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Numerical weather forecast errors are generated by model deficiencies and by errors in the

initial conditions which interact and grow nonlinearly. With recent progress in data assimilation,

the accuracy in the initial conditions has been substantially improved so that accounting for sys-

tematic errors associated with model deficiencies has become even more important to ensemble

prediction and data assimilation applications. This dissertation describes two new methods for

reducing the effect of model error in forecasts.

The first method is inspired by Leith (1978) who proposed a statistical method to account

for model bias and systematic errors linearly dependent on the flow anomalies. DelSole and Hou

(1999) showed this method to be successful when applied to a very low order quasi-geostrophic

model simulation with artificial “model errors.” However, Leith’s method is computationally

prohibitive for high-resolution operational models. The purpose of the present study is to explore

the feasibility of estimating and correcting systematic model errors using a simple and efficient

procedure that could be applied operationally, and to compare the impact of correcting the model

integration with statistical corrections performed a posteriori. An elementary data assimilation

scheme (Newtonian relaxation) is used to compare two simple but realistic global models, one quasi-

geostrophic and one based on the primitive equations, to the NCEP reanalysis (approximating the

real atmosphere). The 6-hour analysis increments are separated into the model bias (obtained by

time averaging the errors over several years), the periodic (seasonal and diurnal) component of the



errors, and the non-periodic errors. An estimate of the systematic component of the non-periodic

errors linearly dependent on the anomalous state is generated. Forecasts corrected during model

integration with a time-dependent estimate of the bias remain useful longer than forecasts corrected

a posteriori. The diurnal correction (based on the leading EOFs of the analysis increments) is

also successful. State-dependent corrections using the full dimensional Leith scheme and several

years of training actually make the forecasts worse due to sampling errors in the estimation of

the covariance. A sparse approximation of the Leith covariance is derived using univariate and

spatially localized covariances. The sparse Leith covariance results in small regional improvements,

but is still computationally prohibitive. Finally, SVD is used to obtain the coupled components of

the increment and forecast anomalies during the training period. The corresponding heterogeneous

correlation maps are used to estimate and correct by regression the state-dependent errors during

the model integration. Although the global impact of this computationally efficient method is

small, it succeeds in reducing state-dependent model systematic errors in regions where they are

large. The method requires only a time series of analysis increments to estimate the error covariance

and uses negligible additional computation during numerical integration. As a result, it should be

suitable for operational use at virtually no computational expense.

The second method is inspired by the dynamical systems theory of shadowing. Making a

prediction for a chaotic physical process involves specifying the probability associated with each

possible outcome. Ensembles of solutions are frequently used to estimate this probability distri-

bution. However, for a typical chaotic physical system H and model L of that system, no solution

of L remains close to H for all time. We propose an alternative and show how to “inflate” or

systematically perturb the ensemble of solutions of L so that some ensemble member remains close

to H for orders of magnitude longer than unperturbed solutions of L. This is true even when the

perturbations are significantly smaller than the model error.
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Chapter 1

Introduction

Predicting the behavior of a chaotic physical system H using a model L has three obstacles:

uncertainty in initial state, chaos, and model errors, i.e. differences between L and H. Given the

initial state of H, the initial state of L which will yield the trajectory that best matches the physical

system is unknown. The accepted procedure is to choose a large collection or ensemble of initial

states and follow their L trajectories. Each individual L trajectory represents a possible outcome;

the collection represents a probability distribution of possible outcomes and describes the evolution

of uncertainty in forecasts generated by L. However, since each ensemble member is integrated with

the same model L, the forecast distribution is unable to represent model errors. As a result, the

ensemble spread (variance) is typically smaller than the difference between the forecast ensemble

mean and the future state of H.

When making predictions of H using L, one of two assumptions is usually made: either

there is no model error (i.e. the model is perfect) (Szunyogh et al., 2005), or the model error

is statistically random. The first assumption is useful for evaluating the dynamical sources of

error, namely those which are related to uncertainty in initial conditions and chaos. For lack of a

more sophisticated method of parameterizing model error, predictability studies which make the

second assumption typically include a stochastic component and hope that this noise will represent

behavior that the model L fails to resolve. While this technique may be useful in increasing the

ensemble spread, we feel that the assumption of random errors upon which the method is based is

unrealistic.

This dissertation aims to develop new methods for estimating and correcting flow dependent

model errors in numerical predictions of chaotic physical systems. The first method, described in

Chapter 2, is a statistical correction procedure designed to empirically train a global weather

model to predict its own error, measured relative to the best available estimate of the state of

the atmosphere. The second method, described in Chapter 3, attempts to combine ideas from the

shadowing theory of dynamical systems with current ensemble prediction techniques to increase

1



the length of time for which numerical trajectories of L will remain close to true solutions of the

physical system H. The methods are shown to be inexpensive and successful in improving forecasts

made by weather models of varying sophistication. The dissertation concludes with a discussion

of future applications of these techniques.
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Chapter 2

Estimating and Correcting Global Weather Model Error

2.1 Motivation

Numerical weather forecasting errors grow with time as a result of two contributing factors. First,

atmospheric instabilities amplify uncertainties in the initial conditions, causing indistinguishable

states of the atmosphere to diverge rapidly on small scales. This phenomenon is known as internal

error growth. Second, model deficiencies introduce errors during the model integration leading to

external error growth. These deficiencies include inaccurate forcings and parameterizations used

to represent the effect of sub-grid scale physical processes as well as approximations in numeri-

cal differentiation and integration, and result in large scale systematic forecast errors. Current

efforts to tackle internal error growth focus on improving the estimate of the state of the atmo-

sphere through assimilation of observations and ensemble forecasting (Anderson 2001, Whitaker

and Hamill 2002, Ott et al. 2004, Hunt et al. 2004). Ideally, model deficiencies should be addressed

by generating more accurate approximations of the forcing, improving the physical parameteriza-

tions, or by increasing the grid density to resolve smaller scale processes. However, unresolved

phenomena and model errors will be present no matter how accurate the parameterizations are,

no matter how fine the grid resolution becomes. As a result, it is important to develop empirical

algorithms to correct forecasts to account for model errors. Empirical methods which consider the

model a ‘black box’ are particularly valuable because they are independent of the model. As the

methods of data assimilation and generation of initial perturbations become more sophisticated

and reduce the internal error, the impact of model deficiencies and their dependence on the ‘flow

of the day’ become relatively more important (Hamill and Snyder 2000, Houtekamer and Mitchell

2001, Kalnay 2003).

Estimates of the systematic model error may be derived empirically using the statistics

of the short term forecast errors, measured relative to a reference time series. For example, the

mean short-term forecast error provides a sample estimate of the stationary component of the

model error bias. The output of operational numerical weather prediction models is typically post-
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processed to account for any such known biases in the forecast field by Model Output Statistics

(MOS, Glahn and Lowry 1972, Carter et al. 1972). However, offline bias correction has no

dynamic effect on the forecast; internal and external errors are permitted to interact nonlinearly

throughout the integration as they grow and eventually saturate. A more robust approach to error

correction should be to estimate the short term forecast errors as a function of the model state.

A corresponding state-dependent correction would then be made every time step of the model

integration to retard growth in the component of the error generated by the model deficiencies.

Several studies have produced promising results by empirical correction of a Global Circulation

Model (GCM).

Leith (1978) derived a state-dependent empirical correction to a simple dynamical model

by minimizing the tendency errors relative to a reference time series. Leith’s correction operator

attempts to predict the error in the model tendency as a function of the model state. While

Leith’s empirically estimated state-dependent correction term is only optimal for a linear model,

it is shown to reduce the nonlinear model’s bias. However, the technique is subject to sampling

errors and requires many orders of magnitude more computation time during the forecast than the

biased model integration alone. The method is discussed in detail in section 6.

Faller and Schemm (1977) used a similar technique on coarse and fine grid versions of

a modified Burgers equation model. Statistical correction of the coarse-grid model by multiple

regression to parameterize the effects of sub-grid scale processes improved forecast skill. However,

the model equations were found to be insensitive to small perturbations of the initial conditions.

They concluded that the coarse-grid errors were due entirely to truncation and that the procedure

was sensitive to sampling errors. Schemm et al. (1981) introduced two procedures for statistical

correction of numerical predictions when verification data are only available at discrete times. Time

interpolation was found to introduce errors into the regression equations, rendering the procedure

useless. Applying corrections only when verification data were available, they were successful in

correcting artificial model errors, but the procedure failed on the NMC Barotropic-Mesh model.

Later, Schemm and Faller (1986) dramatically reduced the small scale 12-hr errors of the NMC
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model. Errors at the larger scales grew due to randomization of the residual errors by the regression

equations.

Klinker and Sardeshmukh (1992) used January 1987 6-hour model integrations to estimate

the state-independent tendency error in operational ECMWF forecasts. By switching off each

individual parameterization, they isolated the contribution to the error of each term. They found

that the model’s gravity wave parameterization dominated the 1-day forecast error. Saha (1992)

used a simple Newtonian relaxation or nudging of a low-resolution version of the NMC operational

forecast model to estimate systematic errors. Verifying against the hi-resolution model, Saha was

able to reduce systematic errors in independent forecasts by adding artificial sources and sinks to

correct errors in heat, momentum, and mass. Nudging and a posteriori correction were seen to

give equivalent forecast improvements.

By nudging of several low-resolution GCMs towards a high-resolution model, Kaas et al.

(1999) estimated empirical orthogonal functions (EOFs) for horizontal diffusion. They found that

the kinetic energy dissipation due to unresolved scales varied strongly with model resolution.

The EOF corrections were most effective in reducing the climatological errors of the model whose

resolution was closest to that of the high-resolution model. D’Andrea and Vautard (2000) estimated

the time-derivative errors of the 3-level global QG model of Marshall and Molteni (1993) by

finding the model forcing which minimized the 6-hour forecast errors relative to a reference time

series. They derived a flow-dependent empirical parameterization from the mean tendency error

corresponding to the closest analogues in the reference time series. The subsequent corrected

forecasts exhibited improved climate statistics in the Euro-Atlantic region, but not in others.

DelSole and Hou (1999) perturbed the parameters of a 2-layer quasi-geostrophic (QG) model

on a 8× 10 grid (Ngp = 160 degrees of freedom) to generate a ‘nature’ run and then modified it to

create a ‘model’ containing a primarily state-dependent error. They found that a state-independent

error correction did not improve the forecast skill. By adding a state-dependent empirical correction

to the model, inspired by the procedure proposed by Leith, they were able to extend forecast skill

up to the limits imposed by observation error. However, Leith’s technique requires the solution
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of a Ngp-dimensional linear system. As a result, before the procedure can be considered useful

for operational use, a low-dimensional representation of Leith’s empirical correction operator is

required.

Renwick and Wallace (1995) used several low-dimensional techniques described by Brether-

ton et al. (1992) to identify predictable anomaly patterns in 14 winters of Northern Hemisphere

500-mb height fields. The most predictable anomaly pattern in ECMWF operational model fore-

casts was found to be similar to the leading EOF of the analyzed 500-mb height anomaly field.

Applying canonical correlation analysis to the dependent sample (first 7 winters), they found the

amplitude of the leading pattern to be well predicted and showed the forecast skill to increase

with the amplitude of the leading pattern. The forecast skill of the independent sample (second

7 winters) was not well related to the patterns derived from the dependent sample. A posteriori

statistical correction of independent sample forecasts slightly decreased RMS errors, but damped

forecast amplitude considerably. They concluded that continuing model improvements should

provide better results than statistical correction and skill prediction in an operational setting.

Ferranti et al (2002) used Singular Value Decomposition (SVD) (Golub and Van Loan

1996) analysis to identify the relationship between fluctuations in the North Atlantic Oscillation

and ECMWF operational forecasts errors in 500hPa height for 7 winters in the 1990’s. They found

that the anomalous westerly (easterly) flow over the eastern north Atlantic (western Europe) was

weakened by a consistent underestimation of the magnitude of pressure anomalies over Iceland.

Large (small) error amplitudes were seen to be located in regions of the maximum westerly (east-

erly) wind anomaly, the trend was reversed on the flanks of the jet. The flow-dependent component

of the errors accounted for 10% of the total error variance.

The purpose of the present study is to explore the feasibility of estimating and correcting

systematic model errors using a simple and efficient procedure that could be applied operationally.

The monthly, diurnal, and state-dependent components of the short term forecast errors are esti-

mated for two simple but realistic GCMs using the NCEP reanalysis as truth. Section II describes

the two GCMs used for the numerical experiments. Section III describes the simple method of

6



data assimilation used to generate a time series of model forecasts and the technique used to

estimate the corresponding systematic errors. Section IV illustrates the substantial forecast im-

provement resulting from state-independent correction of monthly model forcing when verifying

against independent data. Section V describes attempts to generate full dimensional and low order

empirical estimates of model error as a function of the model state, using Leith’s method and a

new computationally inexpensive approach based on SVD. The paper concludes with a discussion

of implications for operational use and future directions of research.

2.2 Global Circulation Models

2.2.1 The Quasi-Geostrophic Model

The first model used in this study was developed by Marshall and Molteni (1993), it has been

used for many climate studies (e.g. D’Andrea and Vautard 2000). The model is based on spher-

ical harmonics, with triangular truncation at wavenumber 21. The QG model has three vertical

levels (800, 500, 200hPa) and integrates the quasi-geostrophic potential vorticity equation with

dissipation and forcing:

q̇ = −J(ψ,q)−D(ψ) + S (2.1)

where ψ is the streamfunction and q is the potential vorticity (q ≈ ∇2ψ). J represents the Jacobian

operator of ψ and q. The linear dissipation D is dependent on ψ and orography, and includes a

relaxation coupling the three vertical levels. The forcing term S is time-independent but varies

spatially, representing the average effects of diabatic heating and advection by the divergent flow.

This forcing is determined by requiring that the time averaged values of the other terms in (2.1)

are zero. In other words, the forcing is defined so the vorticity tendency is zero for the climatology

(given by the mean NCEP reanalysis streamfunction during January and February from 1980 to

1990, the model simulates a perpetual winter). If the climatological streamfunction and vorticity

are denoted as ψ̄ and q̄, the time average of (2.1) can be written

7



S =< J(ψ̂, q̂) > + < D(ψ̂) > + < J(ψ̂′, q̂′) > (2.2)

where the brackets are ensemble averages over time and primes represent deviations from this

time average. The first two terms in (2.2) generate a mean state, the last term adds the average

contribution of transient eddies (D’Andrea and Vautard 2000).

2.2.2 The SPEEDY Model

The primitive-equation model used in this study (known as SPEEDY, for ‘Simplified Parameter-

izations, primitivE-Equation DYnamics,’ Molteni 2003) has triangular truncation T30 at 7 sigma

levels (0.950, 0.835, 0.685, 0.510, 0.340, 0.200, 0.080). The basic prognostic variables are vorticity

(ζ), divergence (∇), absolute temperature (T ), specific humidity (Q), and the logarithm of sur-

face pressure (log(ps)). These variables are post-processed into zonal and meridional wind (u, v),

geopotential height (Z), T , Q, and log(ps) at pressure levels (925, 850, 700, 500, 300, 200, 100hPa).

The model dissipation and time-dependent forcing are determined by climatological fields of sea

surface temperature (SST), surface temperature and moisture in the top soil layer (about 10cm),

snow depth, bare-surface albedo, and fractions of sea ice, land-sea, and land-surface covered by

vegetation. The model contains parameterizations of large-scale condensation, convection, clouds,

short-wave and long-wave radiation, surface fluxes, and vertical diffusion (Molteni 2003). No di-

urnal variation exists in the model forcing; forcing fields are updated daily.

Despite the approximations made in deriving each model, they produce realistic simulations

of extratropical variability, especially in the Northern Hemisphere (Marshall and Molteni 1993,

Molteni 2003). The SPEEDY model also provides a more realistic simulation of the tropics, as well

as the seasonal cycle. Since the model forcings (including SST) are determined by the climatology,

one cannot expect realistic simulations of interannual variability. More advanced GCMs include

not only observed SST but also changes in greenhouse gases and aerosols, as well as more advanced

physical parameterizations. Despite the absence of variable forcing, if run for a long period of time

(decades), both models reproduce a realistic climatology. While they were designed for climate
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simulations, each model produces forecasts that remain useful globally for about 2 days.

2.3 Training

A pair of simple schemes were used to estimate model errors. The schemes are advantageous in that

they provide estimates of model errors at the analysis time, when they are still small and growing

linearly, and because they can be carried out at the cost of essentially one model integration. The

first procedure is inspired by Leith (1978), who integrated “true” initial conditions for 6 hours to

measure the difference between the forecast and the verifying analysis. A schematic illustrating

the procedure, hereafter referred to as direct insertion, is shown in Figure 2.1.

Writing x(t) for the GCM state vector at step t and M(x(t)) for the model tendency at step

t, the model tendency equation is given by

ẋ(t) = M
(
x(t)

)
(2.3)

The analysis increment at step t is given by the difference between the truth xt(t) and the model

forecast state xf
h(t), namely

δxa
h(t) = xt(t)− xf

h(t) (2.4)

where h is the forecast lead time, typically h = 6hr.

The second (alternative) procedure for estimating model errors is Newtonian relaxation or

nudging (Leith 1991, Saha 1992), done by adding an additional forcing term to relax the model

state towards the reference time series. When reference data is available (every 6 hours), the

tendency equation during nudging is given by

ẋ(t) = M
(
x(t)

)
+

δxa
h(t)
τ

(2.5)

At intermediate time steps, when data is unavailable, the tendency is given by (2.3). A schematic

illustrating the nudging scheme is shown in Figure 2.2 If the relaxation time scale τ is too large,

model errors will grow before the time derivative can respond (Kalnay 2003). If τ is chosen too
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Figure 2.1: Schematic illustrating the direct insertion procedure for generating time series of

model forecasts and analysis increments. xt(t) is the NCEP Reanalysis at time t; it is used as an

estimate of the truth. xf
6(t + 1) is the 6-hour forecast generated from the initial condition xt(t);

δxa
6(t + 1) = xt(t)−xf

6(t + 1) is the 6-hour error correction or analysis increment in an operational

setting.
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Figure 2.2: Schematic illustrating the nudging procedure for generating time series of model fore-

casts and analysis increments. xt(t) is the NCEP Reanalysis at time t; it is used as an estimate

of the truth. xf
6(t + 2) is the 6-hour forecast generated from the initial condition xf

6(t + 1) using

a forcing that is corrected or nudged by δxa
6(t + 1) = xt(t + 1)− xf

6(t + 1).

small, the tendency equation will diverge. Figure 2.3 shows that the sensitivity of the assimilation

error to τ for the QG and the SPEEDY models is similar, and that the optimal time scale is

τ = 6hr, corresponding to the frequency (h) of the assimilation. This choice for τ generates

analysis increments whose statistical properties (e.g. mean, variance, EOFs) are qualitatively very

similar to those obtained through direct insertion. As a result, for the remainder of the paper we

will consider time series generated by direct insertion.

The reference time series used to estimate model errors is given by the NCEP reanalysis.

NCEP reanalysis values of model prognostic variables are available in 6 hour increments, they are

interpolated to the model grid and denoted at step t by xt(t). Observations of the reanalysis are

taken as truth with no added noise or sparsity; observational noise is the focus of much research
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Figure 2.3: Mean RMS error at 500hPa as a function of relaxation time scale τ (relative to the

interval h between observations of the reanalysis), verifying against reanalysis during relaxation.

As expected, the optimal τ is equal to h for both the QG and SPEEDY models. However, nudging

is successful for longer relaxation times as well.

in data assimilation (e.g. Ott et al. 2004) but its influence is ignored in this context since the

reanalysis is already an approximation of the evolution of the atmosphere. Direct insertion is

performed with the QG model by integrating NCEP reanalysis wintertime vorticity for the years

between 1980 and 1990. The SPEEDY model is integrated using NCEP reanalysis values of ζ, ∇,

T , Q, and log(ps) for the years between 1982 and 1986. A longer time period was used to train

the QG model because it has an order of magnitude fewer degrees of freedom than the SPEEDY

model.

The time series of analysis increments is separated by month and denoted δxa
6(t)

Nref
t=1 (Nref ≈

12



103 for each month). The time-average of the analysis increments (bias) is given by < δxa
6 > =

1
Nref

∑Nref
t=1 δxa

6(t) and < xt > = 1
Nref

∑Nref
t=1 xt(t) is the 5-year reanalysis climatology for the month

in which steps t = 1, ..., Nref occur. The method of direct insertion is also used to generate

< δxa
h > for h = 6j (j = 2, 3, ..., 8), giving 12-hour, 18-hour, ..., and 48-hour mean bias estimates.

These estimates will be used to make an a posteriori bias correction. The reanalysis states, model

forecasts, and corresponding analysis increments are then separated into their anomalous and time

average components, namely

xt′(t) = xt(t)− < xt > (2.6)

xf′
6 (t) = xf

6(t)− < xt > (2.7)

δxa′
6 (t) = δxa

6(t)− < δxa
6 > (2.8)

Figure 2.4 illustrates the bias calculated from 5 years of 6-hour SPEEDY forecasts of u, T ,

and Q for January and July. These state-independent errors are clearly associated with contrasts in

land-sea forcing, topographic forcing, and the position of the jet. The zonal wind and temperature

exhibit a large polar bias, especially in the winter hemisphere. The 6-hour zonal wind errors show

an underestimation of the westerly jets of 2-5 m/s east of the Himalayan mountain range (January)

and east of the Australian Alps (July), especially on the poleward side. The mean temperature

error over Greenland is larger during the Northern Hemisphere winter. There is little humidity bias

in the polar regions, most likely due to the lack of moisture variability near the poles. The SPEEDY

convection parameterization evidently transports too little moisture from lower levels (which are

too moist) to upper levels (which are too dry). The following section describes attempts to correct

the model forcing to account for this bias.
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Figure 2.4: Mean 6-hour analysis increment < δxa
6 > (shades) and 5-year reanalysis climatology

< xt > (contours) in SPEEDY forecasts of u[m/s], T [K], and Q[g/kg] during January (left) and

July (right) from 1982-1986.
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2.4 State-Independent Correction

2.4.1 Monthly Bias Correction

In this section, the impact of correcting for the bias of the model during the model integration is

compared with a correction a posteriori, as done, for example in MOS. In both cases the impact of

the corrections on 5-day forecasts is verified using periods independent from the training periods.

The initial conditions for QG forecasts are taken from the wintertime NCEP reanalysis data

between 1991 and 2000, and for the SPEEDY forecasts are taken from the NCEP reanalysis

data for 1987.

The control forecast is started from reanalysis initial conditions and integrated with the

original biased forcing M(x). The forecast corrected a posteriori is generated by computing xf
6(1)+

< δxa
6 > at step 1, xf

12(2)+< δxa
12 > at step 2, ..., xf

48(8)+< δxa
48 > at step 8, etc.. The corrections

in u, v, T , Q, and log(ps) at all levels are obtained from the training period for each month of

the year, and attributed to day 15 of each month. The correction is a daily interpolation of the

monthly mean analysis increment; e.g. on February 1, the time-dependent 6-hour bias correction

is of the form

< δxa
6(jan) > + < δxa

6(feb) >

2
(2.9)

so that the corrections are temporally smooth.

An online corrected or debiased model forecast is generated with the same initial condition,

but with a corrected model forcing M+. The tendency equation for the debiased model forecast is

given by

ẋ = M(x) +
< δxa

6 >

h
≡ M+(x) (2.10)

where the bias correction is scaled down because it was computed for 6 hour forecasts but it is

applied every time step. The skill of each forecast is measured by the Anomaly Correlation (AC),

given at time t by
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AC =
∑Ngp

s=1 xf′(s) · xt′(s) cos2(φs)√∑Ngp
s=1

(
xf′(s) cos(φs)

)2
√∑Ngp

s=1

(
xt′(s) cos(φs)

)2
(2.11)

where φs is the latitude of grid point s and Ngp is the number of degrees of freedom in the model

state vector. The AC is essentially the inner product of the forecast anomaly and the reanalysis

anomaly, with each grid point contribution weighted by the cosine of its latitude and normalized

so that a perfect forecast has an AC of 1. It is common to consider that the forecast remains useful

if AC > 0.6.

Figure 2.5 illustrates the success of the bias correction for the QG model. Both the a

posteriori and the online correction of the bias significantly increase the forecast skill. However,

the improvement obtained with the online correction is larger than that obtained with the a

posteriori correction, indicating that the correction made during the model integration reduces the

model error growth. Applying the bias correction every 6 hours for a single time step gave slightly

worse results than applying it every time step.

Similar results were obtained for the SPEEDY model and are presented for the 500hPa zonal

wind, temperature, and geopotential height in Figure 2.6 (top row) for the month of November

1987. In order to show the vertical and monthly dependence of the correction, the time of crossing

of AC=0.6 is plotted for 3 vertical levels for the control (second row) and online corrected (debiased)

SPEEDY forecasts (third row) as a function of the month. The bottom row presents the relative

improvement. For the wind, the debiasing leads to an increase in the length of useful skill of over

60% at 850hPa (where the errors are largest), about 50% at 500hPa, and about 10% at 200hPa,

where the errors are smallest. For the temperature, where the skill is less dependent on pressure

level, the improvements are between 20% and 40% at all levels. There is not much dependence on

the annual cycle, possibly because the verification is global.

As in the QG model, a bias correction made during the model integration is more effective

than a bias correction performed a posteriori, although they both result in significant improve-

ments. This is important because it indicates that the model deficiencies do not simply add errors;

external errors are amplified by internal error growth. Further iteration of the procedure does not

16



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Day

F
o

re
c
a

s
t 

A
C

 w
it
h

 R
e

a
n

a
ly

s
is

QG control
a posteriori
debiased
useful

Figure 2.5: QG model forecasts, verified against the 1991-2000 NCEP reanalysis, remain useful

(AC > 0.6) for approximately 2 days. When the same forecast is post-processed to remove the

bias fields < δxa
6 >, < δxa

12 >, ..., < δxa
48 >, the forecasts remain useful for 26% (12 hours) longer.

However, when the online corrected (debiased) QG model is used to generate the forecasts, they

remain useful for 38% (18 hr) longer.
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Figure 2.6: (Top row) Average November 1987 AC of biased, post-processed, and debiased

SPEEDY forecasts at 500hPa. Online bias correction is slightly more effective than post-processing

the biased forecast. (Bottom row) Relative improvement (Ib/Ia) in crossing time of AC = 0.6 at

three different levels (solid = 200, dashed = 500, dash-dot = 850hPa) vs month. SPEEDY fore-

casts are typically more useful at upper levels (see second row), improvements are more evident at

lower levels and higher latitudes (not shown). For example, biased forecasts of Z at 850hPa are

typically useful for 20hr in April, debiased model forecasts are useful for 36hr.
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Figure 2.7: Mean 6-hour analysis increment < δxa
6 > in debiased SPEEDY model forecasts of

u[m/s] (top left), T [K] (top right), and Q[g/kg] (bottom) during January from 1982-1986. The

debiased SPEEDY model exhibits significantly less bias in 6-hour forecasts of the dependent sample,

especially in polar regions (compare with Figure 2.4).

improve model forecasts. That is, finding the mean 6-hour forecast error in the debiased model

M+ (2.10) and correcting the forcing again does not extend the usefulness of forecasts.

The positive impact of the interactive correction is also indicated by an essentially negligible

mean error in the debiased QG model (not shown). The correction of SPEEDY by < δxa
6 > removes

the large polar errors from the mean error fields, but some of the sub-polar features remain with

smaller amplitudes (compare Figure 2.7 with Figure 2.4). This suggests that a nonlinear correction

to the SPEEDY model forcing may be more effective.

2.4.2 Error Growth

Dalcher and Kalnay (1987) and Reynolds et al. (1994) parameterized the growth rates of internal

and external error with an extension of the logistic equation, namely
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α̇ = (βα + δ)(1− α) (2.12)

where α is the variance of the error anomalies, β is the growth rate of error anomalies due to

instabilities (internal), and δ is the growth rate due to model deficiencies (external). These error

growth rate parameters may be estimated from the AC for the control and debiased model forecasts.

The 500hPa November 1987 estimates of these growth rates (Table 1) demonstrate significant

reduction in the external error growth rate resulting from online state-independent error correction.

The only exception is the moisture, suggesting that the correction of the moisture bias may require

a re-tuning of the original model parameterizations that were derived with the original bias. As

could be expected, bias correction changes the internal error growth rate much less than the

external rate.

model growth rate u v T Q

control internal (β) .866 .811 .940 .892

debiased internal (β) .872 .799 .873 .885

control external (δ) .184 .161 .126 .175

debiased external (δ) .110 .108 .093 .183

Table 2.1: Error growth rate parameters β and δ for the logistic error growth model (2.12), esti-

mated from the time average 500hPa November 1987 AC for control and debiased model forecasts.

State-independent online correction significantly reduces the component of the error growth re-

sulting from model deficiencies.

2.4.3 Diurnal Bias Correction

In addition to the time-averaged analysis increments, the leading EOFs of the anomalous analysis

increments are computed to identify the time-varying component. The spatial covariance of these

increments over the dependent sample (recomputed using the debiased model M+) is given by

Cδxa
6δxa

6
≡ < δxa′

6 δxa′#
6 >. The leading eigenvectors of Cδxa

6δxa
6

identify patterns of diurnal vari-

20



ability which are poorly represented by the model (see Figure 2.8 top row). Since SPEEDY solar

forcing is constant over each 24-hour period, it fails to resolve diurnal changes in forcing due to

the rotation of the earth. Consequently, SPEEDY underestimates (overestimates) the near surface

daytime (nighttime) temperatures. This trend is most evident over land in the tropics and summer

hemisphere.

The time-dependent amplitude of the leading modes can be estimated by projecting the

leading eigenvectors of Cδxa
6δxa

6
onto δxa′

6 (t) over the dependent sample. As expected from the

wavenumber 1 structure of the EOFs, the signals are out of phase by 6 hours (see Figure 2.8

middle row). An estimate of time dependence of the diurnal component of the error is generated

by averaging the projection over the daily cycle for the years 1982-1986. A diurnal correction of

the seasonally debiased model M+ is then computed online by linearly interpolating EOF’s 1 and

2 as a function of the time of day. The diurnally corrected model is denoted M++. Correction of

the debiased SPEEDY forcing to include this diurnal component reduced the 6-hour temperature

forecast errors for the independent sample (1987), most notably over land (see Figure 2.8 bottom

row). Although more sophisticated GCMs include diurnal forcings, it is still common for their

forecast errors to have a significant diurnal signal. This signal can be estimated and corrected as

has been done here.

2.5 State-Dependent Correction

2.5.1 Leith’s Empirical Correction Operator

The time series of anomalous analysis increments provides a residual estimate of the linear state-

dependent model error. Leith (1978) suggested that these increments could be used to form a

state-dependent correction. Leith sought an improved model of the form

ẋ = M++
(
x
)

+ Lx′ (2.13)

where Lx′ is the state-dependent error correction. The tendency error of the improved model is

given by
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Figure 2.8: Top row: The temperature component of the first (left) and second (right) eigenvectors

of Cδxa
6δxa

6
at the lowest level of the model (sigma level 0.95). The temperature component of δxa′

6 is

projected onto EOF’s 1 and 2 for January of 1983 (middle row). Generating Cδxa
6δxa

6
with diurnally

corrected January 1987 forecasts, a reduction of the amplitude in EOF’s 1 and 2 (bottom row) is

seen.
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g = ẋt −
(
M++(xt) + Lxt′) (2.14)

where ẋt is the instantaneous time derivative of the reanalysis state. The mean square tendency

error of the improved model is given by < g#g >. Minimizing this tendency error with respect to

L, Leith’s state-dependent correction operator is given by

L =<
(
ẋt −M++(xt)

)′xt′# >< xt′xt′# >−1 (2.15)

where ẋt is approximated with finite differences by

ẋt ≈ xt(t + ∆t)− xt(t)
∆t

(2.16)

and ∆t = 6hr for the reanalysis. Note that the term ẋt −M++(xt) can then be estimated at time

t using only the analysis increments, namely

ẋt −M++(xt) ≈ xt(t + ∆t)− xt(t)
∆t

− xf
∆t(t + ∆t)− xt(t)

∆t

=
xt(t + ∆t)− xf

∆t(t + ∆t)
∆t

=
δxa

∆t(t + ∆t)
∆t

(2.17)

This method of approximating ẋt −M++(xt) is attractive because the analysis increments of an

operational model are typically generated during pre-implementation testing. As a result, the

operator L may be estimated with no additional model integrations.

To estimate L, we first recompute the time series of residuals δxa′
6 (t) using the online debiased

and diurnally corrected model M++. The cross covariance (Bretherton et al. 1992) of the analysis

increments with their corresponding reanalysis states is given by Cδxa
6x

t ≡< δxa′
6 xt′# >, the lagged

cross covariance is given by Cδxa
6x

t
lag
≡< δxa′

6 (t)xt′#(t− 1) >, and the reanalysis state covariance

is given by Cxtxt ≡< xt′xt′# >. The covariances can be computed offline separately on time series

pairs δxa′
6 and xt′ corresponding to each month so that each month has its own covariance matrices.

23



In computing the covariance matrices, we found that weighting each grid point by the cosine of

latitude made little difference, a result consistent with Wallace et al. (1992).

The finite difference approximation of ẋt −M++(xt) given by (2.17) results in an estimate

of L in terms of the covariance matrices Cδxa
6x

t
lag

and Cxtxt . The empirical correction operator is

given by

L = Cδxa
6x

t
lag

Cxtxt
−1 (2.18)

Note that w = Cxtxt
−1 ·x′ is the anomalous state normalized by its empirically derived covariance;

Lx′ = Cδxa
6x

t
lag

w is the best estimate of the anomalous analysis increment correction corresponding

to the anomalous model state x′ over the dependent sample. Assuming that sampling errors are

small and that the external forecast error evolves linearly with respect to lead time, this correction

should improve the forecast model M++. Of course, internal forecast errors grow exponentially

with lead time, but those forced by model error tend to grow linearly (e.g. Dalcher and Kalnay

1987, Reynolds et al. 1994). Therefore, the Leith operator should provide a useful estimate of the

state-dependent model error.

Using a model with very few degrees of freedom and errors designed to be strongly state-

dependent, DelSole and Hou (1999) found that the Leith operator was successful in correcting

state-dependent errors relative to a nature run. However, direct computation of Lx′ requires

O(N3
gp) floating point operations (flops) every time step. For the global QG model, Ngp = O(104),

for the SPEEDY model, Ngp = O(105), and for operational models Ngp = O(107). It is clear

that this operation would be prohibitive. Approaches to reduce the dimensionality of the Leith

correction are now described.

2.5.2 Covariance Localization

Covariance matrices Cδxa
6x

t
lag

and Cxtxt may be computed offline using the dependent sample. To

make the computation more feasible, correlations between different anomalous dynamical variables

at the same level are ignored, e.g. u and T at sigma level 0.510 in SPEEDY. Correlations between
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identical anomalous dynamical variables at different levels, e.g. q at 800hPa and 500hPa in QG,

are ignored as well. Miyoshi et al. (2005) found these correlations to be significantly smaller than

those between identical variables at the same level in the SPEEDY model. The assumption of

univariate and uni-level covariances may need to be removed in an operational implementation by

combining geostrophically balanced variables into a single variable before computing covariances,

as is usually done in variational data assimilation (Parrish and Derber 1992). To further simplify

evaluation of the procedure, we consider only covariance at identical levels for the variables u,

v, and T ; covariance in Q and log(ps) are ignored. In doing so, a block diagonal structure is

introduced to Cδxa
6x

t
lag

and Cxtxt , with each block corresponding to the covariance of a single

variable at a single level.

A localization constraint is also imposed on the covariance matrices by setting to zero

all covariance elements corresponding to grid points farther than 3000km away from each other;

in an infinite dependent sample, these covariance elements would be approximately zero. This

constraint imposes a sparse, banded structure on each block in Cδxa
6x

t
lag

and Cxtxt . Together, the

two constraints significantly reduce the flops required to compute Lx′. Another advantage of the

reduced operator is that it is less sensitive to sampling errors related to the length of the reanalysis

time series. Figure 2.9 illustrates the variance explained by the first few SVD modes of the dense

and sparse correction operators corresponding to the January zonal wind at sigma level 0.2. The

localization constraint is imposed on the covariance block corresponding to u at sigma level 0.2 in

January for both Cδxa
6x

t
lag

and Cxtxt before SVD of L = Cδxa
6x

t
lag

Cxtxt
−1. The explained variance

is given by

r(j) =
∑j

i=1 σi∑Nu
i=1 σi

(2.19)

where σi is the ith singular value and the univariate covariance block is Nu × Nu. It is useful in

determining how many modes may be truncated in approximating the correction operator L. To

explain 90% of the variance, more than 400 modes of the dense correction operator are required

whereas only 40 are required of the sparse operator. Covariance localization has the effect of
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Figure 2.9: Explained variance as a function of the number of SVD modes of the dense and sparse

Leith correction operators. SVD is performed on the univariate covariance block corresponding to

zonal wind at sigma level 0.2. The sparse constraints imposed on the empirical correction operator

concentrate more of the variance into the dominant modes of the spectrum.

concentrating the physically important correlations into the leading modes.

To test Leith’s empirical correction procedure, several 5-day forecasts similar to those de-

scribed earlier are performed. The initial conditions are taken from a sample independent of that

which was used to estimate the correction operator L. The first forecast is made with the online

state-independent corrected model M++. A second forecast is made using the state-dependent

error corrected model (2.13). Forecasts corrected online by the dense (univariate covariance) oper-

ator L performed approximately 10% worse (and took approximately 100 times longer to generate)

than those corrected by the sparse operator, indicating the problems of sampling without localiza-
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tion. Even when using the sparse operator, the generation of forecasts corrected online still took

a prohibitively long time, and only improved forecasts by one hour. This indicates that despite

attempts to reduce the dimensionality of the correction operator, the sparse correction still re-

quires too many flops to be useful with an operational model. A further reduction of the degrees

of freedom is described below, using only the relevant structure of the correction operator.

2.5.3 Low-Dimensional Approximation

An alternative formulation of Leith’s correction operator is introduced here, based on the corre-

lation of the leading SVD modes. The dependent sample of anomalous analysis increments and

model forecasts are normalized at each grid point by their standard deviation so that they have

unit variance, they are denoted δxa′
6 and xf′

6 . They are then used to compute the cross covari-

ance, given by Cδxa
6x

f
6
≡< δxa′

6 xf′
6

#
>; normalization is required to make Cδxa

6x
f
6

a correlation

matrix. The matrix is then restricted to the same univariate covariance localization as previously

described. The cross covariance is then decomposed to identify pairs of spatial patterns that ex-

plain as much of possible of the mean-squared temporal covariance between the fields δxa′
6 and xf′

6 .

The decomposition is given by

Cδxa
6x

f
6

= UΣV# =
Ngp∑

k=1

ukσkv#k (2.20)

where the columns of the orthonormal matrices U and V are the left and right singular vectors

uk and vk. Σ is a diagonal matrix containing singular values σk whose magnitude decreases with

increasing k. The leading patterns u1 and v1 associated with the largest singular value σ1 are

the dominant coupled signals in the time series δxa′
6 and xf′

6 respectively (Bretherton et al. 1992).

Patterns uk and vk represent the kth most significant coupled signals. Expansion coefficients or

Principal Components (PCs) ak(t), bk(t) are obtained by projecting the coupled signals uk, vk

onto δxa′
6 and xf′

6 as follows
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ak(t) = u#k · δxa′
6 (t)

bk(t) = v#k · xf′
6 (t) (2.21)

PCs describe the magnitude and time dependence of the projection of the coupled signals onto the

reference time series.

The heterogeneous correlation maps indicate how well the dependent sample of normalized

anomalous analysis increments can be predicted from the principal components bk (derived from

xf′
6 ). It is computed by

ρ[δxa′
6 (t),bk(t)] =

( σk√
< b2

k(t) >

)
uk (2.22)

This map is the vector of correlation coefficients between the grid point values of the normalized

anomalous analysis increments δxa′
6 and the kth expansion coefficient of xf′

6 , namely bk. The

SPEEDY heterogeneous correlation maps (Figure 2.10) corresponding to the three leading coupled

SVD modes between the normalized anomalous analysis increments and model states illustrate

a significant relationship between the structure of the 6-hour forecast error and the model state,

at least for the dependent sample. Locally, the time correlation reaches values of 60 − 80%, but

the global average is still small. The dominant three signals in the model state time series xf′
6 ,

namely v1,v2,v3, are plotted in contours. The corresponding signals in the analysis increments

δxa′
6 , namely u1,u2, and u3, are used to generate the heterogeneous correlation maps ρ1, ρ2, and

ρ3 (see (2.22)); they are plotted in shades. The signals are superimposed for simplicity. Large

local correlations are indicative of persistent patterns whose magnitude and/or physical location

are consistently misrepresented by SPEEDY. For example, coupled signal 1 in v at sigma level

0.2 indicates that patterns of the shape v1 should be farther east. Coupled signal 3 for the same

variable suggests strengthening anomalies of the shape v3. Coupled signal 2 in u at sigma level

0.95 suggests weakening anomalies of the shape v2.
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Figure 2.10: The SVD of Cδxa
6x

f
6

identifies coupled signals between the analysis increments (shades)

and model states (contours) in winds u and v, and temperature T at sigma level 0.95 (left column)

and 0.2 (right column) for January 1982-1986.
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2.5.4 Low-Dimensional Correction

The most significant computational expense required by Leith’s empirical correction involves solv-

ing the Ngp-dimensional linear system Cxtxtw(T) = x′(T) for w at each time T during a forecast

integration. Taking advantage of the cross covariance SVD and assuming that Cδxa
6x

t
lag
≈ Cδxa

6x
f
6

and Cxtxt ≈ Cxf
6x

f
6
, a reduction in computation for this operation may be achieved by expressing

w = Cxfxf
−1x′ as a linear combination of the orthonormal right singular vectors vk. The assump-

tions are reasonable since we are attempting to estimate the tendency error at time T, not T + 6

hours. The empirical correction operator is given by

Lx′ = Cδxa
6x

f
6

Cxf
6x

f
6

−1x′

= Cδxa
6x

f
6
w

= UΣV#w =
Ngp∑

k=1

ukσkv#k · w ≈
K∑

k=1

ukσkv#k · w (2.23)

where for K < Ngp, only the component of w in the K-dimensional space spanned by the right

singular vectors vk can contribute to this empirical correction. This dependence can be exploited

as follows.

Assume the model state at time T during a forecast integration is given by x(T). The nor-

malized state anomaly x′(T) is given by x′(T) = x(T)− < xt >, normalized at state vector element

s by the standard deviation of xf′
6 over the dependent sample. The component of x′(T) explained

by the signal vk may then be estimated by computing the new expansion coefficient (PC) bk(T)

= v#k · x′(T). The right PC covariance over the dependent sample is given by Cbb =< bb# >,

calculated using bk from (2.21). The linear system

Cbbγ(T) = b(T) (2.24)

may then be solved for γ at time T. The cost of solving (2.24) is O(K2) where K is the number of

SVD modes retained, as opposed to the O(Ngp
2) linear system required by Leith’s full dimensional

Leith empirical correction. The solution of (2.24) gives an approximation of w(T), namely
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w(T) = Cxfxf
−1x′(T)

=
Ngp∑

k=1

γk(T)vk≈
K∑

k=1

γk(T)vk (2.25)

where (2.25) is exact if K = Ngp (to be demonstrated in a companion paper). Writing uc
k for

the error signal uk weighted at state vector element s by the standard deviation of δxa
6 over the

dependent sample, the kth component of the state-dependent error correction at time T is given

by

ek(T) = uc
kσkγk(T) (2.26)

where σk is the coupling strength over the dependent sample and the weight γk(T) assigned to

correction signal uc
k indicates the sign and magnitude of the correction which may amplify, dampen,

or shift the flow anomaly local to the pattern uc
k. Then the low-dimensionally corrected model is

given at time T by

ẋ(T) = M++
(
x(T)

)
+

1
h

K∑

k=1

ek(T) ≡ M+++
(
x(T)

)
(2.27)

so that during forecasts, a few (K) dominant model state signals vk can be projected onto the

anomalous, normalized model state vector. The resulting sum ΣK
k=1ek is the best representation

of the original analysis increment anomalies δxa′
6 in terms of the current forecast state x(T). If

the correlation between the normalized state anomaly x̃′(T) and the local pattern vk is small, the

new expansion coefficient bk(T) will be negligible, no correction by uc
k will be made at time T, and

therefore no harm will be done to the forecast. This fact is particularly important with respect to

predicting behavior which may vary on a time scale longer than the training period, for example

El Niño Southern Oscillation (ENSO) events (Barnston et al. 1999).

A pair of examples of the correction procedure are shown in Figure 2.11. SVD mode k

= 2 in T [K] at sigma level 0.95 (left) suggests that warm anomalies over the western Pacific are

typically too warm. Mode k = 3 in u[m/s] at sigma level 0.2 (right) suggests that fronts of the
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shape v3 over the eastern Pacific should be farther northeast. Retaining K = 10 modes of the SVD,

state-dependent correction by (2.27) of both the QG and SPEEDY models improved forecasts by

a few hours. This indicates that only a small component of the error can be predicted given the

model state over the independent sample (1987). The low-dimensional correction outperformed the

sparse Leith operator (Table 2) indicating that the SVD truncation reduces spurious correlations

unaffected by the covariance localization. Correction by K = 5 and K = 20 modes of the SVD were

slightly less successful. Heterogeneous correlation maps for modes K > 20 did not exceed 60% for

the dependent sample. The corrections are more significant in regions where ρ is large and at times

in which the state anomaly projects strongly on the leading SVD modes (see examples in Figure

2.11), but the global averaged improvement is small. Nevertheless, given that the computational

expense of the low-dimensional correction is orders of magnitude smaller than that of even the

sparse correction operator, and the results are better, it seems to be a promising approach to

generating state-dependent corrections.

The low-dimensional representation of the error is advantageous compared to Leith’s cor-

rection operator for several reasons. First, it reduces the sampling errors which have persisted

despite covariance localization by identifying the most robust coupled signals between the analy-

sis increment and forecast state anomalies. Second, the added computation is trivial; it requires

solving a K-dimensional linear system and computing K inner products for each variable at each

level. Finally, the SVD signals identified by the technique can be used by modelers to isolate flow

dependent model deficiencies. In ranking these signals by strength, SVD gives modelers the ability

to evaluate the relative importance of various model errors. In fact, our method is equivalent to

Leith’s under the assumptions that Cδxa
6x

t
lag
≈ Cδxa

6x
f
6
, Cxtxt ≈ Cxf

6x
f
6
, and K = Ngp.

Covariance localization (which led to better results when using the Leith operator) is vali-

dated by comparing the signals uk and vk obtained from the SVD of the sparse and dense versions

of Cδxa
6x

f
6
. The most significant structures in the dominant patterns (e.g. u1, v1) of the sparse

covariance matrix are very similar to those obtained from the dense version. However, the domi-

nant patterns in the dense covariance matrix also contain spurious noisy structures related to the
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Dense L Sparse L Low-D Approx

Flops per time step O(N3
gp) O(N2

gp) O(Ngp)

Global Improvement −8% (-4hr) 2% (1hr) 4% (2hr)

NH Extratropics Improvement −6% (-3hr) 4% (2hr) 6% (3hr)

Table 2.2: Comparison of Leith’s dense correction operator with its corresponding sparse and low-

dimensional approximations, including the number of flops needed to generate the state-dependent

correction per time-step. Numbers are time averaged improvements in crossing time of AC = 0.6 for

daily 5-day 500hPa geopotential height forecasts made with model (2.27) during January of 1987,

measured against the crossing time observed in forecasts made by the online state-independent

corrected SPEEDY model M++. Univariate covariances were used to calculate the dense Leith

operator so that it may be applied block by block.

nonphysical, nonzero covariance between distant grid points. Given a long enough reanalysis time

series, this structure would disappear. The structures identified in the sparse covariance matrix are

thus good approximations of the physically meaningful structures of the dense covariance matrix.

Qualitatively similar structures (e.g. mean, variance, EOFs) were observed when training was

limited to just one year, suggesting that an operational implementation of this method should not

require several years of training.

2.6 Summary and Discussion

This paper considers the estimation and correction of state-independent (seasonal and diurnal),

and state-dependent model errors of a pair of simple GCMs. The two approaches used to create the

time series of analysis increments and model states needed for training (direct insertion and nudging

towards a reanalysis used as an estimate of the true atmosphere) are simple; they require essentially

a single long model integration and give similar estimates of the bias. In an operational setting,

time series of model states and analysis increments are already available from pre-implementation

testing.
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Figure 2.11: (Top row) Coupled signals uc
k (shades) and vk (contours) between SPEEDY forecast

errors and states. SVD mode k = 2 in T [K] at sigma level 0.95 (left) suggests that warm anomalies

over the western Pacific are typically too warm. Mode k = 3 in u[m/s] at sigma level 0.2 (right)

suggests that fronts of the shape v3 over the eastern Pacific should be farther northeast. (Middle

row) 6-hour forecast generated by the online state-independent corrected model M++ (contours)

and analysis increment (shades) in T [K] at sigma level 0.95 for January 30, 1987 (left) and u[m/s] at

sigma level 0.2 for January 18, 1987 (right). (Bottom row) Online low-dimensional state-dependent

correction improves the local RMS error by 21% in T (left) and 14% in u (right).
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Although the procedure is inspired by Leith (1978) and DelSole and Hou (1999), it is tested

here using realistic models, and using as nature a reanalysis under the assumption that it is much

closer to the real atmosphere than any model. The online state-independent correction, including

the EOFs associated with the diurnal cycle, resulted in a significant improvement in the forecast

skill (as measured by the AC). Unlike Saha (1992), this improvement was larger than that obtained

by a posteriori corrections of the bias, indicating the importance of correcting the error during the

integration. The results are also significantly different from those of DelSole and Hou (1999),

who obtained a very small improvement from the state-independent correction, and a very large

improvement from the state-dependent correction using Leiths formulation. Their results were

probably optimistic in that the model errors were by construction very strongly state-dependent.

The results presented here, found using global atmospheric models and comparing with a reanalysis

of the real atmosphere, are probably more realistic with respect to the relative importance of

mean and state-dependent corrections. Nevertheless, our results are probably idealistic since the

improvement of the debiased model M+ (2.10) relative to the biased model M (2.3) is larger for

the simple GCMs tested here than could be expected in an operational model. It is not clear how

large the analysis increment and forecast state coupled signal size would be for more sophisticated

models, but operational evidence suggests that state dependent errors are not negligible.

It was necessary to introduce a horizontal and vertical localization of the components of

Leith’s empirical correction operator to reduce sampling problems. Multi-level and multivariate

covariances were ignored to make the computation practical. The assumptions underlying the

localization require model dependent empirical verification; implementation on a more realistic

model may require that the localization be multivariate. The Leith-DelSole-Hou method with the

original dense covariance matrix makes forecasts worse. With the sparse covariance however, there

is an improvement of about 1 hour, still at a large computational cost.

A new method of state-dependent error correction was introduced, based on SVD of coupled

analysis increment and forecast state anomalies. The cross covariance is the same as that which

appears in the Leith method, but it would be prohibitive to compute it using an operational model.
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The new method, based on using the SVD heterogeneous correlation maps as the basis of linear

regression, doubles the improvement and is many orders of magnitude faster. The method can be

applied at a rather low cost, both in the training and in the correction phases, and yields significant

forecast improvements, at least for the simple but realistic global QG and SPEEDY models. It

could be applied with low computational cost and minimal sampling problems to data assimilation

and ensemble prediction, applications where accounting for model errors has been found to be

important. The method may be particularly useful for forecasting of severe weather events where

a posteriori bias correction will typically weaken anomalies. The patterns identified by SVD could

also be used to identify sources of model deficiencies and thereby guide future model improvements.

Error correction may necessitate a re-tuning of the model parameterizations, as suggested

by the humidity results in Table 1. Another disadvantage is that operational model upgrades

may require fresh computation of the dominant increment and state anomaly signals. However,

analysis increments generated during pre-implementation tests of an operational model can be

used as a dependent sample to estimate the model error and state anomaly covariance. With such

a collection of past data, it may not be necessary to run an operational model in order to generate

the necessary sample.

Flow-dependent estimates of model error are of particular interest to the community at-

tempting to develop an efficient Ensemble Kalman Filter for data assimilation (Bishop et al. 2001,

Whitaker and Hamill 2002, Ott et al. 2004, Hunt et al. 2004). Naive data assimilation proce-

dures assume the model error to be constant, and represent its effect by adding random noise to

each ensemble member. More sophisticated procedures add a random selection of observed model

tendencies to each ensemble member, or artificially increase the background forecast uncertainty

through variance inflation. The SVD technique described in this paper can be combined with an

ensemble based data assimilation scheme to provide time and state-dependent estimates of the

model error, for example in the Local Ensemble Transform Kalman Filter (LETKF) being de-

veloped by the chaos group at the University of Maryland (Ott et al. 2004, Hunt et al. 2004).

The empirical correction method described here involves local computations commensurate with
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the treatment of covariance localization in the LETKF. In a data assimilation implementation,

the SVD method would involve appending a K-dimensional estimate of the model error to each

ensemble member.
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Chapter 3

Making Forecasts for Chaotic Physical Processes

3.1 Motivation

Many scientific disciplines require accurate predictions of the future state of chaotic physical sys-

tems. Astronomers attempt to predict the trajectories of bodies in the solar system for thousands

of years into the future (Sussman and Wisdom, 1992), as well as the evolution of galactic clusters

(Hayes, 2003). Plasma physicists use nonlinear models to predict magnetic storms and solar wind

(Valdivia et al., 1996). Oceanographers forecast sea-surface temperatures in an attempt to predict

the likelihood of El Niño Southern Oscillation (ENSO) events in the major oceans up to a year in

advance (Barnston et al., 1999). Meteorologists attempt to predict the path of violent hurricanes

with hours of lead time, and larger scale patterns up to a week in advance Patil et al. (2001).

Predicting the behavior of a chaotic physical system H using a model L has three obstacles:

uncertainty in initial state, chaos, and model errors, i.e. differences between L and H. Given the

initial state p0 of H, the initial state of L which will yield the trajectory that best matches the

physical system is unknown. The accepted procedure is to choose a large collection or ensemble

of initial states and follow their L trajectories.

For example, when L is a Global Weather Model and H is the behavior of the atmosphere, an

initial state for L is an estimate of the state of the atmosphere over the entire planet. Forecasters

view the initial state of the atmosphere as uncertain, but lying within a known ball in state space.

The radius σ of this ball corresponds to measurement uncertainties. They choose a finite ensemble

of initial states in this ball. Forecasters then take the trajectories of L for each initial state in the

ensemble, for example at time T=3 days later, as predictions. If all such trajectories yield similar

behavior at time T, e.g. rain, then the forecaster predicts rain. If the trajectories of L disagree

at time T, then the prediction is a nontrivial probability distribution. Even if the model error is

small, such a probabilistic forecast will be completely wrong if the H trajectory diverges from the

ensemble.

For a chaotic system with imprecise initial state, a perfect L forecast at time T consists of a
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Figure 3.1: For a given initial state, models L and H will produce different trajectories. σ balls

are shown around states p0, pT, p2T of a trajectory of H. If σ is small (a), shadowing fails in a

single step of the process. Increasing σ (b), some trajectories of L remain close to a trajectory of

H for time T. These trajectories are given by JT. For sufficiently close hyperbolic systems L and

H, this procedure can be carried out for arbitrarily long times with small σ.

probability distribution which accurately describes the likelihood of all possible outcomes. Denote

the state of H at time T by pT. A forecaster hopes that the ensemble is quite close to pT at

time T. However, only a finite ensemble is followed. Given this limitation, the modeler’s goal is

that some linear combination of ensemble members remains within the σ-ball around pt for the

duration of the forecast (t = 0, 1, ..., T).

3.2 Shadowing

The above goal could likely be met if the chaos were of the type called “hyperbolic.” Hyperbolicity

is not defined here, but hyperbolic systems have the following property (Gregobi et al., 1990). Let
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(pt)bt=a be a trajectory of a hyperbolic H. Given a σ > 0, when system L is sufficiently close to

H, there exists some trajectory (yt)bt=a of L such that |yt − pt| < σ for all t ∈ [a,b]. In other

words, each trajectory of H is σ-shadowed by a trajectory of L. The shadowing property exists

for hyperbolic systems in part because the number of expanding (contracting) directions remains

constant in such systems. Much of shadowing theory has been developed for hyperbolic systems.

Unfortunately, hyperbolic systems are so special that they have been irrelevant to virtually all

realistic chaotic physical processes. In this Letter, we propose an improved ensemble approach

that is more likely to meet the modeler’s goal for non-hyperbolic systems.

Do Any Trajectories of L Give Accurate Predictions? In Fig. 1, the ensemble of

initial states is represented as a disk of radius σ. J0 is the set of states within σ of the true initial

state p0, Lt(J0) denotes the trajectories of L at time t of each state in J0. Ht(p0) denotes the

trajectory of H at time t. Nσ(pt) is the set of states within σ of pt at time t. As the trajectories of

L are followed forward in time, the disk is expected to expand in some directions and contract in

others forming a rough ellipsoid. Some ellipsoid axes rapidly become very thin, shrinking to zero

thickness exponentially fast. If σ is chosen sufficiently small, after a modest time T no state in

LT(J0) is within σ of HT(p0). On the other hand, if σ is chosen large enough, the entire attractor

will be included and shadowing is trivial. In Fig. 1b, σ is chosen such that LT(J0) has states within

σ of pT. Looking at longer prediction times jT, we ask if any single trajectory of the ensemble

remains within σ of p0, pT, ... , pjT. To answer, at time T all trajectories of L farther than σ from

pT are ignored. The remaining trajectories lie in JT, the intersection of LT(J0) and Nσ(pT). Fig.

1c illustrates that it is possible to continue this procedure, restricting to the trajectories of L that

stay within σ of pjT for each j. As long as this set is non-empty, some members of the ensemble

of trajectories of L give accurate predictions.

Unstable Dimension Variability : Fig. 1 shows a ball of initial states J0 contracting in

one direction and expanding in another into an ellipse. When the dimension is greater than two

and H is chaotic, it is likely that the number of independent contracting and expanding directions

will vary from state to state, see Fig. 3.3. Such ‘unstable dimension variability’ has been shown
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to result in shadowing failures, where no trajectory of L stays within σ of an H trajectory (Yuan

and Yorke, 2000). In Fig. 2a, the behavior changes locally from one expanding dimension to two

and shadowing fails. Increasing σ by a factor of 10 would not prevent such failures.

Outline of our Forecast Method : Given a set of states that fill out an ellipsoid Eϕ
t and

represent a prediction at time t, a prediction at time t+1 is produced as follows.

1. Apply L for one time step, yielding L1(Eϕ
t ) ≈ Et+1.

2. ‘Inflate’ (see below) the ellipsoid Et+1 by ϕ, yielding Eϕ
t+1.

Steps 1 and 2 constitute our continually inflated ensemble approach. Strictly for nota-

tional simplicity, we inflate only once each time unit. Current ensemble procedures use only step

1. Adding step 2 is our proposed alternative. It makes the procedure more robust in meeting the

aforementioned modeler’s goal. In practice, a limitation of the ensemble method of prediction is

that one encounters nonlinearities which distort the ellipsoids. Therefore, the perturbations and

time steps in this paper are chosen sufficiently small for linear approximations to be appropriate.

That is, we consider only the case where Eϕ
t is a very small ellipsoid.

Step 1: Calculating L1(E) for an Ellipsoid E : Given an ellipsoid E, L1(E) is approx-

imated as follows. Choose an ensemble consisting of s̄, the center of E, and states sk (k = 1, 2,

..., K) on the surface of E so that the line from s̄ to sk is the kth semi-axis of E. Note that the

ensemble is redefined each time Step 1 is applied. The image L1(E) is approximated by the ellipsoid

of linear combinations L1(̄s) +
∑K

k=1 βk(L1(sk) − L1(̄s)) such that
∑K

k=1β
2
k ≤ 1. Of course, this

ellipsoid is not quite L1(E). Another limitation of the ensemble forecasting method is that many

ensemble members may be needed to accurately represent the probability distribution described

by the ellipsoid. In this paper, K is chosen to be equal to the dimension of L. This choice would

be computationally prohibitive for systems with millions of dimensions.

Step 2: How to Inflate an Ellipsoid : Given an ellipsoid E, write ek for the orthonormal

basis of unit vectors parallel to the semi-axes. Let γk > 0 be the corresponding semi-axis lengths.

ek and γk can be computed with the Singular Value Decomposition. The thin semi-axes are

defined to be those which satisfy γk < σ. The ellipsoid Eϕ inflated by ϕ is the ellipsoid with the
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Figure 3.2: Most physical systems are non-hyperbolic. In 2a, the dynamics contract in one dimen-

sion as pT → HT(pT) ≡ p2T. The ellipse E2T ≈ LT(JT) intersects the σ-ball surrounding p2T, the

intersection is denoted J2T. As p2T → HT(p2T) ≡ p3T, the dynamics expand in both dimensions.

The intersection of LT(J2T) and Nσ(p3T) is empty and shadowing fails. In 2b, Eϕ
2T is the ellipse

E2T inflated by ϕ. In 2c, the intersection of Eϕ
2T and Nσ(p2T) is denoted Jϕ

2T. Note that Jϕ
2T

contains p2T. Despite expansion in both dimensions, the intersection of LT(Jϕ
2T) and Nσ(p3T) is

nonempty. In practice, this procedure is successful at time T+1 if Jϕ
T contains pT.
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Figure 3.3: In the 40 dimensional system discussed later, the number of expanding directions varies

from 8 to 23 depending on the state investigated. As a trajectory is followed, the same fluctuations

in the local number of expanding directions are observed.

same center as E and with axes aligned with those of E, but with each thin semi-axis increased by

ϕ. The process of inflation carries any state u in the ellipsoid E to a state uϕ in Eϕ 1.

Testing the Effect of Inflation : To test whether the “modelers’ goal” is met, after

each inflation all states of Eϕ
t+1 that lie more than σ from pt+1 are discarded. If the intersection

(denoted Jϕ
t+1) of Eϕ

t+1 and Nσ(pt+1) is empty, shadowing has failed. If Jϕ
t+1 is nonempty, its

complicated shape is approximated by an ellipsoid Gt+1 lying inside Jϕ
t+1. In doing so, even more

states are discarded, but the approximation procedure is computationally tractable. There is no

unique choice of Gt+1. The center of Gt+1 is chosen to be the mean of a uniform distribution of

states in Jϕ
n+1. The axes of Gt+1 are chosen parallel to ek. These approximations are repeated

each time step. As long as the procedure succeeds, the modeler’s goal is met.

Since each inflation introduces a small amount of uncertainty into the forecast, as little

inflation as possible should be used. However, since the procedure only inflates in thin directions,
1Let γϕ

k be the semi-axis lengths after inflation. Given the ensemble L1(sk), L1 (̄s) used to generate E, the

ensemble that generates Eϕ is created as follows. Choose coefficients ρk so that u =
PK

k=1 ρkγkek. Then uϕ =

PK
k=1 ρkγϕ

k ek. That is, when u is expanded in terms of semi-axis vectors γkek, uϕ is the corresponding sum using

the inflated semi-axis vectors γϕ
k ek.
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the additional uncertainty will be damped out if the thin directions continue to contract (illus-

trated in Figure 3.6). Should the dynamics local to the ensemble experience unstable dimension

variability and thin directions begin to expand, some ensemble members should remain close to

the H trajectory.

Model : We use a simple model to represent atmospheric behavior, the N -dimensional

governing equations, given by Emanuel and Lorenz (1998) are

dxi

dt
= xi−1(xi+1 − xi−2)− xi + F (3.1)

for i = 1, 2, ... N , where the subscripts are treated as periodic with period N . For example,

xN+1 ≡ x1 so that the variables form a cyclic chain. Each variable represents an unspecified scalar

meteorological quantity, such as temperature, at N equally spaced grid sites on a latitude circle. In

our experiments, N = 40 and F = 8 as in Emanuel and Lorenz (1998). This model shares certain

properties with many atmospheric models: a nonlinear advection term, a linear term representing

loss of energy to thermal dissipation, and a constant forcing term F to provide energy. The time

unit represents the dissipative decay time of 5 days Emanuel and Lorenz (1998). There are 13

positive Lyapunov exponents.

3.3 Stalking

Stalking is an aggressive form of shadowing in which the ellipsoids Et are inflated as described

above. Let (pt)bt=a be a sequence representing the true solution (H trajectory). Then given a

shadowing distance σ > 0 and an inflation ϕ > 0, (pt)bt=a is ϕ-σ-stalked so long as Jϕ
t is

nonempty for all t ∈ [a,b]. The states contained in (Jϕ
t )bt=a are called stalking trajectories. If ϕ

= 0 (no inflation), a stalking trajectory is called a shadowing trajectory. The interval [a,b] is

referred to as the stalking time. If no stalking trajectories exist for reasonable σ and ϕ over an

interval of time relevant to prediction, L is an inadequate approximation of H.

An H Trajectory : Equation (1) represents L. A trajectory pt representing H is obtained as

follows. Given p0, take one fourth order Runge-Kutta time step of size 10−2 and denote the result
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Figure 3.4: Stalking time for model (3.1) measured in days as a function of relative inflation

ϕ/µ, where ϕ is the inflation, µ = 10−6 is model error (0 < ϕ < µ), and σ is shadowing distance.

Trajectories of (1) initially separated by 10−16 are uncorrelated after 25 days. If ϕ/µ = 0, the

stalking time is the (brief) traditional shadowing time. If ϕ = µ, the stalking time is infinite. The

σ = 10µ curve illustrates the phenomenon in Fig. 1a, where stalking failures occur because the

shadowing distance is too small. Increasing σ by a factor 10, the shadowing time (ϕ = 0) increases

by a factor of 10.
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L1(p0). For each t, choose pt+1 randomly from a uniform distribution such that pt+1 is within µ

of L1(pt). µ represents model error, the difference between L and H. Fix µ = 10−6 and repeat for

t = 0, 1, ..., 107. We say (pt)bt=a is a µ-pseudo-trajectory of L because |pt − L1(pt−1)| ≤ µ for

all t ∈ [a,b]. We then see how long we can ϕ-σ-stalk pt with an ensemble of ϕ-pseudo-trajectories

of (1). If ϕ ≥ µ, the H trajectory is itself trivially a ϕ-σ-stalking trajectory.

Finding the Stalking Time : The shadowing distance σ and the inflation ϕ are fixed

throughout each integration and explore the parameter space in ϕ, recording the average stalking

time. In Fig. 3.4, the stalking time vs. the relative inflation ϕ/µ is plotted for model (3.1). When

σ = 1000µ, with no inflation (ϕ = 0) the shadowing time is approximately 2 days. Decreasing the

shadowing distance by a factor of 10 to σ = 100µ and inflating by ϕ = 40% of the model error

µ gives the same stalking time. When the H trajectory is generated by adding systematic error

during integration, slightly more inflation is required to achieve the same results.

Forecasting Improvement : To measure the effect of inflation on forecasts (where Jt is

unknown), 5000 independent 25-day H trajectories are calculated. Prediction of an H trajectory is

made by following an ellipsoid of trajectories of L, with and without inflation. Fig. 3.5 plots the

average distance between the H trajectory and the nearest trajectory of L for ensemble forecasts

and continually inflated ensemble forecasts. Ensemble forecasts continually inflated by 50% of the

model error produce trajectories of L within σ of an H trajectory for 5 times longer than traditional

ensemble forecasts.

3.4 Discussion

We find that modest inflation substantially increases shadowing time. Our “continually inflated

ensemble” approach is guaranteed to succeed in the linear regime for inflation in all directions with

ϕ ≥ µ. We, however, inflate only thin axes and investigate cases where ϕ < µ, so the method

can fail (as illustrated in Fig. 4). In practice, the magnitude µ of the model error is unknown, it

must be estimated by trial and error. If all directions are inflated, it may be possible to decrease

σ. While this paper deals only with a toy model where all distances are quite small, we hope the
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Figure 3.5: The distance between an H trajectory and the nearest trajectory of the ensemble

ellipsoid is plotted vs. time, averaged over 5000 independent 25-day ensemble forecasts (solid) and

their corresponding continually inflated ensemble forecasts (dotted). The vertical axis is in units

of the initial diameter of the ensemble.
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Figure 3.6: The ensemble diameter in each of the 40 directions spanned by the ensemble is plotted

as a function of the semi-axis number (major = SVD mode 1), averaged over 5000 independent 40-

day ensemble forecasts (solid blue) and their corresponding continually inflated ensemble forecasts

(dashed red). The magnitude of inflation is 1% of the initial ensemble diameter; the vertical axis

is in units of the initial diameter of the ensemble. The average number of expanding directions in

system (3.1), namely 13, is evident from the intersection of each curve. The continually inflated

ensemble forecasts maintain uncertainty in contracting directions (where predictions are vulnerable

to Unstable Dimension Variability); expanding directions are not effected by the inflation.
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approach can be adapted to practical high-dimensional systems.

For any moderate shadowing distance σ, no trajectory of L remains within σ of a typical

complex high-dimensional physical system H. Orrell et al. (2001) estimate that forecasts generated

by the European Center for Medium-Range Weather Forecasting (ECMWF) operational weather

model are dominated by model errors during the first 3 days, and that shadowing the real atmo-

sphere fails after 6 hours, for a reasonable σ. In other words, no trajectories of L initially within

observational uncertainty σ remain consistent beyond small T. During the first few days of an

operational forecast, inflating the contracting directions of the ensemble of L trajectories every few

hours may improve the tracking time. Inflation is not currently used for weather forecasting, but

it is used in data assimilation, the practice of combining observations with forecasts to generate

the initial set of states for an ensemble.
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Chapter 4

Conclusion

This dissertation has developed two new methods for estimating and correcting model error in

numerical predictions of chaotic physical systems. While they have been applied here to model

simulations of atmospheric behavior, these procedures may be used to improve numerical pre-

dictions of the future state of any chaotic physical system whose model contains error. Several

possible directions of future research have suggested themselves during the course of this project;

a select few are described here.

The time series of analysis increments and 6-hour forecasts generated during pre-implementation

testing of the National Center for Environmental Prediction (NCEP) Global Forecast System

(GFS) will be correlated and decomposed in the manner described in Chapter 2. For this explo-

ration, we plan to experiment with different multivariate covariance localization procedures. If the

resulting SVD spectrum is flat, the NCEP GFS most likely will not benefit from state-dependent

empirical correction. If the SVD identifies coupled signals which are statistically significant, the

model should benefit from implementation of our procedure. If the procedure is successful in

testing, we hope it will be adopted in practice and used to improve the forecasts released by the

National Weather Service.

Some more basic questions we may be able to answer with our empirical correction tech-

nique are: What component of the model dynamics can be captured from the statistics of the

dependent sample? If we remove all of the physical parameterizations, or one particular physical

parameterization, how do low-dimensional online corrected forecasts compare to those made by the

model with full physics? The answer to this question may be used to evaluate the utility of each

particular parameterization. The result may also be used, along with the error patterns described

in Chapter 2, to guide future model improvements.

We also hope to adapt the techniques described in Chapter 2 into the Local Ensemble

Transform Kalman Filter (LETKF) being developed by the chaos group at the University of

Maryland (Ott et al., 2004). Our empirical model error correction method is extremely inexpensive,

50



and involves local computations commensurate with the treatment of covariance localization in

LETKF. Many data assimilation procedures assume the model error to be constant, and represent

its effect by adding random noise to each ensemble member. More sophisticated procedures add a

random selection of observed model tendencies to each ensemble member, or artificially increase the

background forecast uncertainty through variance inflation (a concept similar to the continually

inflated ensemble forecast method described in Chapter 3). In a data assimilation implementation,

our method would involve appending a K-dimensional estimate of the model error to each ensemble

member (where K is the number of SVD modes retained in the empirical correction scheme).

A number of parameters of the statistical correction algorithm have been either estimated

empirically, or defined in a sub-optimal way due to computational limitations. We are interested

in investigating the optimal values of the horizontal and vertical covariance localization distance,

and the length of time required for training to ensure sampling errors are minimal for a given

localization. For univariate covariances and a spatial localization of 3000km, we observed similar

fields (e.g. mean, variance, EOFs) when comparing separate years for a given month (e.g. January

1982 and January 1983), but the time required for sampling errors to be small may be longer

for more sophisticated models and multivariate covariances. A more intelligent localization would

take into account, for example, the fact that spatial correlations are known to be much longer

at higher altitudes where there are no mountains to provide physical barriers between synoptic

patterns. The observational localization should be done in a manner similar to Gaspari and Cohn

(1999). I hope to develop an empirical method for generating flow-depedent covariance localization

constraints.

In forcing the SVD patterns to be local, we have ignored state-dependent errors which

depend on the global flow. This dependence could be estimated by transforming the time series of

analysis increments and corresponding forecasts into spectral space and computing the covariance

of their respective spectral coefficients. Such a covariance matrix should not be localized; coupling

between slow and fast modes should not be ignored. However, the covariance would have the

dimension of the spectral truncation, so it would be cheap to generate computationally, as opposed
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to covariances with the dimension of the model state vector.

The NCEP Reanalysis estimate of the state of the atmosphere is sensitive to changes in

the Earth observing system (weather stations, buoys, satellites, etc.). Since this estimate is used

to calibrate changes in the NCEP operational model, each update in observing technology results

in a jump in the behavior of the model. The techniques developed in Chapter 2 can be used to

identify and reduce jumps in the NCEP Reanalysis by comparing the systematic errors before and

after observing system upgrades. A new reanalysis could be generated, resulting in an operational

model that is less sensitive to future changes in the Earth observing system.

Several theoretical questions remain unanswered as well. We may be able to use our tech-

nique to assist in determining whether it is best during a data assimilation scheme to correct the

background forecast in the direction of the observations when generating an analysis, or to cor-

rect the observations in the direction of the forecast state. The traditional paradigm in numerical

weather prediction is to provide the model with the best available estimate of the atmospheric

state, irrespective of whether that state is reasonably close to the attractor of the model. If the

model attractor and that of nature are very close, there is little difference between the best esti-

mate of the atmospheric state and the state of the model that corresponds to this best estimate.

However, the model attractor and the attractor of nature are not particularly close, as evidenced

by the growth of forecast errors due to model deficiencies. The patterns identified by the SVD

technique described in Chapter 2 could possibly be used to identify the mapping between the

attractor of nature (sampled by the observations) and the model attractor.

Several issues relating to the continually inflated ensemble forecast method remain to be

addressed as well. For example, how does one estimate the amount of model error when modeling

a physical system. For the case of the atmosphere, observational accuracy and density (temporal

and spatial) will remain poor enough that a finite difference approximation of the model tendency

error, e.g. (2.14), is unlikely to provide a complete picture of the flow-dependent error for several

years. Can the inflation required to numerically shadow the observations be used as a metric

for determining the magnitude of model error? I hope to estimate the stalking time of solutions
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to more sophisticated weather models. More specifically, I would like pose the question: Does

stalking time necessarily increase with increasing spatial and temporal resolution? In answering

this question, we will also need to address the main deficiency of the continually inflated ensemble

forecast method: the number of ensemble members needed to represent the ellipsoid completely is

no less than the dimension of the state vector. It remains to be seen whether using 100 inflated

ensemble perturbations in a space of size 107 can produce trajectories which shadow longer than

uninflated ensemble forecasts.
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