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Abstract 
 
Ensemble Kalman Filter (EnKF) has that disadvantage that the spin-up time needed to 
reach its asymptotic level of accuracy is longer than the corresponding spin-up time in 
variational methods (3D-Var or 4D-Var). This is because the ensemble has to fulfill two 
independent requirements, namely that the mean be close to the true state, and that the 
ensemble perturbations represent the “errors of the day”. As a result, there are cases such 
as radar observations of a severe storm, where EnKF may spin-up too slowly to be useful. 
A scheme is proposed to accelerate the spin-up of EnKF applying a no-cost Ensemble 
Kalman Smoother, and using the observations more than once in each assimilation 
window in order to maximize the initial extraction of information. The performance of 
this scheme is tested with the Local Ensemble Transform Kalman Filter (LETKF) 
implemented in a Quasi-geostrophic model, which requires a very long spin-up time 
when initialized from a cold start. Results show that with the new “running in place” 
scheme the LETKF spins-up and converges to the optimal level of error at least as fast as 
3D-Var or 4D-Var. Additional computations (2-4 iterations for each window) are only 
required during the initial spin-up, since the scheme naturally returns to the original 
LETKF after spin-up is achieved. 
 

 
1. Introduction 
 
The relative advantages and disadvantages of 4-dimensional Variational Data 
Assimilation (4D-Var), already operational in several numerical forecasting centers, and 
Ensemble Kalman Filter (EnKF), a newer approach that does not require the adjoint of 
the model, are the focus of considerable current research (e.g., Lorenc, 2003, Kalnay et 
al, 2007a, Gustafson, 2007, Kalnay et al., 2007b, Miyoshi and Yamane, 2007).  
 
One area where 4D-Var seems to have a clear advantage over EnKF is in the initial spin-
up, since the evidence thus far is that 4D-Var converges faster than EnKF to its 
asymptotic level of accuracy. For example, Caya et al. (2005) compared 4D-Var and 
EnKF for a storm simulating the development in a sounding corresponding to 00UTC 25 
May 1999. They found that “Overall, both assimilation schemes perform well and are 
able to recover the supercell with comparable accuracy, given radial-velocity and 
reflectivity observations where rain was present. 4DVAR produces generally better 
analyses than the EnKF given observations limited to a period of 10 min (or three volume 
scans), particularly for the wind components. In contrast, the EnKF typically produces 
better analyses than 4DVAR after several assimilation cycles, especially for model 
variables not functionally related to the observations.” In other words, for the severe 
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storm problem the EnKF eventually yields better results than 4D-Var, presumably 
because of the assumptions made on the 4D-Var background error covariance, but during 
the crucial initial time of storm development, when radar data starts to become available, 
EnKF provides a worse analysis. For a global shallow water model, which is only mildly 
chaotic, Zupanski et al. (2006) found that initial perturbations that had horizontally 
correlated errors converged faster and to a lower level of error than perturbations created 
with white noise. In agreement with these results, Liu (2007) found using the SPEEDY 
global primitive equations model that perturbations obtained from differences between 
randomly chosen states (which are naturally balanced and have horizontal correlations of 
the order of the Rossby radius of deformation) converged faster than white noise 
perturbations.  
 
Yang et al (2008a) compared 4D-Var and the Local Ensemble Transform Kalman Filter 
(LETKF, Hunt et al., 2007) within a quasi-geostrophic channel model.  They found that if 
the LETKF is initialized from randomly chosen fields, it takes more than 100 days before 
it converges to the optimal level of error. If, on the other hand, the ensemble mean is 
initialized from an existent 3D-Var analysis, which is already close to the true state, the 
LETKF converges to its optimal level very quickly, within about 3-5 days. However, 3D-
Var and 4D-Var converge fast without needing a good initial guess. This has also been 
observed for severe storm simulations (Caya et al., 2005), especially when using real 
radar observations (Jidong Gao, 2008, personal communication). It is not surprising that 
EnKF spins-up more slowly than 3D-Var or 4D-Var because in order to be optimal the 
ensemble has to satisfy two independent requirements, namely that the mean be close to 
the true state of the system, and that the ensemble perturbations represent the 
characteristics of the “errors of the day” in order to estimate the evolving background 
error covariance B . In both 3D-Var and 4D-Var, by contrast, B  is assumed to be 
constant.  
 
The option of initializing the EnKF from a state close enough to the optimal analysis, 
such an existent 3D-Var analysis, with balanced perturbations having realistic horizontal 
correlations, is feasible within a global operational system, and as a result spin-up is not a 
serious problem for EnKF. However, there are other situations, such as the storm 
development discussed above, where radar information is not available before the storm 
starts, so that no information is available to guide the EnKF in the spin-up towards the 
optimal analysis. The system may start from an unperturbed state without precipitation, 
and if a severe storm develops within a few minutes and the EnKF takes considerable real 
time to spin-up from the observations, it will “miss the train” and give results that are less 
useful for severe storm forecasting than 4D-Var or even 3D-Var. 
  
In this note we propose a new method to accelerate the spin-up of the EnKF by “running 
in place” during the spin-up phase and using the observations more than once in order to 
extract maximum information. We find that it is possible to accelerate the convergence of 
the EnKF so that (in terms of real time) it spins-up even faster than 3D or 4D-Var. 
Section 2 contains a brief theoretical motivation and discussion of the method, results are 
presented in Section 3 and a discussion is given in Section 4. 
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2. Spin-up, no-cost smoothing and “running in place” in EnKF 
 
Hunt et al. (2007) provided a new derivation of the linear Kalman Filter equations by 
showing that in the cost function 
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the background term represents the Gaussian distribution of a state with the maximum 
likelihood trajectory (history), i.e., the analysis/forecast trajectory that best fits the data 
from t = t
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After the cost function in (1) is minimized finding the analysis x

n

a and its corresponding 
covariance P

n

a , a similar relationship holds for the analysis at t
n
 for some constant c’: 
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Equating the terms in (4) that are linear and quadratic in x , the linear Kalman Filter 
equations for a perfect model are obtained. 
 
This derivation makes clear that Kalman Filter yields the maximum likelihood estimate 
x
n

a with the corresponding error covariance P
n

a  at time t
n
if the model is linear and perfect 

and if the previous analysis x
n!1

a at t
n!1

is also the maximum likelihood state estimate at 
the previous analysis time. Hunt et al. (2007) also indicate that a system can be initialized 
with a limited number of observations at the initial time t

1
by assuming that the initial 

background error covariance is large but not infinitely large. Although this introduces 
into the cost function an additional quadratic term, they point out that “with sufficient 
observations over time, the effect of this term [on the background error covariance] at 
time t

n
decreases in significance as n increases”. In other words, with sufficient 

observations, the Kalman Filter spins-up and eventually converges and yields the 
maximum likelihood solution and its error covariance. 
 
The EnKF, like the Kalman Filter, also provides a maximum likelihood analysis, except 
that the background and analysis error covariances are estimated from an ensemble of K 
generally nonlinear forecasts: 
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where X

n

b is a matrix whose columns or the background (forecast) perturbations x
n,k

b
! x

n

b  

and x
n

b
=
1

K
x
n

b

k=1

K

! is the most likely forecast state, i.e., the ensemble average. Similar 

equations are valid for the analysis mean x
n

a  and the analysis error covariance P
n

a . Thus, 
EnKF, like the original Kalman Filter, is a sequential data assimilation system where, 
after the new data is used at the analysis time it should be discarded (Ide et al., 1997), but 
this is true only if the previous analysis and the new background are the most likely states 
given the past observations. In other words, if the system has converged after the initial 
spin-up, all the information from past observations is already included in the 
background. In contrast, 4D-Var is a smoother that best fits all the observations (even 
asynoptic data) within an assimilation window. We note that EnKF can be also easily 
extended to 4-dimensions as in 4D-Var, allowing for the assimilation of asynoptic 
observations made between two analyses (e.g., Hunt et al., 2004). In EnKF only the 
observational increments that project on the subspace of the ensemble forecasts can be 
assimilated. Therefore the observational increments computed at the observation time, 
which are linear combinations of the ensemble forecasts, can be shifted either forward or 
backward to the analysis time by simply using the same linear combination of the 
ensemble forecasts obtained at the observation time. 
 
In summary, after the initial spin-up, all the information from past observations is already 
included in the background field, so that the observations should be used only once and 
then discarded. However, there is no theoretical reason why this constraint should also be 
applied when EnKF is “cold-started”, and the initial ensemble is not representative of the 
most likely state and its uncertainty. In practical applications, nevertheless, the rule of 
using the data only once is usually applied (e.g., Zupanski et al. 2006), and a slow EnKF 
spin-up observed. In this note we suggest that when a quick EnKF spin-up (in real time) 
is needed in order to make useful short-range forecasts for fast weather instabilities, the 
initial observations can be used more than once in order to extract more information from 
them, and that this procedure leads to a much faster spin-up of the initial ensemble in real 
time. This “running in place” algorithm is made possible by the use of a “no-cost” 
Ensemble Kalman Smoother (EnKS) (Kalnay et al., 2007b, Yang et al., 2008a).   
 
The no-cost EnKS is easy to implement. Consider an assimilation window t

n!1
,t
n[ ]within 

a Square-Root type of EnKF (e.g., Tippett et al. 2003, Whitaker and Hamill, 2002, Ott et 
al., 2004). The analysis ensemble members at time t

n
are each a weighted average (linear 

combination) of the ensemble forecasts at t
n
 (Hunt et al., 2007)1. Since the ensemble 

                                                
1 We note that Yang et al. (2008b) explored the characteristics of the analysis weight 
fields and found that they vary smoothly on large scales. As a result, if the analysis (i.e., 
the computation of the weights) is carried out on a very sparse analysis grid and then 
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analysis estimates the linear combination of the trajectories that best fits the observations 
within an assimilation window, not just at the end of the interval, the no-cost EnKS valid 
at the beginning of the window is obtained by simply applying the same weights obtained 
at analysis time t

n
 to the initial ensemble at t

n!1
. Yang et al. (2008a) tested this scheme 

and found that indeed, the no-cost EnKS smoothed ensemble at t
n!1

is more accurate than 
the analysis ensemble valid at t

n!1
, as could be expected from the fact that the smoothed 

ensemble at the beginning of the window has benefited from the information provided by 
the “future” observations in the window t

n!1
,t
n[ ] . Although the no-cost smoothing 

improves the initial analysis at t
n!1

, it does not improve the final analysis at t
n
, since the 

forecasts started from the new initial analysis ensemble will end as the final analysis 
ensemble (at least in a linear sense). 
 
With the no-cost EnKS it is then possible to go backwards in time within an assimilation 
window, and then advance with the regular EnKF using the initial observations 
repeatedly in order to extract maximum information from them. This improves the 
quality (likelihood) of the initial ensemble mean faster, and leads the ensemble-based 
background error covariance to be more representative of the true forecast error statistics.  
 
The algorithm that we have tested (not necessarily the best) is as follows: We start the 
EnKF from a randomly chosen initial ensemble mean and random perturbations at t

0
, 

and integrate the initial ensemble to t
1
. Then the “running in place” loop with n = 1 , is: 

 
a) Perform a standard EnKF analysis and obtain the analysis weights at t

n
, saving the 

mean square observations minus forecast (OMF) computed by the EnKF. 
 
b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at t

n!1
by using 

the same weights obtained at t
n
.  

 
c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian 
perturbations, a method similar to additive inflation. These added perturbations have two 
purposes: they avoid the problem of otherwise reaching the same final analysis at t

n
as in 

the previous iteration, and they allow the ensemble perturbations to evolve into fast 
growing directions that may not have been included in the unperturbed ensemble 
subspace.  
 
d) Integrate the perturbed smoothed ensemble to t

n
. If the forecast fit to the observations 

is smaller than in the previous iteration according to a criterion such as 
 
OMF

2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> " ,     (6) 

                                                                                                                                            
interpolated to the in-between grid points, the interpolated weight analysis is not only 
computationally more efficient, but the interpolation does not degrade and may actually 
improve upon the full resolution analysis. 



 6 

go to a) and perform another iteration. If not, let t
n!1

" t
n
and proceed to the next 

assimilation window. 
 
3. Results  
 
Figure 1 shows the RMS error of the analysis obtained during spin-up, using several 
methods over 200 analysis cycles of 12 hours each (corresponding to a total of 100 days). 
All the methods started from the same a randomly chosen mean state and in the case of 
LETKF, from perturbations created as Gaussian noise. 3D-Var (dashed blue line) takes 
about 60 cycles to spin-up, and 4D-var (full blue line) takes about 80 cycles, but 
converges to a much lower RMS error than 3D-Var. The standard LETKF (black line) 
using the observations once and discarding them takes much longer, a total of 170 cycles. 
During the first 120 cycles the ensemble perturbations develop into the “errors of the 
day”, and between 120 and 170 cycles the LETKF converges rather quickly to the 
optimal level of error. After they attain convergence, LETKF and 4D-Var RMS errors are 
similar.  
 
A preliminary experiment with the LETKF “running in place” algorithm allowing for 
repeated use of the observations but fixing the number of iterations at 10 is shown with a 
dashed black line. The LETKF with 10 iterations spins-down even faster than 4D-Var 
and converges in only about 50 cycles but to a higher level of error, close to 3D-Var. This 
is not surprising, since once the system is close to the maximum likelihood solution, as 
indicated by the theoretical arguments discussed above, observations should be used only 
once and then discarded. By using 10 iterations after the spin-up, the EnKF analysis fits 
the data too closely and this increases the analysis errors. 
 
The adaptive approach (6) tests whether the system is optimal by checking whether 
iterations reduce the ensemble forecast error, and stops iterating when the relative 
improvement is less than ! . A low value of ! = 0.01 (not shown) leads to a faster initial 
reduction of errors but requires a large number of iterations (Figure 2). Values of ! within 
a range of 0.02-0.05 give optimal results, leading to a spin-down of the initial errors 
similar to 3D-Var and faster than 4D-Var, and converging to and error level at least as 
good as that of 4D-Var (see red line in Figure 1 corresponding to ! = 0.05 ). 
 
We also tested whether the use of additive inflation with perturbations that are 
horizontally correlated would accelerate the spin-up, as found by Zupanski et al. (2006) 
for the initial perturbations. Figure 1 shows with a green line the result of the LETKF 
with ! = 0.05 , as in the red line, but with the additive perturbations chosen so that their 
background error covariance is the 3D-Var covariance, i.e., the columns of the matrix 
B
3D!Var

E , where E is a matrix whose columns are random Gaussian numbers such that 
EE

T
= I . Since B

3D!Var
was obtained using the NMC method (Parrish and Derber, 1992, 

Yang et al., 2008a), the additive perturbations based on B
3D!Var

have horizontal correlation 
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lengths with synoptic scales, whereas the additive Gaussian perturbations used for the 
other experiments discussed before have very small correlation lengths. The green line in 
Figure 1 shows that when the additive perturbations are horizontally correlated, 
convergence takes place faster than with the Gaussian additive perturbations, even when 
the same criterion ! = 0.05 is used for both. This agrees with the conclusion of Zupanski 
et al. (2006) that horizontal correlation of the perturbations accelerates spin-up. 
Nevertheless, once convergence has been achieved, the accuracy of the system with noisy 
perturbations (red) is slightly better than the system with B

3D!Var
perturbations. 

 
Figure 2 compares the number of iterations required by “running in place” schemes. It 
shows that with ! = 0.01 the number of iterations required starts at about 50, and remains 
at a range of 2-10 iterations even after convergence, suggesting that the criterion is too 
strict, leading to inefficient spin-up. With ! = 0.05  the system with synoptic scale 
(B

3D!Var
-based) additive perturbations converges faster, reaching 1-2 iterations after only 

about 30 data assimilation cycles, and then oscillates between 1 and 2 iterations. The 
system with uncorrelated Gaussian additive inflation (also with ! = 0.05 ) takes about 50 
data assimilation cycles to reach a single iteration (i.e., using the data only once). During 
the spin-up period the number of iterations is 2-4, and after convergence it automatically 
returns to the regular LETKF. 
 
4 Discussion 
 
The results obtained are very encouraging: it is possible to spin-up the LETKF (and other 
EnKF algorithms) when a cold-start and fast convergence to the optimal level of error (in 
terms of real or physical time) are required, by simply using the initial observations 
several times rather than only once. The no-cost Ensemble Kalman Smoother, with the 
smoothed analysis ensemble at the beginning of an assimilation window given by using 
the analysis weights of the ensemble forecast at the end of the window enables this 
algorithm to extract the maximum information from the initial observations. It is necessary 
to add small perturbations to the ensemble, in a procedure akin to additive inflation. The 
number of iterations needed is estimated by checking whether the smoothed analysis 
reduces the forecast error (OMF). A level of relative reduction !  of about 2-5% was 
found to work well in this quasi-geostrophic model, leading to about 2-4 iterations during 
spin-up, and when the system converges it naturally returns to the original LETKF.  
 
In the case of a developing storm, it would be possible to use the weight interpolation 
algorithm of Yang et al (2008b) to perform the additional iterations locally, “where the 
action is”, rather than throughout the whole domain. We found that additive inflation 
with horizontal correlations accelerates the initial spin-up, in agreement with Zupanski et 
al. (2006), but later is slightly worse than uncorrelated errors. These exploratory 
experiments are encouraging, agree with a similar acceleration found by Anna Trevisan 
(personal communication, 2008) using initial bred vectors, and may be applicable to other 
problems such as ocean data assimilation where a fast spin-up is desirable.  
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Figure 1 Time series of RMS analysis errors in potential temperature at the bottom level 
of the original LETKF (black line), 4D-Var (blue line) and 3D-Var (dashed blue line). 
The dashed black line represents the LETKF “running in place” algorithm with Gaussian 
additive inflation but with a fixed number of iterations (10). The red line is for an 
adaptive number of iterations with ! = 0.05 and Gaussian additive inflation, and the green 
line is as the red one, but with correlated additive inflation (see text). 



 10 

 
Figure 2 Number of iterations required by the spin-up LETKF with Gaussian additive 
inflation using ! = 0.05  (red line), ! = 0.01 (thin grey line), and ! = 0.05  (red line) but 
correlated additive (green line). The dashed black line is as the red line but fixing the 
number of iterations at 10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


