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TELLUS

Discussion on ‘4D-Var or EnKF?’

By NILS GUSTAFSSON*,

1. Introduction

The development of data assimilation techniques for numeri-
cal weather prediction has been very successful ever since the
early 1950s until now, starting with simple two-dimensional
and univariate spatial interpolation techniques like the succes-
sive corrections (SC, Bergthorsson and D66s, 1955) ending up
with the four-dimensional variational data assimilation (4D-Var,
Rabier et al., 2000) and ensemble Kalman filter (EnKF, Evensen,
1994) techniques of today. Looking a bit closer into the steps of
this development, one may see a gradual and continuous devel-
opment. Already SC schemes were based on the idea of data
assimilation, that is, they treated the deviations between obser-
vations and a model background field in the spatial interpolation
process. SC schemes were generally optimized on statistics of
observation minus background data, and included also multivari-
ate relationships. With the introduction of Optimum Interpola-
tion (O, Eliassen, 1954; Gandin, 1963), both of these aspects of
data assimilation were handled more rigorously. An important
next step was the generalization of Ol to three spatial dimensions
(Lorenc, 1981), and after that the step to three-dimensional vari-
ational data assimilation (3D-Var, Parrish and Derber, 1992) was
not big. Adding the time-development of the assimilation incre-
ments over the data assimilation window, we arrive at 4D-Var.
The idea of gradual development should in my opinion be
applied in the ongoing discussion on 4D-Var and EnKF. Both
methods try to address non-linearities and the errors of the day
through an implicit (4D-Var) or an explicit (EnKF) description
of flow-dependent forecast error structures. On one hand, 4D-
Var in its present strong constraint formulation form is limited to
development of flow-dependency over a rather short data assim-
ilation window. On the other hand, EnKF applies a more general
flow-dependency from an ensemble of assimilation background
states, but is limited due to the small number of ensemble mem-
bers, which makes great care in the utilization of the derived error
covariance structures necessary. In contrast, 4D-Var applies very
robust covariance structures, derived as long-term averages, at
the start of the assimilation window. Taking these two funda-
mental and complimentary characteristics of 4D-Var and EnKF
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into account, it seems to me more appropriate not to ask the
question 4D-Var or EnKF? but rather How can ideas from EnKF
and 3D-Var or 4D-Var best be combined?

It is important to note here that 4D-Var will probably not be
able to handle strong non-linearities, and we have started to expe-
rience this for mesoscale applications of 4D-Var in the handling
of, for example, convection and moist physical processes. Fol-
lowing ECMWEF staff members we may ask Will non-linearities
defeat 4D-Var? As discussed in some depth by Kalnay et al.
(2007), EnKF techniques also have limitations in the treatment
of non-linearities and the associated non-Gaussian probability
distributions.

2. General views on Kalnay et al. (2007)

The Kalnay et al. (2007) paper is well written, it presents some
new results on the relative merits of 4D-Var and EnKF, it il-
lustrates the great competence developed by several university
groups in EnKF and it provides a valuable discussion needed to
support the decisions regarding the development of future data
assimilation systems for operational numerical weather predic-
tion. I would like to make the following more general comments
on the paper (my statements may be a bit biased in favour of
4D-Var, but this merely reflects the opposite tendency expressed
by Kalnay et al., 2007):

(1) In order to answer the question 4D-Var or EnKF? raised
in the title of the Kalnay et al. (2007) paper, we need access to the
results of a full-scale test of EnKF in an operational environment
utilizing all types of observations, including satellite radiances.
Such a full-scale test of EnKF is not available yet, only 4D-
Var has reached this advanced state of development. Therefore,
when it comes to application of EnKF to advanced primitive
equation models, as applied operationally, the paper becomes
a bit too speculative with reference to second-hand statements
only and with few new results. A problem in this connection is
that the competence in EnKF mainly is concentrated to univer-
sity institutions without the infrastructure to carry out full-scale
data assimilation tests (the Canadian Weather Service being an
exception). It must be the responsibility of operational weather
services to carry out such full-scale tests of EnKF.

(2) The sampling errors associated with the limited (~100)
number of ensemble members in EnKF is indeed a crucial
problem. Kalnay et al. (2007) discuss this in section 3.2
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‘Observation localization’. In my opinion the discussion is not
fully complete. What happens for example with model balances
in case of the local ensemble Kalman filter (LEnKF)? Correla-
tions between wind and temperature increments, for example,
generally have their maximum values at some distance. What
happens with the balances if all correlations are multiplied by
a certain distance-dependent factor, and, what happens with the
balances over scales larger than the data selection ‘boxes’ in the
LEnKF?

(3) Ifindthe general statement about adding noise before the
model integration in section 4.2 very interesting. It is explained
that doing so will allow the ensemble to explore unstable direc-
tions that lie outside the analysis subspace and thus to overcome
the tendency of the unperturbed ensemble to collapse towards the
dominant unstable directions already included in the ensemble.
I interpret this in the way that the ensemble members in EnKF
do contain too limited and restricted information. In 3D-Var and
4D-Var, the B matrix in principle allows variability in all direc-
tions, stable and unstable. This could be taken as evidence that
we should look for an optimal synthesis of 4D-Var and EnKF.

(4) Itis argued that the advantages of 4D-Var with long win-
dows disappear if the model is imperfect or if the adjoint model
is not exact. In my view such statements should be made more
relativistic. In the first case it must depend on the degree of
imperfectness and on how model errors (Tremolet, 2005) can
be handled. Also with regard to the non-exact adjoint, it must
depend on the degree of approximations applied in the adjoint
model. One example is the High Resolution Limited Area Mod-
elling (HIRLAM) 4D-Var (Huang et al., 2002), where the non-
linear model is based on a finite difference representation, while
the tangent linear and the adjoint models are based on a spectral
representation. These seemingly huge model differences do not
seem to affect the good results of HIRLAM 4D-Var.

3. Views on the summarizing table 7

Concerning the table at the end of the Kalnay et al. (2007) paper
summarizing advantages and disadvantages of 4D-Var and EnKF
(table 7), I have the following comments:

(1) Ido not agree that EnKF is simple to design and code,
in particular if the need for covariance localization, or localiza-
tion of the filter and the data selection, is taken into account.
A global data selection and application of a global covariance
matrix was one of the main advantages when 3D-Var and 4D-
Var were introduced, in contrast with previous OI schemes with
complicated local or regional data selection. In particular, bal-
ances were improved with the global data selection (Gustafsson
et al., 2001), and I see no reason why this should not apply also
to EnKF techniques.

(2) The disadvantage of 4D-Var that tangent-linear and ad-
joint models have to be developed, and the corresponding ad-
vantage of EnKF are often mentioned. Taking the experience
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with HIRLAM 4D-Var into account, this argument is certainly
valid. It took us 10 yr to develop HIRLAM 4D-Var, and a signif-
icant part of these 10 yr was waiting for errors in tangent linear
and adjoint models to be detected and corrected. However, there
now exist automatic pre-processor techniques that can be used
in the derivation of tangent-linear and adjoint models (Giering
and Kaminski, 2003). This makes this disadvantage of 4D-Var
less obvious.

(3) The potential of rain assimilation has been, at least par-
tially, proven for 4D-Var (Mahfouf et al., 2005). Yet it is not
clear, however, whether rain should be assimilated directly or
whether one needs a pre-processing to water vapour. The assim-
ilation of rain in EnKF is conceptually straightforward, but the
concept still has to be proven in practise.

(4) In4D-Var, weak digital filters can be included quite eas-
ily and without cost (Gauthier and Thépaut, 2001). In EnKF,
digital filters probably have to be applied as strong constraints,
with all the difficulties associated with the centring of digital
filters and the possible need for backward model integrations.

(5) One advantage of 4D-Var is indeed the ability to handle
flow-dependencies developing during the time window of the
assimilation. In important cases of storm developments, for ex-
ample, these flow-dependencies develop quite rapidly and should
be advantageous also with relatively short assimilation windows
(6-12 hr).

4. Example of flow-dependency in 4D-Var

In order to put some substance into the discussion, I will show
one example that illustrates the potential of implicit treatment of
flow-dependency in 4D-Var, also with short assimilation win-
dows (6 hr). The example is taken from application of the
HIRLAM 4D-Var to the mesoscale storm that hit Denmark on the
3 December 1999. A single simulated observation experiment
was carried out. The question asked was: What would 3D-Var
and 4D-Var do in case we had a single surface pressure obser-
vation available, telling us that the surface pressure in the centre
of the storm ought to be 5 hPa deeper?

A simulated surface pressure observation with a —5 hPa
observation increment was thus inserted at 3 December 1999
12 UTC into the data assimilation in the position 57N 3E, in the
centre of the storm. Figure 1 shows the surface pressure assim-
ilation increment in case HIRLAM 3D-Var (Gustafsson et al.,
2001) is applied. The assimilation increments simply reflect the
homogenous and isotropic 3D-Var structure functions on a large
spatial scale, reflecting average surface pressure forecast errors.

To illustrate the effect of the implicit treatment of flow-
dependency in 4D-Var, the same simulated surface pressure ob-
servation was inserted into a 4D-Var assimilation, with the as-
similation window starting at 3 December 1999 06 UTC and
ending at 12 UTC. Figure 2 shows the 4D-Var surface pressure
assimilation increments valid at 12 UTC. We can notice that
the spatial scale of the surface pressure increments has shrunk
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Fig. 1. 3D-Var mean sea level pressure assimilation increments from a
single simulated surface pressure observation in the position 57N 3E at
3 December 1999 12 UTC.

significantly, roughly corresponding to the scale of the storm it-
self, as given by observations. Furthermore, the increments no
longer have the isotropic horizontal structure of typical 3D-Var
increments.

How are these flow-dependent assimilation increments
achieved in 4D-Var? First of all, it can be shown that 4D-Var
is equivalent to a full rank extended Kalman filter (EKF) over
the data assimilation window, with the important limitation that
the covariance structures at the start of the assimilation window
are just the static (and robust) ones applied in 3D-Var. From this
we can conclude that it is the application of the tangent linear
model, linearized around a trajectory calculated by the full non-
linear model, that provides the flow-dependency 6 hr later into
the data assimilation window. The assimilation increments at the
start of the assimilation window were also investigated. The 4D-
Var surface pressure increments at 3 December 06 UTC turned
outto be very small (not shown). Figure 3 shows a NW-SE cross-
section of upper-air temperature and wind increments, centred
at 55N OEW in an area upstream of the storm development 6 hr
later. We may notice an increase of the vertical wind shear as
well as a slight vertical tilt in the assimilation increments at the
start of assimilation window. Thus we can simply conclude that
4D-Var manages to intensify the storm development by increas-
ing the degree of baroclinicity in the model state at the start of
the assimilation window, and this provides a faster growth of the
storm during the tangent linear propagation of the assimilation
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Fig. 2. 4D-Var mean sea level pressure assimilation increments from a
single simulated surface pressure observation in the position 57N 3E at
3 December 1999 12 UTC, 4D-Var was applied over the assimilation
window 3 December 1999 06-12 UTC.
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Fig. 3. Vertical cross-section in the NW-SE direction, centred at 55N
0EW, showing 4D-Var upper-air temperature and wind assimilation
increments valid at 3 December 1999 06 UTC. A single simulated
surface pressure observation was inserted in the position 57N 3E at

3 December 1999 12 UTC. 4D-Var was applied over assimilation
window 3 December 1999 06-12 UTC.

Tellus 59A (2007), 5



DISCUSSION ON ‘4D-VAR OR EnKF?’ 777

increments up to the 12 UTC, the time of the inserted simulated
observation.

Considering the assimilation increments at the start of the
assimilation window, for example those illustrated in Fig. 3, it
needs to be mentioned again that these are heavily constrained
by the applied isotropic and homogeneous structure functions.

5. Concluding remarks

It has been a great pleasure for me to participate in this discussion
on the future development of data assimilation for numerical
weather prediction. Great thanks to Eugenia Kalnay et al. and to
the editor of Tellus.

To summarize my opinion, I am in favour of optimally com-
bining the ideas of four-dimensional variational data assimilation
and Ensemble Kalman Filtering. I have not said much about how
to make this optimized combination. I believe that one promising
approach is the one taken at NCEP and ECMWEF, that is, to grad-
ually introduce inhomogeneity, anisotropy and flow-dependency
into the background error covariance matrix applied in 3D-Var
and at the start of the assimilation window in 4D-Var. In order
to model the flow-dependent part of the background error co-
variance, an ensemble of background states certainly is a natural
source of information.

Finally, to avoid possible misunderstanding, I am a strong
believer in probabilistic weather forecasting. Ensemble Predic-
tion System (EPS) is one approach taken, and for EPS ensemble
assimilation techniques are naturally applied. Ensemble assim-
ilation techniques can also be applied within the framework of
3D-Var or 4D-Var, for example through perturbation of observa-
tions. Several groups (ECMWEF, Meteo-France and HIRLAM)
have tried this approach, in the first instance for derivation of
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background error structure functions, but also with EPS appli-
cations in perspective.
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