
Advanced data assimilation methods-
EKF and EnKF

Alghero, Lecture 4

Hong Li and Eugenia Kalnay

University of Maryland



Optimal Interpolation for a scalar
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Recall the basic formulation in OI

• OI for a Scalar:

Optimal weight to minimize the analysis error is:

• OI for a Vector:

• B is statistically pre-estimated, and constant with time in its practical
implementations. Is this a good approximation?
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OI and Kalman Filter for a scalar

• OI for a scalar:

• Kalman Filter for a scalar:

• Now the background error variance is forecasted using the linear
tangent model L and its adjoint LT
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“Errors of the day” computed with the Lorenz 3-variable
model: compare with rms (constant) error

Not only the amplitude, but also the structure of B is constant in 3D-Var/OI

This is important because analysis increments occur only within the subspace
spanned by B
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“Errors of the day” obtained in the NCEP reanalysis
(figs 5.6.1 and 5.6.2 in the book)

Note that the mean error went down from 10m to 8m because of
improved observing system, but the “errors of the day” (on a synoptic time
scale) are still large.

In 3D-Var/OI not only the amplitude, but also the structure of B is fixed
with time



Flow independent error covariance

In OI(or 3D-Var), the scalar error correlation between two points in the
same horizontal surface is assumed homogeneous and isotropic. (p162 in
the book)
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If we observe only Washington, D.C,
we can get estimate for Richmond and
Philadelphia corrections through the

error correlation (off-diagonal term in B).



Typical 3D-Var error covariance

In OI(or 3D-Var), the error correlation between two mass points in the
same horizontal surface is assumed homogeneous and isotropic.(p162
in the book)
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Background ~106-8 d.o.f.

Suppose we have a 6hr forecast (background) and new observationsSuppose we have a 6hr forecast (background) and new observations

The 3D-Var Analysis doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.

BR



Background ~106-8 d.o.f.

Errors of the day: they lie
on a low-dim attractor

With Ensemble Kalman Filtering we get perturbations pointingWith Ensemble Kalman Filtering we get perturbations pointing
to the directions of the to the directions of the ““errors of the dayerrors of the day””  

3D-Var Analysis: doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.



Background ~106-8 d.o.f.

Errors of the day: they lie
on a low-dim attractor

Ensemble Kalman Filter Analysis:
correction computed in the low dim
ensemble space 

Ensemble Kalman Filtering is efficient because Ensemble Kalman Filtering is efficient because 
matrix operations are performed in the low-dimensional matrix operations are performed in the low-dimensional 

space of the ensemble perturbationsspace of the ensemble perturbations

3D-Var Analysis: doesn’t know 
about the errors of the day

Observations ~105-7 d.o.f.



Background ~106-8 d.o.f.

Errors of the day: they lie
on the low-dim attractor

Observations ~105-7 d.o.f.

After the EnKF computes the analysis and the analysis error covarianceAfter the EnKF computes the analysis and the analysis error covariance
AA, the new ensemble initial perturbations           are computed:, the new ensemble initial perturbations           are computed:
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These perturbations represent the 
analysis error covariance and are
used as initial perturbations for the
next ensemble forecast



Flow-dependence – a simple example (Miyoshi,2004)

This is not appropriate
This does reflects the flow-dependence.

There is a cold front in
our area…

What happens in this
case?



Extended  Kalman Filter (EKF)

• Forecast step

• Analysis step

• Using the flow-dependent       , analysis is expected to be improved
significantly

However, it is computational hugely expensive.            ,         n*n matrix,  n~107

     computing equation        directly is impossible
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Ensemble Kalman Filter (EnKF)

 Although the dimension of      is huge, the
rank (     ) << n (dominated by the errors of the
day)

 Using ensemble method to estimate
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  Problem left: How to update ensemble ?
i.e.: How to get       for each ensemble
member?
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“errors of day” are the instabilities of
the background flow. Strong instabilities
have a few dominant shapes
(perturbations lie in a low-dimensional
subspace).

 It makes sense to assume that large
errors are in similarly low-dimensional
spaces that can be represented by a
low order EnKF.

Physically,



Ensemble Update: two approaches
1. Perturbed Observations method:
An “ensemble of data assimilations”

 It has been proven that an observational
ensemble is required (e.g., Burgers et al.
1998). Otherwise

     is not satisfied.

 Random perturbations are added to the
observations to obtain observations for
each independent cycle

 However, perturbing observations
introduces a source of sampling errors
(Whitaker and Hamill, 2002).
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Ensemble Update: two approaches

2. Ensemble square root filter
(EnSRF)
 Observations are assimilated to

update only the ensemble mean.

 Assume analysis ensemble
perturbations can be formed by
transforming the forecast ensemble
perturbations through a transform
matrix
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Several choices of the transform matrix

 EnSRF, Andrews 1968, Whitaker and Hamill, 2002)

 EAKF (Anderson 2001)

 ETKF (Bishop et al. 2001)

 LETKF (Hunt, 2005)
Based on ETKF but perform analysis
simultaneously in a local volume
surrounding each grid point
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An Example of the analysis corrections from
3D-Var  (Kalnay, 2004)



An Example of the analysis corrections from
EnKF  (Kalnay, 2004)



Summary steps of LETKF

Ensemble analysis

Observations

GCM

Obs.
operator

Ensemble
forecast

Ensemble forecast
at obs. locations

LETKF

1) Global 6 hr ensemble forecast
starting from the analysis ensemble

2) Choose the observations used for
each grid point
3) Compute the matrices of forecast
perturbations in ensemble space Xb

4) Compute the matrices of forecast
perturbations in observation space Yb

5) Compute Pb in ensemble space
space and its symmetric square root

6) Compute wa, the k vector of
perturbation weights

7) Compute the local grid point
analysis and analysis perturbations.

8) Gather the new global analysis
ensemble. Go to 1



LETKF algorithm summary, Hunt 2005
Forecast step (done globally): advance the ensemble 6 hours, global model size n
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We finally gather all the analysis and analysis perturbations from each grid point
and construct the new global analysis ensemble (nxk) and go to next forecast step

x
n

a
= x

n

a
+ X

a Analysis ensemble in model space (mxk)

(mxk) (sxk)

 

!P
a
= (k !1)I + HX

b( )
T

R
!1
HX

b"
#

$
%

!1

babTaaTa
XPXXXP

~
==

2/1)
~
( aba
PXX =

)(
~ 1 b

n

o

n

bTaa

n
yyRYPw !=

!



References posted: www.atmos.umd.edu/~ekalnay
Google: “chaos weather umd”, publications

Ott, Hunt, Szunyogh, Zimin, Kostelich, Corazza, Kalnay, Patil, Yorke, 2004: Local
Ensemble Kalman Filtering, Tellus, 56A,415–428.

Kalnay, 2003: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, 341 pp. (3rd printing)

Hunt, Kalnay, Kostelich, Ott, Szunyogh, Patil, Yorke, Zimin, 2004: Four-
dimensional ensemble Kalman filtering. Tellus 56A, 273–277.

Szunyogh, Kostelich, Gyarmati, Hunt, Ott, Zimin, Kalnay, Patil, Yorke, 2005:
Assessing a local ensemble Kalman filter: Perfect model experiments with the
NCEP global model. Tellus, 57A. 528-545.

Hunt, Kostelich and Szunyogh 2007: Efficient Data Assimilation for
Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter.
Physica D.

Whitaker and Hamill, 2002: Ensemble Data Assimilation Without Perturbed
Observations.  Monthly Weather Review, 130, 1913-1924.



EnKF vs 4D-Var

 EnKF is simple and model
independent, while 4D-Var requires the
development and maintenance of the
adjoint model (model dependent)

4D-Var can assimilate asynchronous
observations, while EnKF  assimilate
observations at the synoptic time.

 Using the weights wa at any time 4D-
LETKF can assimilate asynchronous
observations and move them forward or
backward to the analysis time

Disadvantage of EnKF:

Low dimensionality of the ensemble in
EnKF  introduces sampling errors in the
estimation of        . ‘Covariance
localization’ can solve this problem.
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