and oceanic models are non-linear, the uncertainties involved are small 

enough that the Kalman filter approach still theoretically gives a reasonable 
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approximation. In practice, however, the size of ocean (and atmospheric) models 

(typically on the order of several million variables) makes the required matrix 

inversions prohibitively expensive (Hunt et al., 2007).  

To get around this barrier, an ensemble is used to estimate the Gaussian error 

distribution and propagate it forward in time. At a given time, ݐ௡ିଵ, a k-member 

ensemble of initial conditions is chosen whose mean is x௡ିଵ
௔  and whose spread 

characterizes the covariance P௡ିଵ
௔ .  Using the notation of Hunt et al. (2007), this 

ensemble is denoted ቄx௡ିଵ
௔ሺ௜ሻ : ݅ ൌ 1,2,… , ݇ቅ.  Each member of this ensemble is then 

propagated forward using the model to form a new ensemble. This new ensemble is 

the background ensemble at time ݐ௡ which is written ቄx௡
௕ሺ௜ሻ: ݅ ൌ 1,2, … , ݇ቅ.  Because a 

Gaussian distribution will be mapped to a Gaussian distribution through this process, 

the resulting ensemble can be used to characterize the new background state x௡
௕  and 

its associated covariance matrix P௡
௕ .  Specifically, the background state is the mean of 

the background ensemble,  

x௡
௕ ൌ

∑ x೙
್ሺ೔ሻೖ

೔సభ

௞
, 

(1.3)

and the background covariance is given by 

P௡
௕ ൌ

X್൫X್൯
೅

௞ିଵ
 = 

∑ ቀx೙
್ሺ೔ሻିx೙

್ቁቀx೙
್ሺ೔ሻିx೙

್ቁ
೅ೖ

೔సభ

௞ିଵ
 

(1.4)

where X௕ is defined as the matrix whose ith column is x௡
௕ሺ௜ሻ െ x௡

௕  and the time index 

has been dropped for simplicity. Note that there are only k−1 linearly independent 

rows in both P௕ and X௕. This, as will be shown below, helps reduce the 

computational resources needed to solve Equations 1.1 and 1.2 by effectively 
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reducing the space over which the analysis is found to the point where the problem is 

expensive but feasible. 

Another technique utilized by Hunt et al. (2007) to facilitate the calculation of 

the analysis is spatial localization. There are a number of reasons to perform spatial 

localization, and three are touched on here. First, breaking the problem down into 

independent local pieces allows the computation to be done more efficiently in 

parallel. 

In addition to increasing the speed of the calculation, localization improves 

the accuracy as well. As noted above, the background covariance matrix P௕ has rank 

k −1 and therefore can only represent and correct uncertainty in the (at most) k −1-

dimensional subspace spanned by the ensemble members. Because atmospheric and 

oceanic systems are typically higher-dimensionally unstable, running a k-dimensional 

ensemble filter globally will not account for all of the forecast errors. It has been 

shown, however, that the dimension of the unstable direction can be reduced when 

confined to a sufficiently small region (Patil et al., 2001).  This fact was utilized in 

the Local Ensemble Kalman Filter (Ott et al., 2004). By breaking the problem into 

local regions and preforming the analysis individually on each region, the LETKF is 

able to globally correct errors over a much larger space than would otherwise be 

possible. 

The third major benefit of localization is in eliminating spurious correlations 

over great distances. While using a small ensemble has many benefits, one 

unwelcome consequence of the small ensemble size is that these false correlations 

appear between far off grid points in the background covariance matrix P௕. In a non-
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localized analysis, these correlations would cause observations at one grid point to 

incorrectly influence other distant and unrelated grid points, resulting in an increase 

in error. 

In the LETKF proposed by Hunt et al. (2007), localization is achieved by 

performing an independent analysis at each individual grid point using only 

observations from a neighborhood of that point. This is what is known as an explicit 

method of localization and has been used in various implementations of the ensemble 

Kalman filter (Houtekamer and Mitchell, 1998). An implicit method of localization 

can also be used, where the elements of P௕ are multiplied by a function that decays to 

zero beyond a given radius (Whitaker and Hamill, 2002). 

Having discussed how localization facilitates the calculation of the analysis, 

the pertinent issue is then how exactly this calculation takes place. As previously 

discussed, the computation involves taking the background ensemble and 

transforming it into the analysis ensemble through the introduction of observational 

data.  The transformation of the background ensemble to the analysis ensemble is 

accomplished through matrix transformations, following the Ensemble Transform 

Kalman Filter of Bishop et al. (2001). What follows is a summary of some key points 

from the method of Hunt et al. (2007). 

One method of calculating the analysis, as discussed above, is through the 

Kalman filter equations (equations 1.1 and 1.2). It turns out that these equations are 

equivalent to the problem of minimizing the cost function 

ሺxሻܬ ൌ ൫x-x࢈൯
்
൫P௕൯

ିଵ
൫x-x࢈൯ ൅ ሾy௢ െ ሺxሻሿ்Rିଵሾy௢ܪ െ  ሺxሻሿ, (1.5)ܪ
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 where H is the nonlinear observation operator. On first inspection, however, it 

appears that equation 1.5 is not well defined. The cost function relies on the term 

൫P௕൯
ିଵ

, but since P௕, as defined in equation 1.4, is an m×m matrix with rank൫P௕൯ ൑

݇ െ 1 ൏ ݉, P௕ is not invertible. To get around this, Hunt et al. (2007) look to 

minimize J not in the full space R௠, but in a subspace of R௠ over which 

൫P௕൯
ିଵ
 makes sense. The proper subspace to use for this purpose is the column space 

of P௕, denoted ܵ. Since P௕ is a symmetric matrix, it is one-to-one on its column space 

ܵ, which is the same as the column space of X௕. Because of this one-to-one property, 

൫P௕൯
ିଵ

 can be suitably defined on ܵ and ൫x-x࢈൯
்
൫P௕൯

ିଵ
൫x-x࢈൯ makes sense as long 

as x-x࢈ is also in ܵ. Thus the minimization of ܬሺxሻ can be performed with the 

restriction that x-x࢈ א ܵ. 

Before proceeding with the minimization, though, a suitable basis must be 

chosen for the subspace ܵ, which has dimension of at most k−1. While there are a 

number of possible avenues of pursuit in this endeavor, here is it accomplished 

through a coordinate transformation (Hunt et al., 2007). Specifically, the matrix X௕ 

can be viewed as a linear transformation onto ܵ from some k-dimensional space ሚܵ. 

The analysis can then be performed in the space ሚܵ and subsequently mapped over to 

the space ܵ. More precisely, let w be a Gaussian random variable of 0 mean and 

covariance 
I

௞ିଵ
, then the vector xൌx௕൅X௕w א ܵ is Gaussian and has mean x௕ and 

covariance P௕ ൌ
X್൫X್൯

೅

࢑ି૚
, just as in equation 1.4. Using this change of variables, the 

cost function can be rewritten in terms of w instead of x. This yields 

ሚሺwሻܬ ൌ ሺ݇‐1ሻw்w൅ ሾy௢ െ ሺx௕൅X௕wሻሿ்Rିଵሾy௢ܪ െ ሺx௕൅X௕wሻሿ. (1.6)ܪ
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It can be shown that if w௔ minimizes the cost function ܬሚሺwሻ, then the 

corresponding vector x௔ൌx௕൅X௕w௔ is a minimizer of the cost function ܬሺxሻ. As a 

further simplification, the observational operator H can be approximated by its 

linearization around x௕. This is the same approximation that was made when the 

Kalman filer equations (equations 1.1 and 1.2) were introduced earlier and is a 

reasonable estimation. In the method of Hunt et al. (2007), the linearization is 

performed by applying the nonlinear H to each member of the background ensemble 

to create a new ensemble y௕ሺ௜ሻ ൌ  ൫x௕ሺ௜ሻ൯. This leads to the linear approximationࡴ

ሺx௕൅X௕wሻܪ ൎ y௕൅Y௕w. (1.7)

where y௕ is the mean of the ensemble ൛y௕ሺ௜ሻൟ and Y௕ is the matrix whose ith column is 

given by y௕ሺ௜ሻ െ y௕. Using this approximation leads to the following updated form of 

the Kalman filter equations: 

w௔ ൌ P෨௔ሺY௕ሻ்Rିଵሺy௢ െ y௕ሻ, (1.8)

P෨௔ ൌ ሾሺ݇ െ 1ሻI ൅ ሺY௕ሻ்RିଵY௕ሿିଵ. (1.9)

These equations solve the problem in the space ሚܵ and can then be converted to the 

model analysis and covariance through the equations 

x௔ ൌ ௕ܠ ൅ X௕ܟ௔, (1.10)

௔۾ ൌ X௕P෨௔ሺX௕ሻ். (1.11)

This process of solving in one space and transforming to another simplifies the 

computation and makes the scheme more efficient (Hunt et al., 2007).  Finally, the 

new analysis ensemble is computed as  

X௔ ൌ X௕W௔, (1.12)
where W௔ is the symmetric square root given by  
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W௔ ൌ ൣሺ݇ െ 1ሻP෨௔൧
ଵ ଶ⁄

. (1.13)

The use of the symmetric square root ensures that W௔ depends continuously on P෨ࢇ 

and that the sum of the columns of X௔ are zero (Hunt et al., 2007).  The matrix W௔ 

gives weights to the background ensemble members for the creation of the new 

analysis ensemble. 
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Chapter 2: Use of Breeding to Detect and Explain Instabilities 
in the Global Ocean 

 

Abstract 

The breeding method of finds the perturbations that grow naturally in a 

dynamical system like the atmosphere or the ocean. Here breeding is applied to a 

global ocean model forced by reanalysis winds in order to identify instabilities of 

weekly and monthly timescales. This chapter extends the method to show how the 

energy equations for the bred vectors can be derived with only very minimal 

approximations and used to assess the physical mechanisms that give rise to the 

instabilities. Tropical Instability Waves in the tropical Pacific are diagnosed, 

confirming the existence of bands of both baroclinic and barotropic energy 

conversions indicated earlier by Masina et al. and others. In the South Atlantic 

Convergence Zone, the bred vector energy analysis shows that there is kinetic to 

potential ocean eddy energy conversion, suggesting that the growing instabilities 

found in this area are forced by the wind.  Tropical Instability Waves in the tropical 

Atlantic are also diagnosed, confirming similar instability mechanisms to the tropical 

Pacific but with a different seasonal cycle. 

Motivation 

Previous examinations of the structure and causes of flow instabilities in the 

ocean have generally required consideration of time averages of the kinetic and 

potential energy equations (e.g., Pinardi and Robinson, 1986; Ducet et al., 2000) or 
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even a full linear instability analysis (Huck and Vallis, 2001).  However, the process 

of time averaging reduces the ability of this approach to discriminate among several 

concurrent instabilities with differing time-evolutions.  Here the potential of the 

breeding method to isolate and identify the aspects of time-dependent ocean flows 

that are unstable to small perturbations is explored. 

Like the atmosphere, upper ocean currents are subject to a variety of flow 

instabilities. These instabilities are concentrated in regions of strong currents such as 

the western sides of subtropical gyres and the deep tropics where eddy kinetic energy 

may exceed 4500 cm2s-2 (Ducet et al., 2000).  Many currents, such as the Agulhas, 

Kuroshio, Gulf Stream, Brazil, Malvinas, and Antarctic Circumpolar Currents, have a 

fairly constant level of eddy variability year round.  Others, such as the North 

Equatorial Counter Current (NECC) of the tropical Pacific, show strong seasonality.  

For the NECC instability generated eddy kinetic energy reaches a maximum at 10°N 

in summer (Ducet et al., 2000). A little south of the NECC, in the latitude range 3°N-

6°N, tropical instability waves (TIWs) occur in the longitude band between 180° and 

120°W longitude. These TIWs also have a well defined seasonal cycle, with activity 

beginning in August and continuing through March of the next year (Masina et al., 

1999).   

Beginning with Philander (1976) there has been a long running discussion in the 

literature regarding the relative importance of baroclinic, barotropic, and frontal 

instabilities in providing the energy source for these TIWs.  On the equator, most of 

the wave energy has been observed just above the Equatorial Undercurrent (EUC) 

(Weisberg, 1984; Luther and Johnson, 1990; Qiao and Weisberg, 1998).  Using 
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observations from moored current meters, Weisberg (1984) calculated that the 

barotropic conversion in the cyclonic sheer region of the EUC in the Atlantic was 

enough to account for the growth of the TIWs there and argued for a similar 

mechanism in the Pacific.  In another observation experiment, Luther and Johnson 

(1990) argued for three distinct sources of TIW energy: the barotropic conversion in 

the EUC at the equator and two regions of baroclinic conversion between 3°N and 

6°N and between 5°N and 9°N.  More recently, numerical model simulations have 

been used to diagnose the instabilities.  Masina et al. (1999) suggest that there are two 

distinct locations of energy conversion with baroclinic conversion occurring between 

3°N and 5°N and barotropic energy conversion occurring further equatorward.  

Perturbation energy budgets performed on a 2.5 layer model by McCreary and Yu 

(1992) emphasized the importance of barotropic instability and introduced a frontal 

instability mechanism as an energy source for TIWs.  Baroclinic instability, however, 

was found to be an energy sink.  Using data from a 28-year long run of a coupled 

general circulation model, though, Yu and Liu (2003) found that baroclinic instability 

associated with the northern SST front was of major importance in generating Pacific 

TIWs around both 2°N and 2°S. The strength of the TIWs is closely tied to the phase 

of ENSO, with the diminished strength of SST front in El Niño years associated with 

a decrease in TIW production and the increased SST front of La Niña causing 

stronger TIW activity (Contreras, 2002).  

To explore the potential of the breeding approach in examining fluid instabilities 

in the ocean the breeding method is extended by defining the potential and kinetic 
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energy equations for the perturbations and these equations are used to explore 

instabilities in an ocean general circulation model driven by observed winds. 

The MOM2 Model 

The primitive equation Geophysical Fluid Dynamics Laboratory (GFDL) Modular 

Ocean Model v.2 is used in a domain extending from 62.5°S-62.5°N with 1°x1° 

horizontal resolution in midlatitudes reducing to 1°x½° at the equator in order to 

resolve the intense equatorial current systems.  The model has 20 fixed depth levels in 

the vertical with 15m resolution near the surface expanding to 737m near the bottom. 

Horizontal and vertical mixing and heat and salt diffusion parameters are set as 

described in Carton et al. (2000) in order to reproduce the main observed features of 

the time mean ocean circulation.  Initial conditions of climatological temperature and 

salinity are obtained from the World Ocean Atlas 1994 (Levitus and Boyer, 1994), 

while monthly winds are provided by the National Centers for Environmental 

Prediction (NCEP) reanalysis (Kalnay et al., 1996).  Surface heat and freshwater flux 

are calculated using a simple Haney-type relaxation to climatological monthly 

temperature and salinity. 

 

Bred Vector Energy Equations 

Overview 

The derivation of the bred vector conservation of kinetic and potential energy 

equations resembles that of the more common perturbation energy equations 

(Orlanski et al. 1991; Oczkowski et al. 2005) although, due to the fact that both the 
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control and the perturbed nonlinear runs satisfy exactly the model equations, the bred 

vector equations do not require Reynolds averaging.  A complete derivation of the 

bred vector energy equations is presented in the following section.  Bred vector 

kinetic energy in kg m-1 s-2 (Joules/m3) is defined as ܧܭ௕ ؠ ଴ߩ ௕ܸሬሬሬሬԦ · ௕ܸሬሬሬሬԦ 2⁄  where ௕ܸሬሬሬሬԦ is 

the bred vector horizontal velocity.  Substituting this definition into the momentum 

equations, where ௖ܸሬሬሬԦ is the control run horizontal velocity, leads to: 

௕ܧܭ߲
ݐ߲

ൌ െ ൤׏ · ൫ ௖ܸሬሬሬԦ ௕൯ܧܭ ൅
߲
ݖ߲
ሺݓ௖ܧܭ௕ሻ൨ െ ൤׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ ൅

߲
ݖ߲
ሺݓ௕݌௕ሻ൨ െ ௕ߩ௕݃ݓ

െ ଴ߩ ቈ ௕ܸሬሬሬሬԦ · ൫ ௕ܸሬሬሬሬԦ · ൯׏ ௖ܸሬሬሬԦ ൅ ௕ܸሬሬሬሬԦ · ቆݓ௕
߲ ௖ܸሬሬሬԦ

ݖ߲
ቇ቉ ൅ ଴ߩ ௕ܸሬሬሬሬԦ ·  ௕ሬሬሬሬԦܨ

(2.1) 

where ࢝࢈ and ࢝ࢉ are bred and control vertical velocities, ࢈࢖ is bred vector pressure, 

and ࣋࢈ is bred vector density. The first bracketed term is horizontal and vertical 

divergence of the kinetic energy transport, and vanishes when integrated over the 

whole domain. The second is the work of the pressure force, the third is the baroclinic 

energy conversion between perturbation potential and perturbation kinetic energy, the 

fourth is barotropic energy conversion between background kinetic and bred kinetic 

energy, and the fifth term is a friction term.   The friction term and vertical transports 

are generally negligible in the problems considered here. 

Similarly, bred vector potential energy, defined as ࢈ࡱࡼ ؠ ࢈࣋
૛ࢍ૛ ૛࣋૙ࡺ૛⁄  kg 

m-1 s-3, where ࡺ૛ ൌ െ ࢍ

࣋૙

࢖ࢊ

ࢠࢊ
 is the square of the Brunt-Vaisala frequency, has the 

following equation: 
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௕ܧ߲ܲ
ݐ߲

ൌ െ ൤׏ · ൫ ௖ܸሬሬሬԦܧܲ׏௕൯ ൅
߲
ݖ߲
ሺݓ௖ܲܧ௕ሻ൨ ൅ ௕ߩ௕݃ݓ

െ
௕݃ଶߩ

଴ܰଶߩ ቈ׏ · ൫ ௕ܸሬሬሬሬԦρୡ൯ ൅
߲ሺݓ௕ߩ௖ሻ

ݖ߲
቉ െ ௖ݓ

௕ܧ߲ܲ
ݖ߲

 

(2.2) 

The first bracketed term is horizontal and vertical divergence of the potential energy 

transport, and vanishes when integrated over the whole domain. The second term is 

baroclinic energy conversion and has the opposite sign of the corresponding term in 

the kinetic energy equation. The third term is negligible, since it is proportional to the 

perturbations in density times a term that vanishes when integrated over the whole 

domain. The last term is also negligible. The results presented here focus mainly on 

interpreting the bred vector kinetic energy equation.  

Derivation of Bred Vector Kinetic Energy Equation 

Here the bred vector kinetic energy equation and then the bred vector potential energy 

equation are derived. Notationally, the velocity vector of the control run is written as 

as ௖ܸሬሬሬԦ. The velocity of the perturbed run is then ௖ܸሬሬሬԦ ൅ ௕ܸሬሬሬሬԦ , where ௕ܸሬሬሬሬԦ is the bred vector 

velocity. 

The MOM2 horizontal momentum equations for the control run are as follows: 

௖ݑ߲
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௖ݑ׏ െ ௖೥ݑ௖ݓ ൅ ௖ݒ݂ ൅
௖ݒ௖ݑ tan߶

ܽ
െ

௖ഊ݌
଴ߩܽ cos߶

൅ ൫ߢ௠ݑ௖೥൯௭

൅  ௨೎ܨ

 

(2.3)

௖ݒ߲
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௖ݒ׏ െ ௖೥ݒ௖ݓ െ ௖ݑ݂ ൅
௖ଶݑ tan߶

ܽ
െ
௖ഝ݌
଴ߩܽ

൅ ൫ߢ௠ݒ௖೥൯௭ ൅  ௩೎ܨ

 

(2.4)
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This means that the momentum equations for the perturbed case are: 

߲ሺݑ௖ ൅ ௕ሻݑ
ݐ߲

 ൌ െ൫ ௖ܸሬሬሬԦ ൅ ௕ܸሬሬሬሬԦ൯ · ௖ݑሺ׏ ൅ ௕ሻݑ െ ሺݓ௖ ൅ ௖ݑ௕ሻሺݓ ൅ ௕ሻ௭ݑ

൅ ݂ሺݒ௖ ൅ ௕ሻݒ ൅
ሺݑ௖ ൅ ௖ݒ௕ሻሺݑ ൅ ௕ሻݒ tan߶

ܽ

െ
ሺ݌௖ ൅ ௕ሻఒ݌
଴ߩܽ cos߶

൅ ሺߢ௠ሺݑ௖ ൅ ௕ሻ௭ሻ௭ݑ ൅  ௨೎ା௨್ܨ

 

(2.5)

߲ሺݒ௖ ൅ ௕ሻݒ
ݐ߲

 ൌ െ൫ ௖ܸሬሬሬԦ ൅ ௕ܸሬሬሬሬԦ൯ · ௖ݒሺ׏ ൅ ௕ሻݒ െ ሺݓ௖ ൅ ௖ݒ௕ሻሺݓ ൅ ௕ሻ௭ݒ

െ ݂ሺݑ௖ ൅ ௕ሻݑ ൅
ሺݑ௖ ൅ ௕ሻଶݑ tan߶

ܽ

െ
ሺ݌௖ ൅ ௕ሻథ݌

଴ߩܽ
൅ ሺߢ௠ሺݒ௖ ൅ ௕ሻ௭ሻ௭ݒ ൅  ௩೎ା௩್ܨ

 

(2.6)

The bred vector momentum equations are then the difference between the perturbed 

momentum equations and the control momentum equations. Taking this difference 

yields: 

௕ݑ߲
ݐ߲

 

ൌ 

െ ௖ܸሬሬሬԦ · ௕ݑ׏ െ ௕ܸሬሬሬሬԦ · ௖ݑ׏ െ ௕ܸሬሬሬሬԦ · ௕ݑ׏ െ ௕೥ݑ௖ݓ െ ௖೥ݑ௕ݓ െ ௕೥ݑ௕ݓ ൅ ௕ݒ݂

൅
ሺݑ௖ݒ௕ ൅ ௖ݒ௕ݑ ൅ ௕ሻݒ௕ݑ tan߶

ܽ
െ

௕ഊ݌
଴ߩܽ cos߶

൅ ൫ߢ௠ݑ௕೥൯௭ ൅  ௨್ܨ

 

(2.7)

௕ݒ߲
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௕ݒ׏ െ ௕ܸሬሬሬሬԦ · ௖ݒ׏ െ ௕ܸሬሬሬሬԦ · ௕ݒ׏ െ ௕೥ݒ௖ݓ െ ௖೥ݒ௕ݓ െ ௕೥ݒ௕ݓ െ ௕ݑ݂

൅
ሺ2ݑ௖ݑ௕ ൅ ௕ݑ

ଶሻ tan߶
ܽ

െ
௕ഝ݌
଴ߩܽ

൅ ൫ߢ௠ݒ௕೥൯௭ ൅  ௩್ܨ

(2.8)
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The bred vector kinetic energy, ܧܭ௕, is defined as ܧܭ௕ ൌ
ఘబ
ଶ ௕ܸሬሬሬሬԦ · ௕ܸሬሬሬሬԦ. Taking the dot 

product of ௕ܸሬሬሬሬԦ and 
డ௏್ሬሬሬሬሬԦ

డ௧
 leads to the kinetic energy equation for the bred perturbation: 

௕ܧܭ߲
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௕ܧܭ׏ െ ଴ߩ ௕ܸሬሬሬሬԦ · ൫ ௕ܸሬሬሬሬԦ · ൯׏ ௖ܸሬሬሬԦ െ ௕ܸሬሬሬሬԦ · ௕ܧܭ׏ െ ௕೥ܧܭ௖ݓ െ ଴ߩ ௕ܸሬሬሬሬԦ

· ൫ݓ௕ ሬܸԦ௖೥൯ െ ௕೥ܧܭ௕ݓ െ
௕ഊ݌௕ݑ
ܽ cos߶

െ
௕ഝ݌௕ݒ
ܽ

൅
௕ݑ଴ሺߩ

ଶݒ௖ െ ௕ሻݑ௖ݑ௕ݒ tan߶
ܽ

൅ ௕೥൯௭ݒ௠ߢ௕൫ݒ଴ߩ

൅ ௕೥൯௭ݑ௠ߢ௕൫ݑ଴ߩ ൅ ଴ߩ ௕ܸሬሬሬሬԦ · ௏ܨ
ሬሬԦ್ 

(2.9)

This equation can be rewritten making a few approximations. First, a few of these 

terms are very small and can be ignored. The metric term is negligible 

ቀ
ఘబ൫௨್

మ௩೎ି௩್௨೎௨್൯ ୲ୟ୬థ

௔
ൎ 0ቁ and can be disregarded. The term ݓ௕ܧܭ௕೥ is, on average, 

two orders of magnitude smaller than the similar term ݓ௖ܧܭ௕೥ , while ௕ܸሬሬሬሬԦ ·  ௕ isܧܭ׏

two to three orders of magnitude smaller than ௖ܸሬሬሬԦ · ௕ݓ ௕. Sinceܧܭ׏ ا ௖ and ௕ܸሬሬሬሬԦݓ ا

௖ܸሬሬሬԦ, the terms ݓ௕ܧܭ௕೥ and ௕ܸሬሬሬሬԦ ·  ௕ can be ignored. Next, a couple of the terms canܧܭ׏

be combined, so 

െ
௨್௣್ഊ
௔ ୡ୭ୱథ

െ
௩್௣್ഝ
௔

ൌ െ ௕ܸሬሬሬሬԦ · ௕೥൯௭ݒ௠ߢ௕൫ݒ଴ߩ ௕ and݌׏ ൅ ௕೥൯௭ݑ௠ߢ௕൫ݑ଴ߩ ൅ ଴ߩ ௕ܸሬሬሬሬԦ · ௏ܨ
ሬሬԦ್ ൌ

଴ߩ ௕ܸሬሬሬሬԦ ·  :Ԧ௕. Equation 2.9 then becomesܨ

௕ܧܭ߲
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௕ܧܭ׏ െ ଴ߩ ௕ܸሬሬሬሬԦ · ൫ ௕ܸሬሬሬሬԦ · ൯׏ ௖ܸሬሬሬԦ െ ଴ߩ ௕ܸሬሬሬሬԦ · ൫ݓ௕ ሬܸԦ௖೥൯ െ ௕೥ܧܭ௕ݓ ൅ ௕ܸሬሬሬሬԦ

· ௕݌׏ ൅ ଴ߩ ௕ܸሬሬሬሬԦ ·  Ԧ௕ܨ

(2.10)

Next some of the terms can be expanded.  First, 

െ ௖ܸሬሬሬԦ · ௕ܧܭ׏ ൌ  െ׏ · ൫ ௖ܸሬሬሬԦܧܭ௕൯ ൅ ׏௕ܧܭ · ௖ܸሬሬሬԦ ൌ  െ׏ · ൫ ௖ܸሬሬሬԦܧܭ௕൯ ൅  .௖೥ݓ௕ܧܭ
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The last equality comes from the continuity equation, ׏ · ሬܸԦ ൅ ௭ݓ ൌ 0.  Also, using 

the continuity equation and the hydrostatic approximation, 

െ ௕ܸሬሬሬሬԦ · ௕݌׏ ൌ  െ׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ ൅ ௕݌ · ׏ ௕ܸሬሬሬሬԦ ൌ  െ׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ ൅ ௕೥ݓ௕݌  

ൌ  െ׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ െ
߲ሺݓ௕݌௕ሻ

ݖ߲
൅ ௕ݓ

௕݌߲
ݖ߲

ൌ  െ׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ െ
߲ሺݓ௕݌௕ሻ

ݖ߲
െ  .௕ߩ௕݃ݓ

Making  these two substitutions and grouping the terms yields the following bred 

vector kinetic energy equation: 

డ௄ா್
డ௧

ൌ െ ቂ׏ · ൫ ௖ܸሬሬሬԦ ௕൯ܧܭ ൅
డ

డ௭
ሺݓ௖ܧܭ௕ሻቃ െ ቂ׏ · ൫ ௕ܸሬሬሬሬԦ݌௕൯ ൅

డ

డ௭
ሺݓ௕݌௕ሻቃ െ ௕ߩ௕݃ݓ െ

଴ߩ ቂ ௕ܸሬሬሬሬԦ · ൫ ௕ܸሬሬሬሬԦ · ൯׏ ௖ܸሬሬሬԦ ൅ ௕ܸሬሬሬሬԦ · ቀݓ௕
డ௏೎ሬሬሬሬԦ

డ௭
ቁቃ ൅ ଴ߩ ௕ܸሬሬሬሬԦ ·  .௕ሬሬሬሬԦܨ

(2.11) 

The barotropic energy conversion term (the fourth term in square brackets with 

horizontal and vertical shear components) can be rewritten as െ ௕ܸሬሬሬሬԦ · ൫ ௕ܸሬሬሬሬԦଷ · ଷ൯׏ ௖ܸሬሬሬԦ, 

where ׏ଷൌ ቀ׏, డ
డ௭
ቁ is the three dimensional gradient and ௕ܸሬሬሬሬԦଷ ൌ ൫ ௕ܸሬሬሬሬԦ,  ௕൯ is the threeݓ

dimensional velocity vector. 

Derivation of Bred Vector Potential Energy Equation 

The bred vector potential energy equation is derived in an analogous manner 

to the bred vector kinetic energy equation. The process begins with the mass 

conservation equation 

ߩܦ
ݐܦ

൅ ଷ׏ߩ · ሬܸԦ ൌ 0. 
(2.12)

Expanding equation 2.12 and using incompressibility yields: 

௧ߩ ൅ ௫ߩݑ ൅ ௬ߩݒ ൅ ௭ߩݓ ൌ 0. (2.13)
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For this calculation the density is divided into a perturbation density, ߩԢ, from 

an equilibrium solution, ߩ଴ሺݖሻ, so ߩ ൌ ଴ߩ ൅  Ԣ.  Plugging this into equation 2.13ߩ

gives a lot of terms, but some may be neglected because of the scale. For the time and 

horizontal derivatives, the derivative of the perturbation density is much larger than 

the derivative of the equilibrium density, so we can ignore the terms involving ߩ଴೟, 

 ଴೤. On the other hand, the derivative of the equilibrium density is theߩ ଴ೣ, andߩ

dominant term in the vertical direction, so the term involving ߩԢ௭ is ignored.  In 

addition, the density is split into control and bred vector components. It is assumed 

that ߩ଴ is the same for both runs, so the only difference is in the perturbation density. 

Thus instead of using ߩԢ, the control and perturbation run densities are written as 

௖௢௡௧௥௢௟ߩ ൌ ଴ߩ ൅ ௣௘௥௧௨௥௕௘ௗߩ ௖ andߩ ൌ ଴ߩ ൅ ௖ߩ ൅  ௕.  This leaves the followingߩ

equation for the control run: 

௖೟ߩ ൅ ௖ೣߩ௖ݑ ൅ ௖೤ߩ௖ݒ ൅ ଴೥ߩ௖ݓ ൌ 0. (2.14)

For the perturbed run, the velocities are again the sum of the control and bred vector 

values. After making these assumptions, the equation for the perturbed run becomes: 

௖೟ߩ ൅ ௕೟ߩ ൅ ሺݑ௖ ൅ ௖ೣߩ௕ሻ൫ݑ ൅ ௕ೣ൯ߩ ൅ ሺݒ௖ ൅ ௕ሻݒ ቀߩ௖೤ ൅ ௕೤ቁߩ ൅ ሺݓ௖ ൅ ଴೥ߩ௕ሻݓ

ൌ 0. 

(2.15)

Subtracting the control run equation from the perturbed run equation yields the bred 

vector equation: 

௕೟ߩ ൅ ௖ೣߩ௕ݑ ൅ ௕ೣߩ௖ݑ ൅ ௕ೣߩ௕ݑ ൅ ௖೤ߩ௕ݒ ൅ ௕೤ߩ௖ݒ ൅ ௕೤ߩ௕ݒ ൅ ଴೥ߩ௕ݓ ൌ 0. (2.16)

To calculate the potential energy change, this equation is multiplied through by 
ఘ್௚మ

ఘబேమ
. 

Letting the bred vector potential energy be ܲܧ௕ ൌ
ఘమ௚మ

ଶఘబேమ
, where ܰଶ is the square of 
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the Brunt-Vaisala frequency, leads to the following bred vector potential energy 

equation: 

௕ܧ߲ܲ
ݐ߲

 ൌ െ ௖ܸሬሬሬԦ · ௕ܧܲ׏ െ ௕ܸሬሬሬሬԦ · ௕ܧܲ׏ െ
௕݃ଶߩ

଴ܰଶߩ ௕ܸሬሬሬሬԦ · ௖ߩ׏ െ
௕ݓ௕݃ଶߩ
଴ܰଶߩ  ଴೥ߩ

(2.17)

The first and second terms in this equation are both advection of kinetic energy. Since 

௖ܸሬሬሬԦ ب ௕ܸሬሬሬሬԦ, the advection by the bred vector velocity can be ignored, leaving only the 

first term. As was done in deriving the kinetic energy equation, the first term can be 

rewritten 

െ ௖ܸሬሬሬԦ · ௕ܧܲ׏  ൌ െ׏ · ൫ ௖ܸሬሬሬԦܲܧ௕൯ ൅ ׏௕ܧܲ · ௖ܸሬሬሬԦ ൌ െ׏ · ൫ ௖ܸሬሬሬԦܲܧ௕൯ ൅ ௖೥ (2.18)ݓ௕ܧܲ

For the third term, we can rewrite 

െ ௕ܸሬሬሬሬԦ · ௖ߩ׏ ൌ െ׏ · ൫ ௕ܸሬሬሬሬԦߩ௖൯ ൅ ௖ߩ · ׏ ௕ܸሬሬሬሬԦ ൌ െ׏ · ൫ ௕ܸሬሬሬሬԦߩ௖൯ െ ௖wୠ౰ߩ

ൌ െ׏ · ൫ ௕ܸሬሬሬሬԦߩ௖൯ െ
∂ሺwୠߩ௖ሻ

∂z
൅  ௖೥ߩ௕ݓ

(2.19)

As discussed above, the vertical derivative of ߩ௖ is negligible as compared to the 

vertical derivative of ߩ଴, so the ݓ௕ߩ௖೥  piece of the above equation can be ignored. 

Finally, ܰଶ is defined since ܰଶ ൌ െ ௚

ఘబ

డఘబ
డ௭

, so 
డఘబ
డ௭

ൌ െ ఘబேమ

௚
.  Substituting this into the 

fourth term of Equation 2.17 yields: 

െ
௕ݓ௕݃ଶߩ
଴ܰଶߩ ଴೥ߩ ൌ

௕ݓ௕݃ଶߩ
଴ܰଶߩ

଴ܰଶߩ

݃
ൌ  ௕ߩ௕݃ݓ

(2.20)

After rewriting all of the terms of equation 2.17, the final bred vector potential energy 

equation is 
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௕ܧ߲ܲ
ݐ߲

 ൌ െ ൤െ׏ · ൫ ௖ܸሬሬሬԦܲܧ௕൯ ൅
߲
ݖ߲
ሺݓ௖ܲܧ௕ሻ൨ ൅ ௕ߩ௕݃ݓ

െ
௕݃ଶߩ

଴ܰଶߩ ൤׏ · ൫ ௕ܸሬሬሬሬԦߩ௖൯ ൅
∂
∂z
ሺwୠρୡሻ൨ െ ௖ݓ

߲
ݖ߲
ሺܲܧ௕ሻ 

(2.21)

As was previously mentioned, the first term is advection of potential energy by the 

control velocity.  The second term is the conversion from potential to kinetic energy.  

It is the same term that appeared in equation 2.11, only with the opposite sign.  

Breeding in the Global Ocean 

Experiment Setup 

To begin the breeding process, a random perturbation sampled from a flat 

distribution between -0.5°C and 0.5°C is introduced into the initial conditions for the 

sea surface temperature (SST) field. The remaining experiments reported here all use 

this same initial perturbation.  Other experiments using different randomly chosen 

initial perturbations or perturbations in the velocity field yield similar results, 

confirming the earlier observation by Toth and Kalnay (1993, 1997) that the structure 

of the bred vectors is independent of the initial perturbation. 

Results from control and bred vector simulations spanning two periods are 

examined, a multi-decadal period beginning January 1951 through December 1979 

and a shorter, observation-rich period spanning the eight year period January 1985 

through December 1992.  We will focus on the latter period, although the longer run 

is used to compute climatological monthly averages. A monthly breeding interval is 

used for the shorter simulation, while a 10 day breeding interval is used for the longer 

simulation to better isolate the period of TIWs. 
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Although the resolution of the model is not high enough to resolve much of the 

boundary current instabilities, the bred vectors show evidence of western boundary 

current instabilities, in addition to their seasonal cycle. In April (Fig. 2.1a), for 

example, instabilities are visible primarily in the Northern Hemisphere. Specifically, 

instabilities can be seen at the top of the Gulf Stream and the Kuroshio Current, along 

the Pacific Subtropical Front, and along the Pacific equator. The mid-latitude 

instabilities in the Southern Hemisphere and instabilities in the tropics are much more 

prominent in November (Fig. 2.1b).  The most dominant features in the BVs, though, 

are tropical instabilities in the Pacific Ocean. These Pacific instabilities are 

particularly strong throughout the boreal winter. 

Pacific Tropical Instabilities 

We begin by considering the bred vector energy balance on 11 November 1988, a 

time when the tropical Pacific was in a late developing La Niña (with a Southern 

Oscillation Index of 21.0 and a Nino3.4 Index value of -2oC).  The bred vector shows 

a dipole pattern off the coast of South America and a wave pattern in the Tropical 

Pacific (Fig. 2.2a) which successive bred vectors have a period of ~25 days and to 

propagate westward at 0.46m/s.  Examination of the bred vector energetics shows that 

baroclinic processes are causing an increase in bred vector kinetic energy along the 

equator (Fig. 2.2b).  In the region of the dipole pattern in the South Atlantic off the 

coast of South America, by contrast, there is a conversion from bred vector kinetic to 

potential energy consistent with a transfer of bred vector kinetic energy from the 

atmosphere to the ocean, which is then converted into bred vector potential energy. 
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Tropical waves in this simulation first appear in August, are seen to strengthen 

through the winter, and then dissipate by May of the following year (Fig. 2.3).  Bred 

vector baroclinic energy conversion exhibits the same seasonal cycle, with conversion 

increasing in August between 150°W and 120°W and shifting westward and 

extending to approximately 200°W by the end of the year (Fig. 2.2b).  Bred vector 

baroclinic energy conversion is maximum along the northern edge of the Pacific 

equatorial cold tongue, between 3°N and 5°N (Fig. 2.4a).  Positive barotropic 

conversion (red) is seen in two latitude bands.  The maximum of barotropic energy 

conversion occurs just north of the Equator, while bred vector barotropic conversion 

can also be seen in the same 3°N to 5°N latitude band as baroclinic conversion (Fig. 

2.4a). 

We next consider the interannual dependence of the energy conversion terms (Fig 

2.4b).  Both baroclinic and barotropic energy conversion terms spike during August 

through January, with the size of the spike varying by year.  The strongest spike in 

energy conversion occurs in the La Niña period of 1988-1989 when the TIWs, 

NECC, and Equatorial Undercurrent are all anomalously strong.  During this spike in 

energy conversion, baroclinic energy conversion is positive, indicating a conversion 

from bred potential to bred kinetic energy, while the barotropic conversion is 

negative, indicating a transfer from bred kinetic energy to background kinetic energy.  

In contrast to the La Niña period, bred vector energy conversion is weak during the 

1991-1992 El Niño when the Equatorial Undercurrent has reduced transport and 

TIWs are weak.   
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Finally, we examine the vertical structure of the bred vector energy conversion.  

The majority of the baroclinic conversion occurs above the thermocline, with the 

strongest conversion taking place in the upper 100 meters.  This can be seen in the 

October average, which is qualitatively representative of the location and pattern of 

the relative amplitude of the conversion during fall and winter months (Fig. 2.5a).  

The longitude of this maximum baroclinic conversion corresponds to the location of 

the tongue of cool SSTs (which can be seen at the surface of the middle of Fig. 2.5a) 

and consequent strong meridional SST gradient.  Barotropic conversion also occurs in 

this region and along the equator between 160°W and 125°W (Fig. 2.5b) although it 

takes place deeper than baroclinic conversion, with the strongest conversion at and 

just below the shear zone between the westward South Equatorial Current and the 

eastward Equatorial Undercurrent  

Atlantic Tropical Instabilities 

Though the Pacific tropical instabilities are the most dominant feature in the 

10-day bred vectors, instabilities in the Atlantic and Indian Oceans are also visible. 

These instabilities are not analyzed here in as much depth as the Pacific, although 

some results from the Atlantic are presented.  Atlantic TIWs have a similar 25 day 

central periodicity to that of Pacific TIWs.  The first begin to appear in May, reach an 

energy peak in June, and persist through August. A secondary peak is also seen in 

December before the waves vanish in February or March (Weisberg, 1984; Jochem et 

al., 2003).  Atlantic TIWs are found west of 8°W and most of the activity is between 

3°N and 3°S (Weisberg and Weingartner, 1988). 
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The same dynamic processes that control Pacific TIWs have been argued for 

Atlantic TIWs.  Philander (1996) showed that barotropic instabilities in the equatorial 

zonal currents can generate waves similar to observed TIWs.  Studies have confirmed 

this and also argued for a component of baroclinic instability in TIW generation (Cox, 

1980; Masina et al., 1999).  In the Pacific, Masina et al. (1999) argued that baroclinic 

conversion was the dominant mechanism for TIWs.  In a separate modeling study, 

however, Jochum et al. (2003) found that barotropic instabilities were dominant.  It 

was postulated that this difference could be attributed to either a difference in the 

basins or a difference in viscosity between the two models (Jochum et al., 2003). 

To explore the Atlantic, the same monthly averages that were used in the 

Pacific case (Fig. 2.4a) are presented for baroclinic conversion in the Atlantic (Fig. 

2.6). As in the Pacific case, the north edge of the equatorial cold tongue is of vital 

importance in the Atlantic waves. In the Atlantic the conversion from bred potential 

to bred kinetic energy in the cold tongue region takes place between the equator and 

2°N, which is farther south than in the Pacific. Conversion from bred potential to bred 

kinetic energy is seen stretching across to the Western Atlantic between the equator 

and 2°N starting in June and persisting through August. In addition, weaker positive 

baroclinic conversion also occurs between December and February in the same 

locations. There is virtually no baroclinic conversion in boreal spring or fall.  Most of 

the baroclinic conversion is occurring along the thermocline in areas with colder SST 

(Fig. 2.7a). This underscores the importance of the equatorial cold tongue in TIW 

production.  An active area of conversion is visible year-round in the very west of the 

basin in the fast moving western boundary current.  Eddies can be seen coming off of 
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the boundary current and leading to energy conversion in the area around 45°W and 

5°N (Fig. 2.6, Fig. 2.8). 

During the boreal spring and fall, the temperature profile is more stratified and 

the SST is higher, which leads to a decrease in TIWs. Baroclinic conversion still takes 

place along the thermocline in boreal fall and spring, but at a decreased rate. There is 

also significant baroclinic instability decay in the western edge of the basin, 

particularly in the western boundary current off the coast of Brazil and at 45°W 

between 3°N and 7°N.  The strongest barotropic conversion in the tropical Atlantic 

takes place as a result of the shear created by the fast moving western boundary 

currents. This conversion is present and positive for the entire year between 

approximately 45°W and 35°W and is the most prominent Atlantic feature (Fig. 2.8). 

Off the west edge of the basin, barotropic conversion, like baroclinic conversion, is 

weak in boreal spring and then picks up starting in June. Barotropic conversion 

persists through December and the spatial pattern of the conversion can be seen in 

October (Fig. 2.8). The majority of barotropic conversion occurs along the top of the 

Equatorial Undercurrent (Fig. 2.7b).  Barotropic conversion in this simulation is not 

as strong as baroclinic conversion.  A possible explanation for the low levels of 

barotropic conversion is the relatively high viscosity used in the model.  

South Atlantic Instabilities 

The largest amplitude in the November bred vector is in the Southern Ocean 

eddies and the dipole off of South America (Fig. 2.2a). This South American dipole 

is a prominent feature throughout the year and occurs in a location that has significant 

variability in both the atmosphere, the South Atlantic Convergence Zone (SACZ), 
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and the ocean, the Brazil-Malvinas Confluence (BMC). This dipole pattern off South 

America is consistent with observed atmospheric phenomena in the SACZ, which 

show a ”seesaw” pattern that is thought to be related to tropical oscillations with 

periods between 30-60 days (Nogués-Paegle and Mo, 1997). There are also 

oscillations that have been detected in the BMC with periods of around 25 days. The 

BMC oscillations are associated with a dipole wave rotating around the Zapiola Rise 

(Fu et al., 2001).  

Instead of looking at time averages, the instantaneous conversion is used here.  

At the surface, the baroclinic conversion term is mostly negative (Fig. 2.9a), 

indicating a conversion from bred vector kinetic energy to bred vector potential 

energy.  Barotropic conversion (Fig. 2.9b) around 45°W is weak, with only small 

negative conversion near the surface.  The zonal velocity at 45°W, though, has a near-

surface region of increased shear which is suggestive of wind surface forcing in this 

region.  Farther off the coast (~20°W), negative barotropic conversion occurs in the 

top 200-400 meters of the ocean in a narrow longitude band coincident with a 

longitudinal shear in the zonal velocity (Fig. 2.9b). 

Summary 

The purpose of this chapter is to apply bred vectors, an idea developed in the 

context of atmospheric data assimilation, to stability analysis of ocean circulation.  As 

part of this application the bred vector energy equations are introduced, which are 

analogous to the more traditional eddy energy equations but are obtained without 

averaging or approximations other than the neglect of terms shown to be small by 

scale analysis due to the fact that both the control and the perturbed runs satisfy the 
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model dynamical equations.  It is found, consistent with findings reported in Yang et 

al. (2006), that changes in bred vector energy reflect important aspects of the growth 

of flow instabilities.  Thus, breeding, the process by which the bred vectors are 

constructed, is able to identify ocean instabilities effectively and inexpensively.  

Because they span the state space described by key ocean processes, bred vectors also 

have potential applications in the construction of ensembles of model states for 

ensemble data assimilation and forecasting.  

This examination of bred vectors in the global ocean focuses on instabilities of 

tropical Pacific currents because of their intensity, their importance for coupled air-

sea interactions, and because of the extensive literature describing them. Examination 

of the bred vector energy equations shows that there are two locations of energy 

conversion for the tropical instability waves which dominate intraseasonal variability 

in this region.  Between 3°N and 5°N, both baroclinic and barotropic energy 

conversion occurs along the northern edge of the cool tongue.  A separate region of 

barotropic conversion is detected just north of the equator in the shear zone between 

the Equatorial Undercurrent and the shallower South Equatorial Current, e.g. in 

agreement with Massina et al. (1999).  Both types of energy conversion have 

interannual variations due to changes in the currents and stratification, which are 

themselves closely tied to the phase of ENSO. 

The analysis of bred vectors also extends to instabilities in the tropical Atlantic 

and the Southwestern Atlantic.  Examination of the bred vector energy equations 

shows that tropical instabilities in the Atlantic have energy conversion along the 

equator in the cold tongue.  Both baroclinic and barotropic conversion are detected in 
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this area, with barotropic conversion occurring along the top of the Equatorial 

Undercurrent and baroclinic conversion occurring along the thermocline in areas with 

colder SST.  In these experiments, baroclinic conversion is stronger than barotropic 

conversion, which is in disagreement with Jochum et al. (2003).  This difference, 

however, may be explained by the high, less realistic, viscosity used in this 

implementation of MOM2. 
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(a) 

 

(b) 

2.1 (a) The SST bred vector [C] on 5 April 1952, a time when there is relatively low 

activity from tropical instabilities.  (b) The SST bred vector [C] on 21 December 

1951, when Pacific tropical instabilities are visible.   
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(a) 

 

 
(b) 

 2.2  (a) Bred vector of zonal velocity on 11 November 1988, a time when the tropical 

Pacific was in a late developing La Niña with a Southern Oscillation Index of 21.0 

and a Nino3.4 Index of -2oC. (b) The corresponding baroclinic energy conversion 

term. Baroclinic energy conversion contributes to the growth of bred vector kinetic 

energy along the Pacific equator.  Off the coast of South America the baroclinic 

conversion term acts to convert bred vector kinetic to potential energy.  The 

magnitudes of the fields are somewhat arbitrary due to the rescaling of the bred 

vectors, but the units are m/s for the velocity and 10-6 kg m-1 s-3 for the baroclinic 

energy conversion. 
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2.3  Time-longitude diagram of the SST bred vector at 3.5°N latitude from June 1985 

to December 1992. 
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2.4  (a) The panels show the 30 year averages of the baroclinic (top panel) and 

barotropic (bottom panel) conversion terms for the month of January, during which 

barotropic energy has a peak and baroclinic energy is very strong. Positive conversion 

is shown in red while negative conversion is in blue.  Although other months show 

the bred vector energy conversion occurring in different longitude regions, the 

January average of the conversion terms is shown here because it is representative of 

the shape and latitudinal location of the bred vector energy conversion.  It is 

important to note that the sign and relative magnitude of the bred vector energy 

conversion terms indicate the shape, direction, and location of the energy conversion; 

however, the absolute magnitude of the energy conversion is not determined by this 

analysis. (b) The time series from June 1986 to December 1992 of the baroclinic 

(blue) and barotropic (red) conversion terms averaged between 180°W to 120°W 

longitude, -5°S to 5°N latitude, and between the surface and 150m depth.   The 

energy conversion can be seen to increase in late summer and die off by May of the 

following year.  In the La Niña year of 1988-1989, a significant increase in energy 

conversion occurs. The vertical axis has units 10-7 kg m-1 s-3.   
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2.5  Vertical profile of climatological October properties computed from the 30 year 

monthly average.   (a) The baroclinic conversion term (shaded) and temperature 

(contours) with latitude between 180° to 110°W, and (b) the barotropic conversion 

term (shaded) and zonal velocity (contours) with longitude at 0.65°N.  Both the 

baroclinic and barotropic terms have units 10-6 kg m-1 s-3.  Baroclinic conversion from 

potential to kinetic bred perturbation energy occurs above the thermocline with 

maximum at the latitude of coldest SST.  This area of coldest SST (top center of (a)) 

corresponds to the Pacific cold tongue.   The maximum barotropic conversion from 

the background kinetic energy to the bred perturbation occurs along the shear zone 

between the westward South Equatorial Current and eastward Equatorial 

Undercurrent.  The October average is shown here because it is qualitatively 

representative of the location and pattern of the relative amplitude of the conversion 

during fall and winter months.    



 

 40 
 

 

2.6  The vertically averaged baroclinic conversion term (shaded) and vertically 

averaged current vectors in the equatorial Atlantic from 8°S to 8°N and 45°W to 

10°W. All values are 10-7 kg m-1 s-3. 
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2.7  a) Vertical profile of the monthly averaged temperature in July from 1951 to 

1979 (contour) overlayed on the averaged baroclinic conversion term (contour) in the 

equatorial Atlantic at 0.65°N and between 50°W to 10°W. The majority of the 

baroclinic conversion is taking place along the thermocline. (b) Vertical profile of the 

monthly averaged zonal velocity in July from 1951 to 1979 (contour) overlayed on 

the averaged barotropic conversion term (shaded) in the same region.  
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2.8  The vertically averaged barotropic conversion term (shaded) and vertically 

averaged current vectors in the equatorial Atlantic from 8°S to 8°N and 45°W to 

10°W. All values are 10-8 kg m-1 s-3.  
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                                   (a)                                                                (b) 

2.9  (a) The surface baroclinic conversion term on 11 November 1988 in the Western 

South Atlantic Ocean off the coast of South America.  (b) The vertical profile of the 

barotropic conversion term (shaded) [10-9 kg m-1 s-3] at 40°S on 11 November 1988 

overlayed with the zonal velocity [cm/s] (contour) in the same region. 
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Chapter 3: An Advanced Data Assimilation System for the 
Chesapeake Bay 

 

Abstract 

Data assimilation methods, which combine current observational data with 

previous state estimates based on numerical modes to create a more accurate state 

estimate, have the potential to improve coastal and estuary prediction systems.  Here 

a Chesapeake Bay implementation of the Regional Ocean Modeling System (ROMS) 

is coupled with the local ensemble transform Kalman filter (LETKF).  This chapter 

uses identical twin experiments, where a model run is taken to be the true state, to 

explore the potential of data assimilation for the Chesapeake Bay and to evaluate the 

current observational network in the Bay.  The LETKF performs well, with analysis 

errors becoming smaller than observation errors within a few cycles and staying 

smaller than forecast errors using no data assimilation.  Ensemble data assimilation 

also allows for observation targeting along with the assimilation and this is used in 

this chapter to identify the areas and seasons when observations are most beneficial.    

Introduction 

As the largest estuary in North America, the Chesapeake Bay is an 

economically and ecologically important resource.  Approximately $1 billion is 

brought in yearly by the shellfish and finfish harvest and millions more come in 

through sport fishing, boating, and other recreational activities.  The Chesapeake Bay 

and supported wetlands system is home to 173 species of shellfish, 348 kinds of 

finfish, 29 types of waterfowl, and 2700 plant species.  Most of the Chesapeake is 
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shallow, with an average depth of approximately 6.5 meters, with a deep channel 

running up the main stem of the Bay and reaching a maximum depth of 63 meters.  

The Bay is 300km long and 50km wide at its widest. 

The circulation of the Chesapeake Bay has been modeled since the 1950s 

using equations of longitudinal momentum and water and salt mass balance 

(Pritchard, 1952, 1954, 1956).  The main longitudinal circulation of the Chesapeake is 

a two-layer, salt wedge structure with salt water from the ocean entering through the 

channel at lower depths and freshwater exiting at the surface and creating a 

freshwater outflow plume.  Tidal amplitude in the Bay is moderate, with a 0.91 meter 

mean tidal range at the mouth of the Bay, 0.70 meters at the head, and between 0.30 

to 0.46 meters at most of the gauges along the main stem (Hicks, 1964). 

A large freshwater runoff characterizes the Chesapeake, with approximately 

38 million gallons of water per minute entering the Bay.  About 50% o.f that 

freshwater comes from the Susquehanna River, 18% comes from the Potomac River, 

14% comes from the James River, and 18% comes from the remaining rivers.  Near 

the head of the Bay, the Susquehanna discharge determines the flow on timescales of 

5 days and wind forcing has a large impact on scales of 3 days or less (Elliott et al., 

1978).  Sea level height has a dominant fluctuation of 20 days, with a 5 day Ekman 

effect fluctuation and a 2.5 day longitudinal-wind driven seiche oscillation also 

observed (Elliott et al., 1978).  Winds are mostly episodic, but the preferred direction 

varies seasonally.   Northwesterly winds are more common in November-February, 

whereas Southerly winds occur more often in the spring and summer.  Because of the 
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salt wedge structure of the Chesapeake it is stratified for most of the year, but extreme 

winds in the fall can destratify the Bay (Goodrich et al., 1987). 

Blumberg (1977a, 1977b) used a two-dimensional, depth averaged model to 

study the dynamical balance and eddies in the Chesapeake.  A three-dimensional 

hydrodynamic model, called Curvilinear Hydrodynamics in 3 Dimensions (CH3D), 

was developed by Wang and Johnson (2000).  An implementation of the Princeton 

Ocean Model (POM) was also used to study the circulation of the Bay (Guo and 

Valle-Levinson, 2008).  Both CH3D and the POM implementation overestimated 

salinities and stratification at depths, especially in the lower Bay.  Li et al. (2005) 

applied the Regional Ocean Modeling System (ROMS) to the Chesapeake Bay to 

investigate turbulent mixing, stratification events, and tidal energy flux (Li et al., 

2006, 2007).  That implementation of ROMS produced weaker stratification in high 

runoff periods and was less accurate under high stratification (Li et al., 2005). 

Some of these model errors can be corrected through the use of data 

assimilation.  In this study, an advanced data assimilation system has been developed 

for the Chesapeake Bay Forecast System to improve state estimation.  To accomplish 

this, a ROMS implementation on the Chesapeake Bay has been interfaced with the 

Local Ensemble Transform Kalman Filter (LETKF).  Ensemble data assimilation 

provides a method for error estimation that can be used to create targeted 

observations.  Here the ensemble spread is used to evaluate the impact of 

observations in the Chesapeake Bay and to determine areas where more monitoring is 

needed. 
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To test the ability of the LETKF-ROMS system to correct the state estimate of 

temperature, salinity, and currents in the Chesapeake Bay, identical twin experiments 

were run taking a model run as truth and assimilating simulated observations.  This 

verification, including settings for covariance inflation and method of simulating 

observations, follows that of R. Hoffman et al. (2008).  Using the perfect model 

framework, we perform sensitivity experiments in varying the observational data 

coverage to determine how many observations are required to provide an accurate 

analysis.  The metric of ensemble spread, defined as the RMS distance of the 

ensemble to its mean, has been used to measure the spatial distribution of instabilities 

and forced errors and for observation targeting (Liu and Kalnay, 2007).  Here we 

calculate the ensemble spread to show areas of the Chesapeake Bay which exhibit the 

greatest instability and can therefore benefit the most from improved observational 

coverage. 

In these identical twin experiments, what we call the “truth” is a model run 

beginning on 8 January 1999.  The initial conditions were created by spinning up the 

model for two weeks.  Instantaneous snapshots from that spin up run were saved and 

a random sampling of these model states is used to initialize the ensemble.  All 

observations are generated by taking the truth state, randomly selecting locations, and 

adding random errors with a preset variance.  The locations of observations are 

randomly distributed both horizontally and vertically and vary for each variable and 

each time step.  Random locations represent the ideal information content for a given 

number of observations and provide more information than can be expected in reality, 

but it is a good test of the performance of the filter. 
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As a reference for the evaluation of the benefit of data assimilation, a 

simulation is run beginning from the initial background state.  This simulation, called 

the free run forecast, represents the case where only model physics and forcing, and 

not observational information, impact the forecast.   

Analyses were performed every 3 hours using observations of temperature, 

salinity, and zonal and meridional currents.  Initial experiments used a covariance 

inflation of 9% as in R. Hoffman et al. (2008).  While 9% inflation gave good results 

for a dense data set, when the data coverage dropped to 0.5% or 0.1% a lower 

covariance inflation value was needed.  For experiments presented with 0.5% or 0.1% 

coverage, 2% covariance inflation was used.  Observation errors were set as 0.5°C, 

0.6psu, and 0.05m/s.  The temperature and current errors are the same as those used 

by R. Hoffman et al. (2008), while the salinity error is lower than the 1psu used in the 

same study.  Initial experiments used current observations, but later experiments use 

only temperature and salinity observations because they are more prevalent and 

reliable in the Chesapeake. 

Identical twin experiments using data coverage of 10% are run first to test the 

system with plenty of observational information.  Data coverage of 10% corresponds 

to approximately 4000 observations per variable, which is more than can be 

realistically expected.   To check the sensitivity of the data assimilation system to 

observational coverage, experiments were run using identical setups except for 

varying the data coverage.  Beginning at 20% coverage, observational density was 

then dropped to 10%, 5%, 1%, 0.5%, and 0.1%.  Data coverage of 0.1% corresponds 
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to using about 40 observations per field at each analysis time, which is close to 

realistic in terms of the average number of observations routinely available. 

Even with reduced coverage, the observations at random locations provide 

more information than is realistic.  An observation operator is developed for the 

system and observations of temperature and salinity are simulated in a realistic spatial 

distribution.  To complete the identical twin experiments, real observational data is 

read into the system and temperature and salinity observations are simulated at real 

locations and the correct time window.   

The Model 

For the model, we use the ChesROMS implementation of the ROMS model 

with a reduced vertical grid.  ChesROMS uses a curvilinear grid with a 100x150 

horizontal mesh and 20 vertical levels.  ROMS is a free surface, primitive equation 

model that utilizes a terrain following sigma coordinate in the vertical.  For the 

assimilation experiments presented here, the vertical resolution was reduced to 10 

levels to reduce the computational cost.  Only the physical part of the model is used 

here for data assimilation.  A full description of the numerics can be found in 

Shchepetkin and McWilliams (2005).  Time integration is split into internal and 

external modes for surface elevation, currents, and salinity. Bathymetry data for 

ChesROMS comes from the US Coastal Relief Model at NOAA’s National 

Geophysical Data Center (NGDC) (Fig. 3.1). 

ChesROMS is forced from three main areas: the open ocean boundary, fresh 

water river discharge, and the air-surface interface.  The open ocean boundary is 

prescribed using nine tidal constituents from the ADCIRC model and non-tidal water 
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levels from the National Oceanic and Atmospheric Administration’s (NOAA) 

National Ocean Service program.  These components are the same as used by Li et al. 

(2005).  For the barotropic component, Chapman’s condition for surface elevation 

(Chapman, 1985) and Flather’s condition for barotropic velocity (Flather, 1976) are 

employed.  For the baroclinic component, a radiation condition is used for velocity 

along with nudging to climatology from the World Ocean Atlas 2001 (WOA01) for 

temperature and salinity (http://www.nodc.noaa.gov/OC5/WOA01/pr_woa01.html). 

A k-ω turbulence closure is used. 

 Daily freshwater river discharges are prescribed from the United States 

Geological Survey (USGS) stream water monitoring project for 9 tributaries.  Forcing 

at the air-surface boundary—such as 3-hourly winds, net shortwave and downward 

longwave radiation, temperature, relative humidity, and pressure—are given by the 

National Center for Environmental Prediction (NCEP) North America Regional 

Reanalysis (NARR).   More information on ChesROMS, including the open source 

code, can be found at http://sourceforge.net/projects/chesroms. 

In comparing hindcasts from 1991 to 2005 with observations of water level, 

temperature, salinity, and currents, Xu et al. (2009) found that the model reproduced 

the tidal propagation and accurately captured the variability of all of the studied 

fields.  Some model deficiencies were found, including errors in upper Bay water 

level, insufficient currents in the lowest layers, and lower modeled salinities in the 

upper Bay.  
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LETKF Code  Setup 

The LETKF code of Dr. Eric Kostelich (personal communication, 2007) was 

modified by Dr. Ross Hoffman to work with ocean models taking into account 

bottom topography and coastlines, among other issues (R. Hoffman et al., 2008).  

Both the LETKF and ChesROMS model are treated, as much as possible, as black 

boxes, so FORTRAN and C-Shell interface scripts were developed to run the coupled 

LETKF-ChesROMS system. 

Identical Twin Experiments 

Experiments with 10% Data Coverage 

In the perfect model experiments, the LETKF quickly reduces both the 

analysis and forecast errors below the specified observational errors (Fig. 3.2a).  

Moreover, the errors continue to decrease and remain below the observational errors 

for the duration of the simulation.   At 10% data coverage the analysis error in 

temperature quickly converges to less than the observational error in around 6 hours.  

After about a week, the system appears to have spun up and the error remains low 

with only a few oscillations due to instabilities in the system.  By comparison, the 

error in the free run forecast doesn’t drop below the level of the observational error 

until around 16 days.  The free run forecast in the Chesapeake Bay does show 

significant error reduction over time (Fig. 3.2a), which is a much different behavior 

than in the atmosphere.  The decrease in the free run error over time indicates that 

forcing is a dominant factor in the evolution of the Bay and the system is more stable 

than chaotic. 
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Dependence on Data Coverage  

All of these data coverages exhibit an initial, significant decrease of RMS 

error to below the observational error level within the first two days (Fig. 3.2b).  Not 

surprisingly, as the data coverage decreases, there is degradation in the quality of the 

analyses.  While 20%, 10%, and 5% data coverage yield very similarly accurate 

results, there is greater error using 1% data coverage and a still larger error for 0.5% 

and then 0.1% data coverage.  

Even with 0.1% data coverage, however, the LETKF still significantly 

improves the forecast.  Although the analysis error is larger than in the case of more 

complete data coverage, the LETKF still reduces the analysis error to below the 

observational error in about 30 hours—a significant improvement from the free run 

forecast. 

Observation Targeting Using Ensemble Spread 

In addition to providing more accurate nowcasts and subsequent forecasts, the 

fact that the LETKF characterizes the uncertainty can be exploited to target 

observations.  The LETKF describes the uncertainty using the measure of ensemble 

spread, which is the root mean squared distance of the background ensemble 

members from the ensemble mean.  Ensemble spread is a reasonable approximation 

of the error and areas of large ensemble spread correspond to areas of large error.  

Spikes can be seen in the temperature RMS error in Figure 3.2a.  These spikes occur 

when the wind forcing shifts so that the winds point directly up the mouth of the 

Chesapeake in combination with a strong tidal cycle.  This forcing drives a warm 

plume up the Bay mouth and causes temperature errors in the upper levels of the 
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model.  The ensemble spread is able to accurately capture the spatial pattern and 

location of these errors, although it underestimates the size of the error (Fig. 3.3).   

The fact that the ensemble spread accurately represents areas of large forecast 

error can be exploited to target observation locations that will be particularly 

beneficial to the analysis.  To demonstrate this potential in an idealized experiment, 

assume that there exists an instrument, such as a high resolution satellite, which is 

able to take one surface temperature observation at any location.  At every analysis 

time, the observation set then consists of the same 0.5% of randomly selected points 

as was used in the previous experiment, plus one extra surface temperature 

observation taken at the location of the largest ensemble spread.  The result is a global 

temperature RMS error which is uniformly lower with the one added observation than 

without (Fig. 3.4).  Moreover, the largest increase in accuracy with the additional 

observation is during the wind forced warm plumes when the temperature error 

spikes.   Only one observation was added out of approximately 300, but the resulting 

impact was large.  

While such an idealized satellite is unrealistic, it is an instructive example of 

how the ensemble spread can be used to advise observing missions.  A more realistic 

observing mission is one that changes location not every analysis time, but every 

season.  Such an instrument has been discussed in the Chesapeake observing 

community.  To investigate where this type of instrument would provide the greatest 

benefit to the Chesapeake forecasting problem, perfect model simulations are 

performed in April, July, and October to complement the January experiment that was 

described above.   
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The spread in temperature shows a distinct seasonal cycle.  In January, the 

average ensemble spread is greatest in the tributaries of the Chesapeake, particularly 

the Patuxent, York, Rappahannock, and Choptank Rivers as well as the upper 

Potomac (Fig. 3.5).  There is also large ensemble spread in near the mouth of the Bay 

and out into the open ocean.  As a percentage of the monthly averaged temperature, 

however, the spread in the rivers is more significant due to the colder winter 

temperature in the shallow river basins.  During winter the river discharge has large 

variability due to ice and snow melt, which may account for the large spread in the 

tributaries. 

Ensemble spread in the tributaries is decreased in April and spread in the 

lower Bay and open ocean is increased (Fig. 3.5).  In July, large values of ensemble 

spread are concentrated in the lower Chesapeake from the Bay mouth up to the 

Rappahannock River.  In addition, patches of large ensemble spread are present in the 

western Bay between the mouths of the Potomac and Patuxent Rivers and just north 

of the Patuxent (Fig. 3.5).   

In October, the largest patch of high ensemble spread is in the eastern part of 

the lower Bay, but the magnitude of the spread is significantly smaller than in 

January, April, or July (Fig. 3.5).  Areas of high ensemble spread can also be seen in 

the lower Rappahannock and York Rivers during October.  The fact that there is large 

ensemble spread in the lower part of the Bay year-round suggests that this region has 

more interesting dynamics than the remainder of the Bay.  This is reasonable because 

this region is the widest and deepest part of the Chesapeake. 
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Salinity ensemble spread, like that of temperature, is particularly large in the 

tributaries of the Bay during January (Fig. 3.6).  All of the seasons show high spread 

in the upper York River, but in January there is an increase in ensemble spread in the 

upper Potomac and Rappahannock Rivers as well.  In October, a patch of high 

salinity spread is visible in the upper Bay at the mouth of the Miles River (Fig. 3.6).  

This location has noticeable spread during the entire year, but it is more pronounced 

during the fall.   

Throughout the year there is large ensemble spread near the mouth of 

Chesapeake, although the spatial distribution of the spread varies.  In January, the 

largest values of ensemble spread point from the mouth of the Bay directly up the 

main channel of the Bay, with slightly less spread at the southernmost point of the 

Bay and near the mouth of the James River (Fig. 3.6).  By the summer, there is very 

little spread near the mouth of the James River and the largest spread is concentrated 

along the eastern side of the main channel (Fig. 3.6).  The opposite is true in October, 

as the highest values of ensemble spread stretch along the southern edge of the Bay 

from the Bay mouth up into the lower James River.  Spread in salinity at the mouth of 

the Bay is lowest in October, when the salinity distribution is more homogeneous due 

to mixing and deceased river discharge (Valle-Levinson and Lwiza, 1997). 

 Higher salinity spread is also present year round in the outflow plume of the 

Chesapeake Bay.  Mean daily river discharge is greatest in March and April, so the 

outflow plume is strongest in April and May (Valle-Levinson et al., 2007).  The 

stronger plume can be seen in the April ensemble spread, as the spread is higher and 

extends farther into the open ocean.  Similarly, the outflow plume is weakest in 
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September to November after the August minimum in river discharge (Valle-

Levinson et al., 2007).  This is reflected in the smaller values of ensemble spread in 

October. 

Realistic Observation Distribution and the H Operator 

Using simulated observations at randomly selected grid points is an excellent 

way of debugging, testing, and studying the properties of an assimilation system.  In 

the experiments described above, observations were simulated at a fixed percentage 

of random chosen grid points and the grid points containing observations varied 

during each assimilation time and were evenly distributed through the water column.   

The use of a random sampling derives maximum information from an observation set.  

In practice, many observations come from buoys which have a fixed location and do 

not take observations at regular intervals.  In addition, most of the observations are 

taken near the surface of the Bay or at one or two deeper levels.  The result is an 

observation set that is significantly less evenly distributed both spatially and 

temporally than the randomly generated observations.  Furthermore, the previous 

experiments assimilated current information, but these observations are scarce in 

practice.   

Observations in the Chesapeake Bay come from a number of different groups, 

such as the Chesapeake Bay Observing System (CBOS) and the Chesapeake Bay 

Program (CBP).  Each of these observational data sets will now be described.  The 

CBOS program consists of six stations throughout the bay.  Two of the CBOS 

stations take observations of the current in the mid bay, three take salinity 

observations, and three take temperature observations.  CBOS stations report real-
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time data every 6 to 30 minutes, depending on the station.  In 1999, only two CBOS 

stations were operational at some part of the year.  CBOS stations have also 

experienced technical difficulties at times and all six stations are not currently 

producing data.   

The CBP has over 100 stations around the bay, with about 40 of these in the 

main part of the bay.  CBP stations collect profiles of both temperature and salinity.  

Unlike CBOS, however, the CBP stations are not read continuously and data is read 

at irregular intervals ranging from 10 days to a month or longer.  The time 

distribution of CBOS and CBP observations between 10 January 1999 and 14 

February 1999 is shown in Figure 3.7.  During many 6-hour analysis windows, the 

CBOS observations are the only available observations, while the addition of CBP 

observations adds over 100 observations in some windows.  There is also an over 2 

week period from 22 January to 7 February where no CBP observations are available.  

The frequency of observations is season dependent, with more frequent observations 

between spring and fall and larger observation gaps in the winter.  The spatial 

distribution of the CBOS and CBP station locations can be seen in Figure 3.8.   

CBOS and CBP observations are the primary data sets used for validating and 

tuning ChesROMS, but other observation sets exist or are in development.  The 

Virginia Institute of Marine Science (VIMS) at The College of William and Mary has 

a number of stations in the Virginia portion of the Chesapeake Bay. VIMS runs the 

Virginia Estuarine and Coastal and Coastal Observing System (VECOS), which 

consists of five continuous data stations and thirty-one fixed stations that record 

physical and water quality variables (http://www2.vims.edu/vecos/default.aspx).  All 
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of the VECOS stations are located in the tributaries of the Bay.  Another interesting 

and potential source of observational data is the use of CODAR high-frequency radar 

to determine currents and wave speeds near the mouth of the Chesapeake Bay.  This 

project—which is undertaken through Old Dominion University—could provide 

valuable current observations for assimilation in the lower Bay 

(http://www.ccpo.odu.edu/currentmapping/).  Another potential source of data is 

satellite observations, which, with improved resolution, could provide a few 

observations of each pass over the Chesapeake. MODIS currently takes ocean color 

observations that can be used in the Chesapeake Bay region and takes SST data as 

well (http://coastwatch.noaa.gov/cwn/search/interface.html).  The NOAA-16 and 

NOAA-18 satellites also take radiances from which SST can be derived.  

The station observations are all at fixed locations, but the locations are not on 

the grid points as was the case in the previous simulated observation experiments.  

This necessitated the development of an H-operator for the LETKF-ChesROMS 

system.  The ROMS system already contains an interpolation package that allows it to 

interpolate to observation locations for the purpose of model validation.  The package 

uses simple linear interpolation in both the horizontal and vertical directions.  The 

interpolation code from ROMS was modified to integrate with the LETKF system 

and create the H-operator.   

To test the performance of the H-operator and the ability of the LETKF to 

correct fields with stationary, unevenly distributed observations, identical twin 

experiments were run using observations of temperature and salinity simulated at the 

surface of the bay at the locations of all CBOS and CBP stations.  For the purpose of 
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this experiment, only the location of the station was used and not the real time 

distribution of the observational data nor the real observed fields.  Instead, it was 

assumed that all stations take observations at every assimilation time in both 

temperature and salinity (Fig. 3.8).  The initial improvement with these observations 

is very good in the main stem of the Bay, with larger analysis errors in some of the 

tributaries and in the open ocean (Fig. 3.8). 

Using these observations, the analysis improvement still exhibits the same 

characteristics as the assimilations with random observations distributed through all 

levels.  There is a sharp reduction in the both analysis and forecast RMS error in 

temperature, with the error level dropping below the observational error within a day 

and remaining low (Fig. 3.9a).  Moreover, similar improvement is seen in salinity 

(Fig. 3.9b).  Even though no current observations were assimilated, the LETKF 

corrects the currents based on the temperature and salinity observations, which leads 

to improvement in the current fields as well (Fig. 3.10a and Fig. 3.10b). 

Realistic Temporal Observation Distribution 

The previous experiment demonstrates that the LETKF is able to correct 

errors using observations in realistic locations and analysis times.  As discussed 

above, the temporal distribution of the observations is very non-uniform and further 

thins the available observations at a given analysis time (Fig. 3.7).  A more realistic 

experiment was run where the CBP and CBOS station data in the analysis window 

was read into the system and observations were simulated at the real locations.  To 

accomplish this, a C-shell script was written to pull all of the observational data from 

a given time window together into a single file.  FORTRAN code was then created to 
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read this file in and replace the value of the measurement with the simulated value.  

One advantage of this code structure is that it is a relatively simple step to transition 

to assimilating full real observations. 

Initially, using the same parameters as in previous experiments, the analysis 

would blow up after a week of improvement.  It was found that the problem was that 

the ensemble was diverging in the open ocean (Fig. 3.11a) where there are no 

observations.  Even using a localization radius of 20 grid points was not enough to 

constrain the open ocean.  In order to correct this, the localization was enlarged in the 

lower part of the model.  A localization radius of 60 grid points was used in the first 

12 latitudes, which contain only open ocean grid points.  For the remainder of the 

open ocean latitudes (from model latitude 13 to 36), a localization radius of 40 grid 

points was used.  The rest of the Bay used a localization radius of 20 grid points.  

With this localization, the ensemble spread is no longer seen to diverge (Fig. 3.11b). 

The analysis using this new localization shows significant improvement over 

the free run forecast (Fig. 3.12).  Unlike the previous experiments, the global RMS 

error in temperature decreases in steps rather than a sharp initial drop.  This behavior 

is due to the number of observations at a given analysis time.  For the first day of the 

simulation, only CBOS observations are assimilated and the analysis is seen to slowly 

improve.  During 11 January 1999, the number of observations spikes due to the CBP 

data and the analysis improves significantly.  Two more sharp analysis reductions are 

seen coincident with the infusion of CBP data before the global analysis RMS error 

asymptotes after approximately 5 days (Fig. 3.12).    A similar improvement is found 

in the salinity field as well, with slow initial improvement followed by sharp 
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decreases in error with the infusion of larger numbers of observations (Fig. 3.13).  

Salinity observations are taken on the same buoys as the temperature observations, so 

their temporal distribution (Fig. 3.14) is similar to the temporal distribution of the 

temperature observations (Fig. 3.7) although the numbers are different. 

Globally, the assimilation of spatially and temporally realistic observations 

significantly improves the estimate of the dynamical state of the Chesapeake Bay.  

This improvement is not uniform, however, and it is important to investigate which 

areas receive the largest benefit from the data assimilation.  On 11 January 1999, the 

second day of the simulation, some of the largest errors in the free run forecast are in 

the tributaries of the Bay, although the entire Bay and open Ocean have large errors 

(Fig. 3.15).  The analysis error at the same time is much lower throughout most of the 

Bay (Fig. 3.16).  The exception is the eastern part of the middle Bay and the northern 

Bay.  These areas have much larger errors because no assimilations have been 

performed at these locations.  The sharp divide that cuts through the eastern part of 

the Bay between assimilated and unassimilated regions suggests that the localization 

for this experiment may not be optimal. 

The improvement after assimilation is emphasized by looking at the 

improvement of the analysis over the free run forecast.  The metric used is the 

absolute value of the free run error minus the absolute value of the analysis error.  

This gives positive values where the analysis is an improvement over the free run and 

negative values where the analysis has deteriorated the state estimate.  Large 

improvement can be seen in the majority of locations, although there is no 
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improvement where there are no observations and there are some areas where the 

analysis is worse (Fig. 3.17). 

After 30 days, the free run forecast has improved significantly and the 

majority of the errors are less than 0.4°C (Fig. 3.18).  Errors are extremely low in the 

upper regions of the Bay tributaries, where river forcing is dominant.  The largest 

error in the free run forecast are seen in the widest parts of the main stem and in the 

open ocean, where forcing does not always trump the internal variability.  The 

analysis at the same time has errors which are below 0.2°C over nearly the entire 

Chesapeake Bay (Fig. 3.19).  Larger errors, however, can be seen in the open ocean.  

The open ocean errors in the analysis state estimate are larger in some places than in 

the free run forecast, whereas the state estimate of the entire main part of the Bay is 

greatly improved by the data assimilation (Fig. 3.20).  Ensemble spread is low 

throughout the Bay except for areas in the Rappahannock River, the Patapsco River, 

and the area near the mouth of the Pocomoke River (Fig. 3.21).  Ensemble spread is 

much larger in the open ocean, where larger analysis errors were observed.   

Summary 

The Local Ensemble Transform Kalman Filter was coupled with the 

ChesROMS model to enable advanced data assimilation in the Chesapeake Bay.  To 

test the system, we ran perfect model experiments with simulated observations.  First, 

a long model run was performed from a set of initial conditions and observed forcing.  

Then an ensemble of initial conditions was chosen from previous model states and 

data assimilation was performed every 3 hours using observations created by 

perturbing the original model run.  In addition, a free run forecast is created by 
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running the model starting from the mean of the initial ensemble states.  After only a 

few assimilation cycles, the analysis errors drop significantly below the observation 

error levels and asymptote to very small values.  The errors in the analysis and 

subsequent forecast are significantly less than the errors of the free run forecast, 

which shows that the observations information is being assimilated properly.   

The speed of the error reduction is dependent on the amount of observations 

used, but even when data coverage is only 0.1% the analysis errors are far below 

those of the free run forecast and asymptote well below the observation error.  This 

reduction in error is seen using a very small ensemble size.  Improvements were seen 

in the analysis using only 8 ensemble members and the results presented use 16 

members.    

One useful feature of EnKF methods is that they provide an estimate of the 

error at each analysis step.  We utilize this to determine areas of the Bay and seasons 

where more observations are needed.  First we consider an idealized satellite, which 

is able to take a temperature observation at each analysis time at the location of 

maximum ensemble spread.  Assimilating just this one extra observation uniformly 

reduces the analysis error in temperature and shows the greatest reduction in error 

during spikes in the analysis error caused by a surface forcing driven event.   

Ensemble spread is also used to investigate the seasonal variability of 

uncertainty in the Chesapeake Bay.  During the winter, the largest ensemble spread in 

temperature is found in the tributaries of the Chesapeake Bay, whereas by the summer 

the largest ensemble spread is located in the lower Bay.  In the fall and spring, the 

magnitude of the spread is lower, although there are areas of high ensemble spread in 
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the lower Rappahannock and York Rivers.  These results suggest a mobile instrument 

that was able to take temperature observations in the rivers during the winter months 

and move into the lower Bay during the summer has the potential to increase the 

predictability of the entire Chesapeake Bay system.  

An H-operator based on the ROMS interpolation operator was also developed 

for the LETKF-ChesROMS system as a first step towards assimilating real 

observations.  This observation operator was tested by simulating temperature and 

salinity observations at the surface of the Bay at real station locations.  Using this 

observation distribution, the LETKF reduces the global RMS error in the temperature, 

salinity, and current fields.  Observations are also simulated at real observation 

locations and correct analysis times and the LETKF is found to improve the state 

estimate of the Chesapeake Bay.  This is a very promising result for moving towards 

assimilating real observations.  
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3.1 Model bathymetry in meters along with the names of major rivers. 

 



 

 66 
 

 

3.2  Global RMS temperature error [C] from 10 January to 9 February 1999 (a) from 

an identical twin experiment using 10% observational data coverage and 9% inflation  

and (b) with varying data coverage in identical twin experiments using 9% inflation 

and a 16 member ensemble. 
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                                 (a)                                                              (b) 

3.3  (a) SST ensemble spread on 20 January 1999 during a spike in global 

temperature RMS error (see Fig. 3.1) caused by an event where surface winds are 

pointing into the Bay and pushing warm water up the mouth of the Bay.  (b) Forecast 

error on 20 January 1999.  Note that the error in the lower Bay is captured by the 

ensemble spread in Fig. 3.3a, but the magnitude of the spread is several times smaller 

than the error. 
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3.4  Comparison of global temperature analysis RMS error during the RMS error 

spike from 23 January 1999 and 26 January 1999 between an experiment using a 

single observation taken at the maximum SST spread and one without that extra 

observation.  Both simulations have 0.5% data coverage and 2% inflation used 

throughout.  The analysis is uniformly better in temperature over the entire run, but is 

particularly improved during the times when the RMS error is spiking due to a 

response to surface forcing.  
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3.5  Average ensemble spread in SST during January, April, July, and October 1999 

for experiments using 2% inflation, a 16 member ensemble, and 0.5% data coverage. 
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3.6  Average ensemble spread in surface salinity during January, April, July, and 

October 1999 for experiments using 2% inflation, a 16 member ensemble, and 0.5% 

data coverage. 
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3.7  Number of observations in temperature from CBOS and the CBP during each 6-

hour analysis window between 10 January 1999 and 14 February 1999.  The same 

number of CBOS observations is present at every analysis window, so spikes in the 

number of observations are due to an influx of CBP data. 
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3.8  Locations of CBOS (stars) and CBP (*) observation stations in the Chesapeake 

Bay are shown in black.  The analysis error in SST after the first analysis using only 

temperature and salinity observations at the surface is shown in the background. 
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3.9  Global RMS error in (a) temperature from 10 January to 17 January 1999 from 

an identical twin experiment using simulated observations of temperature and salinity 

at the surface at real station locations. 

 

(b) Global RMS error in salinity from the same experiment. 
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3.10  Global RMS error in (a) the u current component from 10 January to17 January 

1999 from an identical twin experiment using simulated observations of temperature 

and salinity at the surface at real station locations. 

 

(b)  Global RMS error in v current component from the same experiment. 
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(a)                                                             (b) 

3.11  (a) Ensemble spread in SST [C] on 12 February 1999, 32 days into the 

simulation using a 16 member ensemble, simulated observations at real locations and 

assimilation times, and 2% inflation.  The horizontal localization used was uniformly 

20 grid points. The ensemble can be seen to diverge in the open ocean.  (b) Ensemble 

spread in SST [C] on 12 February 1999 from an experiment with the same parameters 

except for a larger localization.  The localization is 60 grid points below the mouth of 

the Bay, 40 grid points for the rest of the open ocean, and 20 grid points for the rest of 

the Bay.   
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3.12  Global RMS error in temperature for the analysis (blue), forecast (red), 

observations (green), and free run forecast (cyan) for an identical twin experiment 

using observations simulated at real assimilation times and locations.  The experiment 

uses 12 ensemble members, 2% inflation, and temperature and salinity observations.  

The number of temperature observations is shown in the bar graph, which has the 

same information as Fig. 3.7. 
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3.13  Global RMS error in salinity for the analysis (blue), forecast (red), observations 

(green), and free run forecast (cyan) for an identical twin experiment using 

observations simulated at real assimilation times and locations.  The experiment uses 

12 ensemble members, 2% inflation, and temperature and salinity observations.   
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3.14  Number of observations in salinity from CBOS and the CBP during each 6-hour 

analysis window between 10 January 1999 and 14 February 1999.  The same number 

of CBOS observations is present at every analysis window, so spikes in the number of 

observations are due to an influx of CBP data. 
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3.15  Free run forecast error in SST [C] at 1200 hours on 11 January 1999, 1 day into 

the simulation using observations simulated at real locations and analysis intervals, a 

16 member ensemble, and 2% covariance inflation. 
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3.16  Analysis error in SST [C] at 1200 hours on 11 January 1999, 1 day into the 

simulation using observations simulated at real locations and analysis intervals, a 16 

member ensemble, and 2% covariance inflation.  The darkest blue areas have not yet 

been corrected by the LETKF. 
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3.17  Improvement of the analysis over the free run forecast, defined as the absolute 

value of the free run error minus the absolute value of the analysis error, in SST [C] at 

1200 hours on 11 January 1999, 1 day into the simulation using observations 

simulated at real locations and analysis intervals, a 16 member ensemble, and 2% 

covariance inflation.  Positive values (red) indicate areas where the analysis is 

superior while negative values (blue) indicate that the analysis is less accurate than 

the free run forecast. 
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3.18  Free run forecast error in SST [C] on 9 February 1999, 30 days into the 

simulation using observations simulated at real locations and analysis intervals, a 16 

member ensemble, and 2% covariance inflation. 
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3.19  Analysis error in SST [C] on 9 February 1999, 30 days into the simulation using 

observations simulated at real locations and analysis intervals, a 16 member 

ensemble, and 2% covariance inflation. 

 

 



 

 84 
 

 

3.20  Improvement of the analysis over the free run forecast, defined as the absolute 

value of the free run error minus the absolute value of the analysis error, in SST [C] 

on 9 February 1999, 30 days into the simulation using observations simulated at real 

locations and analysis intervals, a 16 member ensemble, and 2% covariance inflation.  

Positive values (red) indicate areas where the analysis is superior while negative 

values (blue) indicate that the analysis is less accurate than the free run forecast. 
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3.21  Ensemble spread in SST [C] on 9 February 1999, 30 days into the simulation 

using observations simulated at real locations and analysis intervals, a 16 member 

ensemble, and 2% covariance inflation. 
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Chapter 4: An LETKF Based Assimilation System for the 
Martian Atmosphere 
 

Abstract 

Ensemble data assimilation has potential advantages for planetary 

applications.  Here a Mars General Circulation Model (MGCM) is coupled with the 

local ensemble transform Kalman filter (LETKF).  Identical twin experiments are 

performed to explore the potential of data assimilation for the Martian atmosphere.  

The results show that the LETKF is able to correct errors in the Martian atmosphere 

and improve the state estimates in the wind fields in the absence of wind 

observations.  This chapter explores the causes of error in the LETKF-MGCM system 

and finds that large-scale baroclinic waves along the Northern (winter) Hemisphere 

temperature front and instabilities in the upper atmosphere zonal wind jet are two 

important sources of error.   

Introduction 

Due to Mars’ similarities with and proximity to the Earth, the circulation of 

the Martian atmosphere has been actively studied.  Mars is the fourth planet from the 

sun and has a radius of 3.396x106m.  Despite having an atmosphere that is 1000 times 

less dense than that of the Earth, Mars still supports active weather systems including 

clouds, high winds, and large scale dust storms.  Because of its smaller size gravity on 

Mars is 3.72m s-2.  The Martian day is called a sol and is 88,775 seconds, as opposed 

to 86,400 seconds on Earth, and the Martian year lasts 686.98 Earth days. The 

deformation radius, ܴ ൌ ௙௔

ே
, for both planets is very similar (920km for Mars and 
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1100km for Earth), which means that both support similar scale storm systems.  

Because Mars is smaller, however, the storms take up a larger portion of the planet.  

The Northern and Southern Hemispheres of Mars have different elevations, 

with most of the Southern Hemisphere situated on a higher plain than the Northern 

Hemisphere.  At 27 kilometers, Olympus Mons is the largest volcano in the solar 

system. Mars has dramatic temperature differences between the seasons and the 

winter hemisphere develops a thick ice cap of solid carbon dioxide that is deposited 

from the atmosphere.  A smaller ice cap containing some water ice is present year 

round. 

Dynamically, the Martian atmosphere is more stable than the terrestrial 

atmosphere.  Since the early 1980s (Barnes, 1980, 1981) it has been observed that the 

Martian atmosphere is frequently dominated by large-scale baroclinically unstable 

transient waves.  These baroclinic transients have low wavenumbers (m=1-3) and 

near periodic 2-8 days signals which persist for more than 30 days (Barnes, 1980, 

1981).  In breeding experiments, Newman et al. (2004) found that after 30 sols the 

large-scale baroclinic mode (m=1-2) exhibited the most rapid sustained mean growth.  

A few studies have postulated that the Martian climate attractor has a relatively low 

dimension which leads to a more regular atmosphere than that of Earth (Martinez-

Alvarado et al., 2008; Read et al., 2006). The Martian synoptic variability, it is 

suggested, is largely due to a few global baroclinically unstable atmospheric modes 

and the diurnal tide (Read et al., 2006).  EOF and Fourier analyses have strengthened 

this theory.  Fourier analysis indicates that the diurnal tide, the semi-diurnal tide, the 

diurnal Kelvin wave, and transient baroclinic waves are the most energetic EOFs 
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(Martinez-Alvarado et al., 2008).  Moreover, 80% of total energy was found to be in 

the first 7 EOFs (Martinez-Alvarado et al., 2008).   

With the increase in observational missions in the 1990s, data assimilation 

became a realistic option for Martian climate studies.  After the Viking landers of the 

late 1970s, Mars exploration ceased for about two decades before the 1996 launches 

of the Mars Global Surveyor (MGS) and the Mars Pathfinder, which followed the 

failed launch of the Mars Observer in 1992.  Probes have been launched with some 

frequency since then, with failed launches of the Mars Climate Orbiter and Mars 

Polar Lander in 1998, the successful Mars Odyssey in 2001, the Mars Express in 

2003, the Spirit and Opportunity rovers in 2003, the Mars Reconnaissance Orbiter in 

2005, and more missions planned over the next 10 years.  These missions have begun 

to build a more complete observational data set of the Martian atmosphere, although 

the coverage remains relatively sparse.   

The ability of data assimilation to integrate sparse data sets with general 

circulation models (GCMs) makes it an extremely useful tool for the Martian 

atmosphere.  The potential benefit of data assimilation has been confirmed by a 

number of studies (Lewis and Read, 1995, 2003; Lewis et al., 1996, 1997; Houban, 

1999) which have performed data assimilation to analyze spacecraft observations.  

These assimilation efforts have focused primarily on observations from the MGS 

spacecraft’s Thermal Emission Spectrometer (TES, http://tes.asu.edu/). Between 1999 

and 2005, during more than 25,000 polar orbits of Mars, the TES made hundreds of 

millions of IR radiance measurements of the Martian atmosphere with a footprint size 

of approximately 3x3 km. These radiances have been used to derive vertical 
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temperature profiles and dust opacity retrievals. In turn, these atmospheric retrievals 

of temperature profiles (Houben, 1999; Zhang et al., 2001) and total dust optical 

depth (Lewis et al., 2003) have been used in assimilation studies with varying results. 

Banfield et al. (1995), one of the earliest studies, assimilated simulated 

observations using a Kalman filter approach with a fixed covariance matrix (which 

eliminates the advantage of the Kalman filter scheme).  Simulated observations were 

also used with the analysis correction scheme of Lorenc (1988) (Lewis and Read, 

1995; Lewis et al., 1996, 1997).  Houban (1999) assimilated real TES temperature 

observations with a 4D-VAR scheme using an approximation of the tangent linear 

model instead of the full tangent linear model.  The assimilation run was very short, 

but found promising analyses of the zonal mean fields.    TES temperature 

observations were also assimilated by Zhang et al. (2001) using the steady state 

Kalman filter of Banfield et al. (1995).  Results from this study were mixed and there 

was not convincing evidence that the filter was converging sufficiently. 

The UK Mars data assimilation system is currently the most comprehensive 

system in use.  Both temperature and dust opacity retrievals from the TES were 

assimilated by Lewis and Read (2007) using the analysis correction scheme (Lorenc, 

1988), which is a modification of the successive corrections method (SCM).  

Assimilating these retrievals was found to benefit the atmospheric analysis during a 

Martian dust storm (Lewis et al., 2007).  A reanalysis of the Martian atmosphere 

using this method currently provides the best estimate of the state of the Martian 

atmosphere during the MGS mission.   



 

 90 
 

In these existing studies, the assimilation methods used have been less 

advanced as compared to the methods currently used in terrestrial atmospheric data 

assimilation.  One of the primary challenges in Martian data assimilation is that 

observational data is extremely sparse.  Advanced data assimilation methods, though, 

are better able to deal with sparse data sets and different dynamical regimes.  This 

chapter discusses the application of the data assimilation framework of the Local 

Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) to the 

NASA/NOAA Mars GCM (MGCM). 

NASA/NOAA Mars Global Circulation Model 

 The NASA/NOAA Mars Global Circulation Model originated from the GFDL 

SKYHI stratospheric GCM (Wilson and Hamilton, 1996) and the physics have 

evolved since then.  The current MGCM dynamical core and coding structure is part 

of the Geophysical Fluid Dynamic Laboratory (GFDL) Flexible Modeling System.  

The NASA/NOAA MGCM utilizes finite volume (FV) numerics in the dynamical 

core and has a terrain following, hybrid vertical coordinate.  The FV dynamical core 

supports two grid geometries and the latitude-longitude grid is used here.  The grid is 

60x36 grid points in the horizontal, which means 6°x5 ଵ

଻
° resolution, with 28 vertical 

levels. Physical parameterizations for the MGCM are taken from the original GFDL 

SKYHI-based MGCM and the NASA/Ames radiation model (Wilson et al., 2008).  

Model forcing in these experiments come from climatology.  In the remainder of this 

chapter, MGCM is assumed to refer to the NASA/NOAA MGCM unless otherwise 

specified. 
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Model Verification 

 Before developing the data assimilation code, model validation was performed 

using a long nature run. The model was spun up and a full Martian year was 

simulated with outputs every 6 hours.  In the model, there are 24 hours in a Martian 

sol and 668.6 sols in a Martian year. After discarding the first 30 sols of spin-up time, 

seasonal averages were computed and compared with the TES and Oxford model 

results presented in the book “The Martian Climate Revisited” by Peter Read and 

Stephen Lewis (2004).  Considering that the MGCM used here differs from the 

Oxford MGCM used by Read and Lewis (2004), the results agree very well.  The 

MGCM accurately represents the major daily and seasonal features of the Martian 

climate.  The Martian diurnal cycle is very strong, with day-night differences up to 

100K, and its influence on atmospheric conditions frequently dominates that of day-

to-day variability (Read and Lewis, 2004).  This diurnal cycle is well modeled by the 

NASA/NOAA MGCM (Fig 4.1). As in the Earth’s atmosphere, a strong zonal wind 

jet develops in the winter hemisphere on Mars.  The position of this feature in the 

summer (Fig. 4.2a) and winter (Fig. 4.2b) zonal means is also in agreement with 

Lewis and Read (2004). 

LETKF Code Setup 

The LETKF code used here is the MPI version of Dr. Eric Kostelich’s code.  

Since the open source code is designed for atmospheric applications, no serious 

numerical modifications were necessary.  The code did have to be changed to support 

the NetCDF data structure of the MGCM output and to account for the Martian 
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geography.  In addition, a suite of FORTRAN and Bash interface scripts was 

developed to run the LETKF-MGCM system. 

Identical Twin Experiments 

Full Coverage Experiments 

 To test the performance of the LETKF-MGCM system, identical twin 

experiments were completed.  Observations were simulated by taking the year long 

nature run and adding random Gaussian errors with a prescribed standard deviation 

(1K error in temperature was used in the initial experiments).  The assimilation was 

started from sol 10 of the nature run and assimilations were performed every 6 hours.  

In the results that follow, observations of temperature were assimilated at every grid 

point, 16 ensemble members were used, and the covariance inflation was 10%.  The 

initial horizontal localization radius for this study was 1200km, which was selected 

based on the fact that observations had a radius of influence of 1200km in the 

assimilation study of Lewis et al. (2007).  The horizontal localization is larger than 

the Martian deformation radius of 920km, so any Martian storms should be captured.  

A trapezoidal taper is used for the horizontal localization which gives weight 1 to all 

observations inside of 900km and then linearly decreases the weights out to 1200km.  

Vertical localization is set as a fraction of the atmospheric scale height and is varied 

by level.  Due to the thinner atmosphere, the Martian scale height of 10.8km is larger 

than the terrestrial scale height of 7.5km.  Table 4.1 shows the localization parameters 

that are used in the initial experiment.  Experiments run with 40 ensemble members 

yielded nearly identical results, which emphasizes the low-order dynamics of the 

Martian atmosphere.  No observations of winds were used, although zonal and 
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meridional winds were corrected by the LETKF based on the temperature 

observations.   

The motivation for using only temperature observations is the goal of eventually 

assimilating real TES temperature retrievals. The TES retrievals follow the satellite 

track and provide an observational coverage of the Martian atmosphere which is more 

sporadic in space and time than the full coverage observations. (Fig. 4.3). Testing the 

performance of the analysis system with more realistic observation coverage, using 

simulated TES retrievals, is presented later in the chapter.  

To create the initial ensemble, model states from the first 10 sols of the nature run 

were used. Creating the initial ensemble in this manner averages out the diurnal cycle 

in the initial background and leads to a very erroneous initial background state.  In 

just one step, though, the analysis from the LETKF is able to reconstruct the spatial 

pattern of the diurnal cycle (Fig. 4.4). 

Levels Vertical 

Localization 

Horizontal 

Localization 

Horizontal Taper 

Start 

28 -19 0.05 1200km 900km 

18-17 0.15 1200km 900km 

16-14 0.25 1200km 900km 

13-9 0.35 1200km 900km 

8-3 1.00 1200km 900km 

2 1.50 1200km 900km 

1 2.00 1200km 900km 

Table 4.1 The localization parameters used at each vertical level of the MGCM for 
the full coverage observation experiment. 
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The LETKF-MGCM system was then run for 50 sol period.  As a benchmark, a 

long integration of the model was carried out starting from the background of the very 

first data assimilation step. The results from this run, called the free run forecast, 

represent the case where no observational information is injected into the state 

estimation process.   

The LETKF-MGCM system quickly reduces the global analysis and subsequent 

forecast error for both the temperature (Fig. 4.5a) and the zonal velocity (Fig. 4.5b).  

Upper and lower levels of the MGCM exhibit different behavior in the free run 

forecast based on their different dynamics. Results are shown for two levels: level 25 

is near the surface and strongly affected by interactions of the atmosphere with the 

Martian surface; level 5 is in the free atmosphere and is characterized by a strong 

zonal jet. The difference between the atmospheric flow at the two levels is illustrated 

by showing the temperature and the zonal component of the wind at those two levels 

(Fig. 4.6). 

The evolution of the root-mean-square (RMS) error in the estimates of 

temperature at the two model levels is shown in Figure 4.7a and 4.7b.  The state 

estimation error in the free run rapidly decreases with time in level 25, which 

indicates that the forcing terms play a dominant role in the evolution of the system, 

especially at near surface levels.  More variability is seen in level 5, although both 

levels appear to reach a mean error between 2K and 3K.  This suggests that the 

qualitative dynamics of the Mars GCM are more stable and similar to that of a coastal 

ocean model rather than to that of a terrestrial GCM.  Notwithstanding the lack of 
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exponential growth of the root-mean-square error in the free model run, the data 

assimilation has a positive influence on the accuracy of the state estimate.  The 

injection of observations with the LETKF accelerates the initial speed of the 

convergence and leads to a major reduction of the asymptotic value of the error in the 

state estimate.  

There is a difference between the behavior of the estimation errors at the two 

vertical levels over the first 2 to 3 sols.  Data assimilation leads to a quicker 

improvement in the lower levels and error remains relatively constant in time.  In the 

upper atmosphere, where dynamics plays a relatively more important role compared 

to the forcing terms, there is more fluctuation initially before the RMS error 

approaches the asymptotic value at sol 5.  The greater role of dynamics as opposed to 

forcing in the upper levels of the atmosphere can also be seen in the ensemble spread.  

Between level 4 and level 20, the ensemble spread collapses quickly due to the strong 

forcing, whereas the spread is larger in the upper 8-10 levels (Fig 4.8).  Ensemble 

spread is also larger in the bottom 4 levels of the model, which is presumably due to 

topographic effects.   

In this experiment, the largest analysis error is in the Northern Hemisphere in 

the lower levels.  The time average of the analysis error and the temperature field 

shows that the largest analysis error occurs along the sharp temperature gradient 

around 45°N at the boundary of the polar ice cap (Fig. 4.9).  The analysis error 

extends upwards in the vertical along this temperature front, which can be seen in the 

zonal average (Fig. 4.10).  The analysis error is extremely low in other regions.  

Analysis error at around 45°N is due to the presence of strong baroclinic waves in this 
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region.  These waves have the same horizontal and vertical signature as seen in Fig. 

4.9 and 4.10. 

This area of background error is largely captured by the ensemble spread and 

the values of the spread match up well with the background error (Fig. 4.11a).  The 

ensemble spread is seen to be largest around 45°N and the shape of the spread is 

spatially similar to that of the analysis error.  The average analysis error is smaller 

than the background error and the analysis spread has the same spatial structure as the 

analysis error (Fig. 4.11b). 

Simulated TES Observations 

Experiments assimilating observations at every grid point are an excellent 

method of studying predictability and testing the performance of the LETKF, 

however they do not represent the actual distribution of the TES observational data.  

To investigate the sensitivity of the LETKF-MGCM system to data coverage, the 

observational data was thinned so that it more accurately represented the spatial and 

temporal distribution of the TES data.  At every assimilation time, the real TES 

observations from the previous 6 hours were read into the system and observations 

were simulated at the grid points closest to the real observations.  In addition to this 

realistic horizontal distribution, a more realistic vertical distribution was used as well.  

The vertical profiles derived from the TES observations have 19 levels.  Those levels 

were mapped to the nearest pressure level of the MGCM and observations were 

simulated at these model levels.  Table 4.2 describes the average model and TES 

pressure levels.  There are a few instances of model levels being closest to more than 

one TES profile level.  In this case, only one observation was used at that closest  
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Model Level Model Pressure Level (mb) TES Obs. Pressure Level (mb) 

28 7.674068 10.0572, 7.83255504 

27 7.610184  

26 7.517812  

25 7.387211  

24 7.206897  

23 6.964379  

22 6.647541  

21 6.246812 6.1 

20 5.758012  

19 5.185371  

18 4.543823 4.75068478 

17 3.85941 3.69983702 

16 3.166856 2.88143597 

15 2.504267  2.24406459 

14 1.906177 1.74767926 

13 1.397171 1.36109398 

12 0.9883192 1.06002106 

11 0.6774463  0.82555, 0.64293527 

10 0.4525899 0.50071849 

9 0.2968393 0.38996, 0.3037 

8 0.1926955 0.23652, 0.18420404 

7 0.1160123 0.14346, 0.1117254 

6 0.05927968  

5 0.02571784   

4 0.0100148  

3 0.003582296  

2 0.001127899  

1 0.0003546658  

Table 4.2 The pressure levels of the TES vertical profiles and closest model levels. 
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model level.  Instead of 19 profile levels, only 14 are used in the assimilation.  These 

levels are not evenly distributed throughout the model.  The majority of the TES 

profile observations are concentrated in the middle of the model, with levels 7 

through 18 all containing observations.  The upper 6 levels have no observations and 

the lowest 10 levels contain only 2 observations.  In practice, the distribution will be 

different at different points in the model because the hybrid vertical coordinate has 

different values at each grid point.  The model pressure values in table 4.2 are shown 

with the values of the closest TES levels. 

The experiment using full observational coverage corresponds to 57120 

temperature observations at every analysis time.  The more realistic TES horizontal 

and vertical distribution corresponds to approximately 4300 observations per analysis, 

although there are some analysis times with no observations.  In reality, because TES 

observations are retrievals, they have correlated error.  Here we have ignored this and 

instead we consider the case of larger random errors. 

Because the real TES observations have a vertical distribution that leaves 

large gaps of model levels with no observations, if the same vertical localization is 

used as in the full coverage experiments then some model levels are not corrected.  

When this happens, it can lead to discontinuities in the analysis field and the resulting 

analysis is worse than the free run forecast.   In order to fix this, the vertical 

localization radius was increased to include more vertical levels in the analysis at 

each point.  A description of the localization used in the simulated TES observation 

experiments can be found in Table 4.3 
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Levels Vertical 

Localization 

Horizontal 

Localization 

Horizontal Taper 

Start 

28  0.05 1200km 900km 

27-21 0.10 1200km 900km 

20-17 0.15 1200km 900km 

16-14 0.25 1200km 900km 

13-9 0.35 1200km 900km 

8-6 1.00 1200km 900km 

5 2.50 1200km 900km 

4 3.00 1200km 900km 

3 4.00 1200km 900km 

2 5.50 1200km 900km 

1 6.50 1200km 900km 

Table 4.3 The localization parameters used at each vertical level of the MGCM for 
the simulated TES observation experiment. 

 

The state estimate of temperature using the simulated TES observations is 

worse than the analysis using observations at every grid point, although both 

experiments stabilize at very low error levels after 10-15 sols (Fig. 4.12). Having 

observations at every grid point leads to a quicker initial reduction of the temperature 

error, with the analysis error dropping below the observation error after just 1 

assimilation.  The state estimate with the simulated TES observations shows initial 

fluctuation and does not drop below the observation error until after 5 days.  The state 

estimate of zonal velocity exhibits similar behavior (Fig. 4.13).  There are 2 large 
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spikes in analysis error during the first 5 sols of the experiment with the simulated 

TES observations which are not seen in the full coverage experiment.  After that 

initial period, the analysis error drops dramatically and approaches an asymptotic 

value between 13 and 14 sols.  

One difficulty in the assimilation of real TES observations is that the 

observation error of the TES data is not well known and there are vertical 

correlations.  A separate assimilation experiment was thus run using observations 

with an error of 3K instead of 1K.  Using this data set, the analysis error still drops 

quickly and remains below the free run forecast error.  The state estimate from the 

analysis using observations with larger error is worse than the analysis with more 

accurate observations, but both analyses exhibit similar patterns of error reduction 

(Fig. 4.14), although the temperature RMS error from the experiment using 3K 

observations is lower between sols 2 and 5.  After sol 5, the analysis with 3K 

observation error is less accurate for the remainder of the run.  The zonal wind RMS 

error using 3K observation error is worse than the analysis using observations with 

1K error at every time.  After stabilizing, the zonal wind analysis RMS error using 1K 

error observations generally remains between 0.4 and 0.6m/s, whereas the analysis 

RMS error using 3K error observations is between 0.8 and 1.0m/s.  Larger 

fluctuations, with the RMS jumping to 2.0m/s at times, are seen in the analysis RMS 

error using 3K error observations.   

The error reduction is shown for levels 5 and 25, which represent different 

types of dynamics—level 25 is forced by solar radiation and topography while level 5 

is in the free atmosphere and has a temperature and zonal wind jet (Fig. 4.6).  In 
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addition, neither level 5 nor level 25 contains simulated TES observations so all 

corrections come from observations at other levels.  The temperature RMS error in 

both levels decreases below the observation RMS error, but the state estimate for 

level 25 is more accurate when compared to the free run forecast (Fig. 4.15).  

Interestingly, the zonal wind analysis state estimate in both levels is worse than the 

free run forecast for the first 1 to 2 sols, before the analysis becomes better for the 

remainder of the run (Fig. 4.16).  In level 25, the analysis and free run zonal wind 

RMS errors remain within 1m/s for much of the run, whereas in level 5 the analysis 

RMS error is more than 2m/s lower than the free run forecast RMS error. 

  Analysis errors are higher in the upper atmosphere using the simulated TES 

observation because dynamics are more important than forcing and there are no 

observations in the upper 6 levels.  In contrast to the full coverage experiment (Fig. 

4.10), where the dominant vertical errors were from the baroclinic waves in the lower 

atmosphere, the dominant analysis errors using simulated TES observations are in the 

zonal jet in the upper levels of the winter hemisphere (Fig. 4.17).  The state estimate 

at level 25 is accurate, even in the absence of direct observations, because the forcing 

constrains the atmosphere in the lower levels. 

 Despite the presence of analysis error in the upper atmosphere in level 5, the 

analysis provides a superior estimate of the location and strength of the zonal jet than 

the free run forecast (Fig. 4.18).  After 2 sols, the free run forecast has an incorrect 

location for the Northern Hemisphere zonal jet, which leads to errors of over 20m/s.  

In the analysis, the jet location is correct, and errors are less than 10m/s in the jet 
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region.  Improvement in the zonal wind is also seen near the surface in level 25, but is 

not as dramatic as in the upper atmosphere. 

Dependence on Localization 

In the above experiments, neither the horizontal nor the vertical localization 

have been optimized.  When using observations at every grid point, the abundance of 

observational data makes the system less sensitive to the choice of localization.  The 

vertical localization used for the full coverage experiments allowed observations from 

1 or 2 vertical levels above or below the assimilation point to be included.  With 

fewer observations, however, the localization becomes more important.  Table 4.2 

showed that there are large gaps of up to 6 levels with no observational data.  

Experiments in the last section showed that increasing the vertical localization radius 

in the upper atmosphere improves the analysis, but do the dynamics of the Martian 

atmosphere support this choice of localization?  The thinner observations also impact 

the assimilation in the horizontal.  In the simulated TES observation experiment, the 

1200km localization radius leaves some grid points with no nearby observations (Fig. 

4.19a).  Consequently, large analysis errors can be seen in between the satellite tracks 

around 60° and 240° longitude in the first analysis.  Subsequent passes of the satellite 

provides observations at these points at later analysis times, but a larger localization 

radius or an adaptive localization radius could allow for better use of the 

observational information.  With a 2500km localization, for example, observations 

are used for the analysis at more grid points between the satellite tracks and the 

resulting analysis errors are reduced (Fig. 4.19b).  The fact that Martian atmospheric 
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dynamics are low dimensional and are dominated by a few, predominantly baroclinic, 

modes with wavenumbers 1-3 could justify the use of a larger localization radius.   

The ensemble correlation between points is used here to identify reasonable 

choices for the localization.  Here, ensemble correlation refers to the pattern anomaly 

correlation between the ensemble perturbation values at two points.  Following Hunt 

et al. (2007), X௕was defined as the matrix of ensemble perturbations whose ith 

column is x௡
௕ሺ௜ሻ െ x௡

௕ .  The ensemble correlation is then the pattern anomaly 

correlation between two rows of the matrix X௕.  Mathematically, if rሺ௜,௝,௞ሻ and 

rሺ௜ᇲ,௝ᇲ,௞ᇲሻ are the rows corresponding to the grids points (i,j,k) and (i’,j’,k’), the 

ensemble correlation between these two points is given by: 

 ݊݋݅ݐ݈ܽ݁ݎݎ݋ܥ ൌ
,rሺ௜,௝,௞ሻۃ rሺ௜ᇱ,௝ᇱ,௞ᇱሻۄ

ටۃrሺ௜,௝,௞ሻ, rሺ௜,௝,௞ሻۄටۃrሺ௜ᇱ,௝ᇱ,௞ᇱሻ, rሺ௜ᇱ,௝ᇱ,௞ᇱሻۄ
. 

(4.1)

This idea of ensemble correlation has been used by Bishop and Hodyss (2007; 2009) 

as part of the ECO-RAP method of performing adaptive localization.   

To get an idea of the typical correlation in the Martian atmosphere, the time 

average of the correlation to a single point was computed for the 50 sol assimilation 

run.  Correlation maps calculated from experiments using different localization were 

found to be extremely similar, so the correlation is not sensitive to the value of the 

localization.  Correlations are presented at three levels above the equator which 

represent parts of the atmosphere with different dynamics and forcing.  Level 25 and 

Level 15 of the model both exhibit forced behavior, but level 25 has a much stronger 

dependence on topography.  Level 5 of the model, in contrast, is in the free 

atmosphere.   
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In the longitudinal direction, the correlation with a point on the equator in the 

level 25 is above 0.2 for about a third of the equatorial radius or approximately 

7100km (Fig. 4.20).  A similar correlation diameter is found in level 15, along with a 

more circular distribution of the correlation and a dipole pattern in both the horizontal 

and the vertical (Fig. 4.21).  In the upper atmosphere, the correlation diameter is 

much larger and stretches across all latitudes (Fig. 4.22).  There is also a large 

correlation pattern in the vertical, with a dipole correlation pattern between the upper 

levels of the atmosphere (~0.01pa) and pressure levels of approximately 1pa.  The 

7100km diameter found in the lower levels corresponds to a radius of 3550km, which 

is almost three times the 1200km radius that was initially used.  In the upper levels, 

that 1200km radius is about a tenth of the radius of the correlation patterns which are 

observed.    

Another experiment was run using the simulated TES observations with 3K 

observation error, 10% inflation, a 16 member ensemble, and a localization radius 

that varied with height.  The localization radius was identical in the lower atmosphere 

and grew to 3600km at the top level of the model.  The localization parameters are 

shown in Table 4.4.  The temperature state estimate is better with the varied 

localization for the first sol and then the 1200km uniform localization analysis has a 

lower RMS error until sol 6 (Fig. 4.23).  After sol 6, the analysis using the varied 

localization is better for the remainder for the simulation.  While the zonal wind 

analysis using the 1200km uniform localization has small spikes in the error, the 

analysis error with the varied localization is lower and does not exhibit these 

fluctuations. 
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Levels Vertical 

Localization 

Horizontal 

Localization 

Horizontal Taper 

Start 

28  0.05 1200km 900km 

27-21 0.10 1200km 900km 

20-17 0.15 1200km 900km 

16-14 0.25 1200km 900km 

13-9 0.35 1200km 900km 

8-6 1.00 2000km 1000km 

5 2.50 2500km 1500km 

4 3.00 3000km 2000km 

3 4.00 3000km 2000km 

2 5.50 3600km 2000km 

1 6.50 3600km 2000km 

Table 4.4 The localization parameters used at each vertical level of the MGCM for 
the simulated TES observation experiment with increased localization radius in the 
upper atmosphere. 

 

Summary 

 The local ensemble transform Kalman filter has been applied to the 

NASA/NOAA Mars general circulation model.  In identical twin experiments using 

full observational coverage in temperature, the LETKF is found to provide a 

significant reduction in the RMS error of the temperature and wind fields as 

compared to a forecast with no data assimilation.  The Martian atmospheric dynamics 
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are dominated by forcing at lower levels and the primary sources of analysis error are 

the large scale, low wavenumber baroclinic instabilities in the winter  

hemisphere.  The atmosphere is more dynamic driven in the upper levels and 

characterized by a strong zonal jet which the LETKF analysis corrects, even without 

and zonal wind observations. 

 Assimilations using observations at every grid point provide a good test of the 

LETKF-MGCM system, but the real observational data from the TES instrument are 

much sparser and have vertically correlated errors.  The vertical correlation in the 

observation errors was not accounted for in these experiments and larger random 

errors were used instead.  To see the sensitivity of the system to the decreased 

observation density, observations are simulated at the grid points closest to the real 

TES track.  The resulting analysis is a significant improvement over the free run 

forecast and approaches the accuracy of the full coverage analysis after 

approximately 15 sols.  These results show that there is much potential for using the 

LETKF-MGCM system to the produce an accurate reanalysis of the Martian climate.  

Because the real observations have vertically errors, a second experiment was run 

using an observation error of 3K as opposed to 1K.  Even in the presence of larger 

observation error, the analysis provides an improved state estimate.   

 Most of the simulated TES observations are in the middle levels of the model, 

with no observations in the upper 6 levels.  As a result, the largest analysis errors 

using the simulated TES observations are in the zonal jet and the upper atmosphere.  

Ensemble correlation was calculated in an attempt to determine a more effective 

localization for the upper atmosphere.  The correlation patterns in the upper 
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atmosphere are large scale and support the use of a larger localization radius in both 

the horizontal and vertical directions.  An experiment using a 1200km horizontal 

localization radius at lower levels and expanding to 3600km at the top of the 

atmosphere produced a lower analysis RMS error in zonal wind after an initial 

stabilizing period.  
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4.1  The diurnal cycle of the MGCM at the surface (Level 28). Temperature [K] is 

shaded and the contours represent the Martian surface topography. A few of the major 

features—the Hellas Basin, Olympus Mons (the largest mountain in the solar system), 

the lowlands of the Vastitas Borealis, and the volcanic Tharsis plateau—are labeled 

(top right).  Courtesy of S. Greybush. 
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4.2  (a) The northern summer zonal mean of zonal wind shows a strong wind jet in 

the southern (winter) hemisphere.  (b) The northern winter zonal mean of zonal wind 

shows a strong wind jet in the northern (winter) hemisphere. Courtesy of S. 

Greybush. 

4.3  Left: TES surface temperature retrievals (K) along a few orbits corresponding to 

0.25 sols. Right: TES temperature profile retrievals with the horizontal axis 

representing observation numbers along the orbital path. Deep red areas represent 

levels that are below the surface.  Courtesy of S. Greybush. 
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4.4  The mean of the initial ensemble surface temperature forecast (top left) has 

significant errors (top right), compared to the truth. The analysis ensemble mean after 

one step (bottom left), however, is very close to the truth and the errors almost do not 

show up on the same scale (bottom right). 
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4.5 (a) The global RMS error in temperature from an identical twin experiment using 

observations at every grid point with observation error of 1K, a 1200km horizontal 

localization radius, and 10% inflation. 

 

 (b) The global RMS error in zonal wind of the same experiment.  The analysis and 

forecast are improved even though no wind observations are assimilated. 
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4.6  Left: The temperature and zonal component of the wind vector field at model 

level 25 [m/s].  Right: The temperature and zonal component of the wind vector field 

at model level 5 [m/s]. 
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4.7  (a) Time evolution of the root-mean-square error in the estimates of the 

temperature [K] by the free model run and the cycled data assimilation of temperature 

observations at model level 25. 

 

(b) Time evolution of the root-mean-square error in the estimates of the temperature 

[K] by the free model run and the cycled data assimilation of temperature 

observations at model level 5.  
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4.8  The ensemble spread by vertical level over a 50 sol simulation using 1K 

observation error, 10% inflation, 16 ensemble members, and full coverage 

observations. 
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4.9  The time averaged analysis error [K] (contour) and truth temperature field [K] 

(shaded) at model level 17 using observations at every grid point with 1K observation 

error, 10% inflation, and 16 ensemble members. 
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4.10  Vertical profile of the time averaged analysis error [K] (contour) and truth 

temperature field [K] (shaded) using observations at every grid point with 1K 

observation error, 10% inflation, and 16 ensemble members.  The vertical axis is 

pressure in mb. 
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4.11  (a) Background error [K] (shaded) and background spread in temperature [K] 

(contour) averaged over the period from sol 2 of the simulation to sol 31 at model 

level 25 using observations at every grid point with 1K observation error, 10% 

inflation, and 16 ensemble members. 

 

(b) Analysis error (shaded) and analysis spread (contour). 
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4.12  Comparison of the global RMS error in temperature using observations at every 

grid point and observations at simulated TES locations both only horizontally and 

both horizontally and vertically.  A 1200km horizontal localization radius is used 

with an observation error of 1K and 10% inflation. 
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4.13 Comparison of the global RMS error in zonal wind using observations at every 

grid point and observations at simulated TES locations both only horizontally and 

both horizontally and vertically.  A 1200km horizontal localization radius is used 

with an observation error of 1K and 10% inflation. 
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4.14  (a) Comparison of the analysis temperature RMS error from the free run, 

assimilation using simulated TES observations with 3K error, and assimilation using 

simulated TES observation with 1K observation error. 

 
(b) Comparison in zonal wind. 
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4.15  Temperature RMS error from an experiment using simulated TES observations 

with 3K error, 10% inflation, and a 16 member ensemble in (a) level 5 

 

(b) level 25. 
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4.16  Zonal wind RMS error from an experiment using simulated TES observations 

with 3K error, 10% inflation, and a 16 member ensemble in (a) level 5 

 

(b) level 25. 
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4.17  Vertical profile of the time averaged analysis error [K] (contour) and truth 

temperature field [K] (shaded) using simulated TES observations with 3K observation 

error, 10% inflation, and 16 ensemble members.  The vertical axis is pressure in mb. 
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4.18  Error in the free run forecast in level 25 (top left) and level 5 (top right) and the 

analysis in level 25 (bottom left) and level 5 (bottom right) from sol 2, hour 6 of an 

experiment using simulated TES observations with error 3K, 16 ensemble members, 

and 10% inflation.   
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4.19 (a) The analysis error (shaded) in temperature [K] after the first analysis in level 

25 of the model using simulated TES observations at all vertical levels and a 1200km 

localization.  The contour shows the observation track. 

 

(b) The same figure but with a 2500km localization radius. 
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4.20 The ensemble correlation to the point (30,18,25) averaged over the final 48 sols 

of a 50 sol assimilation run.  The correlation at level 25 (7.39mb) is shown at the top 

left, a cross section along x=30 is shown top right, and a cross section along the 

equator is show bottom right. The vertical axis for the cross section is pressure in mb. 
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4.21  The ensemble correlation to the point (30,18,15) averaged over the final 48 sols 

of a 50 sol assimilation run.  The correlation at level 15 (2.50mb) is shown at the top 

left, a cross section along x=30 is shown top right, and a cross section along the 

equator is show bottom right. The vertical axis for the cross section is pressure in mb. 
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4.22  The ensemble correlation to the point (30,18,5) averaged over the final 48 sols 

of a 50 sol assimilation run.  The correlation at level 5 (0.026mb) is shown at the top 

left, a cross section along x=30 is shown top right, and a cross section along the 

equator is show bottom right.  The vertical axis for the cross section is pressure in mb. 
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4.23  From an experiment using simulated TES observations with 3K error, 10% 

inflation, a 16 member ensemble, and larger horizontal localization in the upper 

atmosphere, (a) the global temperature RMS error 

 

(b) Global zonal wind RMS error. 
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Chapter 5: Conclusion 

 

 This dissertation developed a new method of performing energy analysis 

using bred vectors and explored the application of the Local Ensemble Transform 

Kalman Filter to oceanic and planetary systems.  Bred vectors identify growing 

instabilities in the global ocean and the bred vector energy equations developed here 

enable the method to diagnose the dynamical causes of the instabilities.  In Chapters 3 

and 4, it was demonstrated that the LETKF is an effective assimilation method for a 

range of complex geophysical systems.  Results from the applications of the LETKF 

are very encouraging and suggest various possible directions for future research.  A 

brief review of some of the main results along with future research questions are 

discussed here. 

 The breeding method was applied to a global ocean implementation of the 

MOM2 model forced by reanalysis winds in Chapter 2.  It was demonstrated that the 

breeding method identifies ocean instabilities of different time scales and the bred 

vector energy equations were derived to calculate energetics of these instabilities.  

The primary area of focus in this chapter is the tropical Pacific, although instabilities 

are found in the tropical Atlantic Ocean and Southern Atlantic Ocean.  A more 

thorough study of the instabilities in the Southern Atlantic, a less studied area than the 

tropical Pacific, will be conducted.  The conversion of the baroclinic term from bred 

vector kinetic energy to bred vector potential energy at the surface in the western 

edge of the South Atlantic indicated the potential importance of surface forcing in the 

region.  
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 The LETKF was interfaced with the ChesROMS model of the Chesapeake 

Bay in Chapter 3.  Identical twin experiments with observations simulated at grid 

points demonstrated the ability of the LETKF to improve the state estimation in the 

Chesapeake.  The improvement in the analysis is sensitive to the observational 

coverage, but significant reduction in the error of the analysis state estimate is found 

using a realistic number of observations. To assimilate observations at real locations, 

an observation operator was developed based on the interpolation used in ROMS.  

Assimilating temperature and salinity observations simulated at the real station 

locations and analysis times improves the analysis state estimate in the Bay.  Because 

there are no observations in the open ocean, the state estimate there has larger errors. 

Further exploration is needed with real observation locations and the real 

observations themselves.  Scripts were developed to allow the real observations to be 

read into the system.  Assimilation experiments using simulated observations in real 

spatial and exact temporal locations are the next step.  Currently, observations are 

assimilated during the correct analysis window, but at the analysis time instead of the 

true observation time.  Assimilating observations at the exact observation time 

necessitates switching the LETKF to run in 4D mode, as opposed to the 3D mode that 

it runs in now.   

Quality controls will also have to be developed for the real data.  Because the 

observations are extremely sparse, there is the potential for bad observations to cause 

serious damage to the analysis.  The next goal is a comparison between the model and 

the assimilation system using the real observations.  This would allow the exploration 

of what areas and variables of the Bay receive the most benefit from the assimilation.  
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The benefit of specific observations and observation systems can also be evaluated.  

In order judge the effectiveness of the assimilation, validation metrics must be 

developed.  Because there are relatively few observations, one important question is 

determining to which independent data set the assimilation should be compared. 

Assimilating real observations also introduces the need to account for model 

error.  The behavior of the free run forecast underscores that the Chesapeake Bay is a 

forced system.  If the forcing is imperfect, then there is the potential for all of the 

ensemble members to be driven to the same incorrect state, leaving the LETKF 

unable to make the necessary correction.  The case of incorrect forcing terms will be 

investigated by adding errors to the forcing fields.  Instead of adding random errors to 

the forcing, which could lead to an extremely unbalanced state, the perturbed forcing 

will be created by taking a weighted average of the correct forcing field and a forcing 

field from a randomly selected other time.  Bias correction should also be added to 

the ChesROMS-LETKF system for using real observations. 

Another part of the assimilation process that has potential for improvement is 

the localization.  The importance of the localization was emphasized by the fact that 

the analysis was blowing up using observations in real locations before the 

localization was corrected.  Currently, the localization is set in a file which is read 

into the assimilation code.  Because the LETKF code was originally developed for 

use with an atmospheric model, the localization is constructed so that it can be varied 

by latitude and vertical level.   In a coastal ocean model, however, different regions 

are delineated by the complex coastline and rivers systems and have no dependence 

on latitude nor are they regular in shape.  When performing the assimilation at a point 
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in a river, the most important observations to use are likely those upstream of the 

assimilation location.  In order to define a more accurate localization, a localization 

map will be created which will specify the localization at each point on the grid.  In 

addition, the use of multiple localizations based on data coverage will be explored.  

For example, when there are only CBOS observations it may be most helpful to 

perform a global analysis, whereas when CBP observations become available more 

local patches may perform better. 

Assuming an improvement is found with the assimilation, the system will be 

used to study the distribution and transport of dissolved oxygen and anoxia in the 

Chesapeake Bay.  The concept of transit-time distributions, which provide a 

description of the transport in the flow, will be used to evaluate oxygen transport and 

the roles of advection and mixing in this process.  The tracer prediction abilities of 

ROMS will also be employed to track oxygen transport and produce improved 

oxygen maps using the improved physical state estimates from the data assimilation.  

I plan to work with scientists at Johns Hopkins University, in addition to those at the 

University of Maryland, to complete assimilation experiments using full real 

observations and to calculate transit-time distributions for the purpose of evaluating 

the transport of oxygen. 

In Chapter 4, the LETKF was coupled with the NASA/NOAA Martian GCM.  

Assimilation experiments with simulated observations that approximate the real TES 

observations showed that the LETKF is capable of correcting errors in the Martian 

atmosphere.  The next step for the research is developing the H-operator to allow the 
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use of real observation locations.  This would pave the way for a reanalysis of the 

MGS period that could be compared to the Oxford reanalysis.  ` 

Despite the obvious differences in the systems, similarities were found in the 

applications of the LETKF to the Chesapeake Bay and the Martian atmosphere.  The 

most prominent similarity is the importance of forcing in both systems, which leads to 

an improvement in the free run forecast without data assimilation in the presence of 

perfect forcing.  Both systems will require future work on mitigating and correcting 

errors in the forcing fields.  Coastal ocean and planetary atmosphere systems also 

both have sparse observational data sets which lead to increased errors in regions with 

few or no observations.  In the Chesapeake Bay this manifested itself in the open 

ocean and in the Martian model errors were largest in the upper levels of the 

atmosphere. 

As discussed in Chapter 4, one of the biggest issues with the Martian 

assimilation is persistent errors along the temperature front near the surface.  In this 

area, the ensemble spread is extremely small, which prevents adequate corrections 

from being made.  A large percentage of the analysis error occurs in this region, so an 

effective method of correcting it is needed.  Preliminary tests using a large 

multiplicative inflation coefficient have not yielded promising results, so alternative 

methods must be explored.  One potentially useful method is the adaptive inflation 

method of Li et al. (2009).  In this method, an estimate of the covariance inflation is 

derived from the ensemble spread.  Estimates of the observation errors are derived 

simultaneously in this method, which is extremely beneficial for Mars because the 

observation errors in the TES observations are unknown.  Unfortunately, preliminary 
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results using this method did not show a significant improvement in the state estimate 

of the MGCM.  More tests are needed, however, to determine if this method can 

improve the Martian state estimate.  Another possible avenue is the implementation 

of additive inflation for the LETKF.  If the forced nature of the MGCM causes all of 

the ensemble members to converge to the same basic spatial structure, then the 

LETKF may not be able to correct errors in certain directions.  In this case, additive 

inflation can restore new dynamical dimensions to the ensemble as opposed to simply 

artificially increasing the spread as is done in multiplicative inflation. 

 For the majority of the future Mars research proposed here, Steven Greybush 

will be the primary investigator and the research will form a significant part of his 

Ph.D. dissertation.  However, I do intend to remain a collaborator in these efforts. 

 

 

  



 

 136 
 

Appendix: Global Ocean Data Assimilation 
 

Introduction 

This appendix shows preliminary results achieved by the Center for Weather 

Forecasts and Climate Studies (CPTEC) Ocean Data Assimilation System - CODAS. 

This is part 1 of a continuing project at CPTEC in Brazil to develop an operational 

data assimilation for the global ocean based on the Local Ensemble Transform 

Kalman Filter method. Results were achieved between March and May 2008.  During 

that time, the LETKF code was first interfaced with CPTEC’s existing MOM4 global 

ocean implementation and a suite of C-Shell scripts were developed to run the 

system.  Next, identical twin experiments were run to test the CODAS.  The LETKF 

is found to quickly reduce the analysis and subsequent forecast error in the global 

MOM4-LETKF system.  In addition to global corrections, the LETKF accurately 

captures the spatial distribution of ocean regions with very high variability.  In 

particular, the area of the Brazil-Malvinas confluence is investigated. The analyses 

from the CODAS ensemble experiments using both 8 and 12 members exhibit all of 

the major oceanic features of the truth state. However, using twelve ensemble 

members, an excellent analysis, which nearly mirrors the shape of the truth, is 

achieved. 

MOM4 Model 

The LETKF framework is applied to a global implementation of the Modular 

Ocean Model, version 4 (MOM4) developed at GFDL. MOM4 is the newest version 

of the MOM used for breeding in Chapter 2 of this dissertation.  Details of the model 
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numerics and physics can be found in Griffies et al (2004). The ocean model used 

here has a horizontal resolution of approximately 1° x 1°and 50 vertical levels, with 

30 of them confined to the first 1000 meters. The ocean model was spun-up for 10 

years using climatological fluxes of momentum, heat and water to generate the initial 

restart used.  During the spin up, monthly restart files were saved.  To initialize the 

ensemble, the restart files from the months at the end of the spin up run were used. 

Identical Twin Experiments 

Analyses were performed every day using observations that were simulated in 

random locations representing a specified percentage of the entire grid.  Initially, 

observations were simulated in all but the bottom layer of the ocean, however it was 

found that this led to growing errors in the bottom layers along the bottom 

topography.  To correct this issue, observations were only simulated in the upper 35 

layers of the model.  This is realistic, because essentially no observation exist in the 

very deep ocean.  In experiments using 10% data coverage, the LETKF quickly 

reduces both the analysis and forecast errors below the specified observational errors, 

which are 0.5°C, 0.08psu, and 0.04m/s for zonal velocity and 0.02m/s for meridional 

velocity. This reduction below the observational errors is observed in a few days for a 

four member ensemble and in one day for a twelve member ensemble.  Moreover, the 

errors remain below the observational errors for the duration of the simulation. At 1% 

data coverage, the analysis error converges slower than at 10% coverage, but the 

analysis error still drops below the observational error in couple of days using a 

twelve member ensemble. 
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In addition to the global improvement, the LETKF also allows the analysis to 

reproduce the spatial patterns in local regions.  Figures 1 and 2 show the analysis, 

background, and truth of meridional sea surface currents in the Brazil-Malvinas 

confluence, which is one of the more unstable regions of the global ocean. 

In the first analysis step, the improvement from the LETKF is evident even 

with only eight ensemble members.  The truth shows a strong, narrow tongue of 

northward velocity around 40°S latitude, while the background shows only weak, 

more dispersed velocity in the same area.  After one LETKF step, the analysis 

exhibits a narrower area of strong velocity around 40°S that more closely resembles 

the truth.  There is also increased southward velocity right off the coast between 30°S 

and 40°S which is in agreement with the truth. Moreover, after a few LETKF steps, 

the analysis very accurately represents the shape of the meridional velocity field in 

the Brazil-Malvinas confluence. Even using only four ensemble members, the 

analysis after a few steps shows all of the major features of the truth.  Using twelve 

ensemble members, an excellent analysis, which nearly mirrors the shape of the truth, 

is achieved. Similar results are seen in all of the analysis fields. 

Future work will explore the performance of CODAS using more realistically 

distributed observations, both spatially and temporally.  Experiments exploring the 

predictability of the global ocean as well as studying specific instabilities will also be 

undertaken. 
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Figure A.1- Meridional velocity at Brazil-Malvinas Confluence. Panels showing the 

Background state, Analysis and Truth from 8 members simulations. All simulations 

refer to a climatological January. 

 



 

 140 
 

 

Figure A.2- Meridional velocity at Brazil-Malvinas Confluence. Panels showing the 

Background state, Analysis and Truth from 12 members simulations. All simulations 

refer to a climatological January. 
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