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Chaos in Numerical Weather Prediction
and how we fight it

« Lorenz (1963) introduced the concept of “chaos” in
meteorology. (Yorke, 1975, coined the name chaos)

o Even with a perfect model and perfect initial conditions we cannot
forecast beyond two weeks: butterfly effect

o In 1963 this was only of academic interest: forecasts were useless
beyond a day or two anyway!

o Now we exploit “chaos” with ensemble forecasts and routinely produce
skillful forecasts beyond a week.

o The El Nifio coupled ocean-atmosphere instabilities are allowing one-
year forecasts of climate anomalies
« “Breeding” is a simple method to explore and fight chaos

o Undergraduate interns found that with breeding they could easily predict
Lorenz regime changes and their duration.

o It will be used to predict solar wind storms.

* \Weather-Chaos research led to the UMD Local Ensemble
Transform Kalman Filter (LETKF, Hunt et al., 2007)




Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system
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8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Need good models, good observations, good data assimilation



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Over Southern California forecast has a cut-off low, not a trough



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)
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MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt 2003102612 (192h)

Southern California: winds are from the wrong direction!



Fires in California (2003)

Santa Ana
1 locally
% = | wrong

| | prediction
(8 days in
advance!)




A simple chaotic model:
Lorenz (1963) 3-variable model
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Has two regimes and the transition between
them is chaotic
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tial conditions, the forecast soon loses all skill
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If we introduce an infinitesimal perturbat
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X vs time, original and perturbed
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Definition of Chaos
(Lorenz, March 2006, 89 years old)

WHEN THE PRESENT DETERMINES
THE FUTURE
BUT
THE APPROXIMATE PRESENT DOES NOT
APPROXIMATELY DETERMINE THE FUTURE




The approximate present does not approximately

determine the future!

ime, original and perturbed
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Predictability depends on the initial conditions (Palmer, 2002):

stable

less stable
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unstable

Errors with unstable initial conditions
(with “growing errors of the day”)

grow much faster



An 8 week RISE project for undergraduate women (2002)

 We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1993), a very simple method to study the
growth of errors.

« We told them: “Imagine that you are forecasters that
live in the Lorenz “attractor’. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

e “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”



Breeding: simply running the nonlinear model a
second time, from perturbed initial conditions.

Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval

Initial rar}dom Bred Vectors ~LLVs
perturbation
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4 summer interns computed the Lorenz Bred Vector
growth rate: red means large BV growth,
blue means perturbations decay
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In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

I B .
BV Growth
50
o Bred Vector Growth:
red, high growth;
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With just a single breeding cycle, we can estimate the stability
of the whole attractor (Evans et al, 2004).



This looked promising, so we asked the interns to “paint” x(t)
with the bred vector growth, and the result almost made me
faint:



This looked promising, so we asked the interns to “paint” x(t)
with the bred vector growth, and the result almost made me
faint:

X vs time, painted with Growth
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Forecasting rules for the L.orenz model:

X vs time, painted with Growth
T T
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Regime change:The presence of red stars (fast BV growth) indicates that the next orbit
will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red stars: the
next regime will be long lasting.

These rules surprised Lorenz himself!




These are very robust rules, with skill scores > 95%

Growth, numstep = 2000, bst = 8 => 500 steps in 2ach grgph, thresh = .064




Can we apply these ideas to a physical system for
which we don’t know the model? Yes we can!

Breeding Vectors in the Phase Space Reconstructed from Time Series Data
Erin Lynch, D. Kaufman, S. Sharma, E. Kalnay and K. Ide (2013)

For many systems we only know time series of a few
variables. We can predict regime changes in the Lorenz
model without knowing the dynamical model.

We use:

* Time-delay embedding method to reconstruct the phase
space. We only know the time series of x (not y or z) in
the Lorenz model (every 8 time steps).

* “Nearest-neighbor” breeding: after rescaling, choose the
closest neighbor in the same direction.



We reconstructed the Lorenz model with time-delay embedding
where x,(2)={x(2),x,(2),..x, ()} and x,()=x(t —t(k—1)At),m=3,7=17

Standard breeding  “Nearest-neighbor” “Nearest-neighbor”
in Lorenz model breeding in Lorenz breeding in the
model embedded space
using only x(t)

“Nearest-neighbor” breeding gives results similar to regular breeding,
with 0.98 correlation in the rescaled growth. In the embedded case, we
do “nearest-neighbor” breeding without any knowledge of the model.



The results are very encouraging! The skill in detecting regime change
are similar in the original Lorenz model and in the embedded model!
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Preliminary results using the LETKF and data assimilation are even

more encouraging. We plan to apply this methodology to solar wind data
assimilation (Chen and Sharma, 2006)



Summary so far and rest of the talk

« Breeding is a simple generalization of Lyapunov vectors, for
finite time, finite amplitude: simply run the model twice, take
the difference and rescale...

* Breeding in the Lorenz (1963) model gives accurate

forecasting rules for the “chaotic” change of regime and
duration of the next regime that surprised Lorenz himself!

« Can be applied to real time series without knowing the model
Rest of the talk:

 The same ideas can be applied to fight chaos in the full
forecast models that have dimension 10-100 million rather
than just 3!

* |In the atmosphere, in the ocean, in Mars, and in coupled
systems

 We can also use breeding to understand the physical
mechanisms of the instabilities that create chaos.




A major tool to “fight chaos” is ensemble
forecasting

An ensemble forecast starts from initial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”.

POSITIVE

PERTURBATION Bad ensemble

Good ensemble

CONTROL

Y  TRUTH

NEGATIVE
PERTURBATION




In ensemble forecasting we need to represent the
uncertainty: spread or “spaghetti plots”

MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt 2003102612 (192h)

NCEP ENSEMBLE 500mb Z
024H Forecast fro 00Z Mon FEB,11 °
Valid tim Tue FEB,12 2008

00z Ru 1) » 12z Runs:{11)

— Cntrl 00z —Cntrl 12z

GrADS: COLA/



Breeding: running the nonlinear model a second time, from
perturbed initial conditions: introduced by Toth and Kalnay
(1993) to create initial ensemble perturbations

Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval

Initial rar}dom Bred Vectors ~LLVs
perturbation
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Example of a very predictable 6-day forecast, with “errors of the day”
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The bred vectors are the growing
atmospheric perturbations: “errors of the day”



The errors of the day are instabilities of the
background flow. At the same verification time, the
forecast uncertainties have the same shape

4 days and 6 days ensemble forecasts verifying on 15 Nov 1995
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Strong instabilities of the background tend to have simple shapes:
perturbations lie in a low-dimensional subspace of bred vectors

| 2.5 day forecast verifying
)} on95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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This simplicity (Iocal Iow-dlmensmnallty, Patil et al.
2000) inspired the Local Ensemble Transform Kalman
Filter (Ott et al. 2004, Hunt et al., 2007)
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5-day forecast “spaghetti’ plot

NCEP ENSEMBLE 500mb Z

120H Forecast from: 007 Man FEB,11 2008

*The ensemble is able to
separate the areas that are
predictable from the ones that
are chaotic.

* Even the chaotic ones have
local low-dimensionality
 This is what makes possible
to do Ensemble Kalman Filter
with 50 ensemble members
(not a million!) with good
results
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o
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15-day forecast ‘“‘spaghetti’’ plot: Chaos!

NCEP ENSEMBLE 500mb Z
360H Forecast from: 007 Mon FEB,11 2008
Valid time: O0Z Tue FEB,28 2008

- a\-xrf

After 15 days, Lorenz’
chaos has won!

No predictability left in
the 15-day forecast

00z Runs:(11) 12z Runs:{11)

5400m — Cntrl 080z ——Cntrl 12z




In the rest of this talk, we will look at chaos
in coupled fast-slow systems

* The atmosphere has fast (e.g., convective clouds, 20 min)
and slow instabilities (e.g., baroclinic or weather instabilities
3-7 days)

* The coupled ocean-atmosphere system has even slower
instabilities (ElI Nifio-Southern Oscillation, 3-7 years)

* In order to predict these phenomena, we need to isolate
fast and slow instabilities

* If we can predict ENSO, we can predict climate anomalies a
year or more in advance



In the atmosphere there are many instabilities, e.g., fast
(convective clouds) and slow (baroclinic)
Nonlinear breeding saturates convective noise

AMPLITUDE

(% of climate “weather + convection” coupled model
variance)
250 B linic—Convection” plad moda
— Fast
100% | BAROCLINIC (WEATHER) [
MODES aor l I
I |
g 250 | l ‘: 5
© [ ‘5‘ ‘
10% _ ANALYSIS ERRORS f ool ] ‘L -
__________________________________________________________________ é ;“ : ‘ fi ‘ ,1‘
] AN I
RESS YN [ '
&
19, CONVECTIVE MODES g 10
A _
| ’-mwwmv):&wm’\wwnw\’mltwmww.wuﬁa,wwxmw,wmmwL«\wmtuumtvmwmlw
lhour 1 day 1 week ood 20’00 4o|oo 6000 aoloo 1(XIJ(X) 12000

Time

coupling =0.15



Coupled ocean-atmosphere modes (El Nifio-Southern Oscillation)
The “weather noise” has large amplitude! Must use the fact that the coupled
ocean modes are slower...

Atmospheric
perturbation
amplitude

144

Weather “noise

ENSO signal

1 month time

Need a long rescaling interval, like 2 weeks or one month



Breeding in a coupled system

Breeding: finite-amplitude, finite-time instabilities of the
system (~Lyapunov vectors)

In a coupled system there are fast and slow modes,

A linear approach (like Singular or Lyapunov Vectors) will
only capture fast modes.

Can we do breeding of the slow modes?




We coupled slow and a fast Lorenz (1963)
3-variable models (Pena and Kalnay, 2004)

Fast equations Slow equations
%za()/l—xl)—C;(Sxﬁ—O) %%za(yz—xz)—Cz(xl+0)
%zrxl—yl—xlzl+CI(Sy2+O) 11_6[2;;=/”Xz —V, =8z, + (), +0)
% b7+ G = S =+ C(2)

“Tropical-extratropical” (triply-coupled) system: the ENSO
tropical atmosphere is weakly coupled to a fast “extratropical
atmosphere” with weather noise
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Breedlng in a coupled Lorenz model° “Weather plus ENSO”
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The linear approaches (LV, SV) cannot capture the slow ENSO signal



Examples of breeding in a coupled ocean-
atmosphere system with coupled instabilities

In coupled fast/slow models, we can do breeding to
Isolate either the fast or the slow modes

For slow modes we have to choose a slow variable
and a long interval for the rescaling.

This identifies coupled instabilities.

Examples
o Madden-Julian Bred Vectors (Chikamoto et al., 2008)

o NASA operational system with real observations (Yang et
al., 2007, MWR)

o Ocean instabilities and their physical mechanisms
(Hoffman et al, 2008)

o Mars!




Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities BV by choosing an appropriate rescaling amplitude
(only within the tropics)




Finding the shape of the errors in El Niio
forecasts to improve data assimilation

 Bred vectors

o Differences between the control forecast and
perturbed runs:

e $ho'uld BVs show the shape of growing errors?
es!

 Advantages
o Low computational cost (only two runs)

o Capture coupled instabilities

o Improve data assimilation (related to Ensemble
Kalman Filter)
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Yang (2005): Vertical cross-section at Equator for
BV (contours) and 1 month forecast error (color)
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Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST, shades): make them grow and break!
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Hoffman et al (2008): finding ocean instabilities with
breeding time-scale 10-days captures tropical instabilities

Breeding time scale: 10 days
SST Bred Vector on December 1, 1988
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When the rescaling time scale is 30 days, extratropical
instabilities dominate

SST Bred Vector on December 11, 1988
30 Day Rescaling Time, 0.2 Rescaling Factor
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Here we have both Tropical and
“South Atlantic Convergence Zone” instabilities.
Can we determine the dynamic origin of these instabilities? Yes!

Bred U Vector on 11/11/88
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The Bred Vector Kinetic Energy equation can be computed exactly
because both control and perturbed solutions satisfy the model

equations!
IKE, «— Conversion from |
y | B potential
5, = Jhorizontal /ZZ/X&Y PsEWy T - to kinetic energy
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-TES Martian Atmosphere Reanalysis Project

Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 078 Hour 00
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Day 078 (Ls= 302, Boreal Winter): BV activity near surface
temperature front begins to flare up.

Greybush et al., 2011
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 080 Hour 00
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Day 080 (Ls= 304, Boreal Winter): Just two days later, BV now
extends vertically along the length of the front. Connection to
the upper level tropics begins.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 175 Hour 00
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Day 175 (Ls= 358, near boreal vernal equinox): Typical winter
BV activity along temperature front with upper level tropical
connection. First hint of southern hemisphere activity.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 235 Hour 00
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Day 235 (Ls= 22, early boreal spring): Winter BV activity has
begun to weaken, as the tropical connection has disappeared.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 240 Hour 00
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Day 240 (Ls= 230, early boreal spring): Southern hemisphere
activity has now grown rapidly along austral front.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 430 Hour 00
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Day 430 (Ls= 116. austral mid-winter): Southern hemisphere
BV activity now assumes full spatial extent.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 549 Hour 00
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Day 549 (near boreal autumn equinox): Signs BV of activity in
the northern hemisphere have resumed.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 551 Hour 00
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Day 551 (Ls= 180, boreal autumn equinox): Activity in northern
hemisphere has extended vertically.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 590 Hour 00
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Day 590 (mid boreal autumn): Activity in both hemispheres,
but most intense along southern polar front.
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Martian Bred Vector Plot — Temperature [K] Zonal Mean RMS BV Magnitude — Day 668 Hour 00
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Day 668 (Ls= 252, prior to boreal winter solstice): The seasons
have returned full circle, with southern hemisphere activity
fading and northern winter dominant.



Summary:
We can fight chaos and extend predictability by
understanding error growth

Chaos is not random: it is generated by physical instabilities

Breeding is a simple and powerful method to find the growth and shape of
the instabillities.

These instabilities also dominate the forecast errors: we can use their shape
to improve data assimilation.

Ensemble Kalman Filter is the ultimate method to explore and “beat chaos”
through data assimilation.

In the “chaotic” Lorenz model the growth of bred vectors predicts regime
changes and how long they will last.

Breeding can be applied to a time series even without knowing the model.

Nonlinear methods, like Breeding and EnKF, can take advantage of the
saturation of fast weather noise and isolate slower instabilities.

Bred Vectors predict well the evolution of coupled forecast errors
Bred Vectors help explain the physical origin of ocean instabilities

Ensembles of BV improve the seasonal and interannual forecast skill,
especially during the “spring barrier”



