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Outline
* 4D-Var or EnKF? Lorenc (2003, 2004)

e Local Ensemble Transform Kalman Filter (Hunt et al.)

 Examples and some new 1deas (inspired by 4D-Var):
— QG model: 3D-Var, Hybrid, 4-DVar, LETKF (Yang et al.)
— Estimation of model errors (L1 et al.)
— Estimation of inflation and R online (L1 et al.)

— Forecast and analysis sensitivity to observations (Liu et al.)

— Comparison of LETKF and operational 4D-Var at JIMA
(Miyoshi et al.), typhoon forecasts

— Other comparisons with real obs: current status

* Summary: Both methods give similar results
— LETKEF can benefit from 1deas developed in 4D-Var research



+ Var | Summary of (dis-)advantages |EnKF +

Simple to design & code.
Needs smooth forecast model.
Lorenc (2004): Needs PF & Adjoint models.

Needs a covariance model.
¢¢ b b
Relative merits of 4DVar Cenerates an ensemble forecast.
and EnKF”

Sampled covariances noisy.

He concluded: Can only fit N data.

“Use both (hybrid)”

Can extract info from tracers.

Nonlinear obs operators
& non-Gaussian errors modelled.
Complex obs operators (eg rain)
coped with automatically,
but sample is then fitted by Gaussian.

Incremental balance easy
External initialisation
of each forecast needed?

Accurate modelling of time-covariances

only within 4D-Var window.
Covariances evolved indefinitely
only if represented in ensemble.



Lorenc (2004):
“Relative merits of 4DVar
and EnKF”’

He concluded:
“Use both (hybrid)”

Questionable

disadvantages
of EnKF

+ Var | Summary of (dis-)advantages |EnKF +

Simple to design & code.
Needs smooth forecast model.
Needs PF & Adjoint models.
Needs a covariance model.
Cenerates an ensemble forecast.

Sampled covariances noisy.

= Canonly fit N data.
Can extract info from tracers.
s
Nonlinear obs operators
& non-Gaussian errors modelled

ompiex obs operators (eg rain)

coped with automatically,
but sample is then fitted by Gaussian.

Incremental balance easy
External initialisation
of each forecast needed?

Accurate modelling of time-covariances
0 ithin 4D-Var window.

Covariances evolved indefinitely
only if represented in ensemble.




ILocal Ensemble Transtform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(Start with initial ensemble)

l Observations * Model independent
(black box)
e Obs. assimilated
simultaneously at each
grid point
* 100% parallel: very fast
ensemble forecasts Model * 4D LETKF extension

Observation | ensemble
operator “observations

I ensemble [analyses




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated




Vertical Model Level

The localization 1s based on observations and
can be different, e.g., satellite radiances vs.
rawinsondes (Fertig et al. 2007)
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Vertical Model Level
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Radiance weighting function



Local Ensemble Transform Kalman Filter (LETKF)
Globally:

Forecast step: Xi’k =M (Xj_ljk)
Analysis step: construct b _ | b _ %P b _ gb |.
y P X —I:Xl—X X, — X ],

y,=H&X):; Y, =y -¥...Ys =Y ]

Locally: Choose for each grid point the observations to be used, and

compute the local analysis error covariance and perturbations in
ensemble space:

P =[(K-DI+ Y RY | ; W = [(K - )P']"”
Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and add to W¢“ to get the analysis ensemble in ensemble space
The new ensemble analyses in model space are the columns of

X =X"W*+X" . Gathering the grid point analyses forms the new
global analyses.



LETKF chooses the linear combination of the ensemble
forecasts that best fits the observations (stars)

3D-LETKF
— = T o - - ‘é

> el O

No-cost LETKF smoother (cross): apply at t, the same weights
found to be optimal at t; This works for both 3D- and 4D-LETKF



Analysis sensitivity study with LETKF (Liu)
(inspired by Cardinali et al. 2004 in 4D-Var)
~ dHx,
-

S = R'HP'H’

It shows the analysis sensitivity with respect to:

a) different types of observations (e.g., rawinsonde,
satellite)

b) the observations in different areas (e.g., SH, NH)

Easy to compute within LETKF since P2 is known



Analysis sensitivity of adaptive observation (one obs. selected from
ensemble spread method over ocean) and routine observations (every grid
point over land) in Lorenz-40 variable model

10-day forecast RMS error Analysis sensitivity
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« Over land, the analysis information coming from observations is only 17%.
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» Over ocean, the analysis accepts about 85% of the information from the
single observation.

* The analysis knows that a single adaptive observation over ocean is more
important than a single observation over land.



Information content (control, shaded) vs. RMSE
difference (data-denial experiments, contour)

RMSE (u, sensitivity-control) &
info-content (u)
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> Information content qualitatively reflects the actual observation impact from data-
denial experiments.



Model error: comparison of methods to
correct model bias and inflation

Hong L1, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay



Model error: If we assume a perfect model in EnKF,

we underestimate the analxsis errors gLi, 20072

perfect model
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— Why 1s EnKF vulnerable to model errors ?

Background ensemble spread |mperfeCt model
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» In the theory of Extended Kalman ﬁfter,
forecast error is represented by the growth
of errors in IC and the model errors.
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» However, in ensemble Kalman filter, error

S I O S estimated by the ensemble spread can only
1.2 1.5 1.8 2.1 24 2.7 3 3.3 3.6
HEIGHT RMSE [m] represent the first type of errors.

The ensemble spread 1s ‘blind’
to model errors




We compared several methods to handle
bias and random model errors

perfect model
simplified DdSM+
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LoW"DimensionaI Method to correct the bias (Danforth et al, 2007)
combined with additive inflation



2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

« Generate a long time series of model forecast minus reanalysis X, .
from the training period !

¥ NNR
NNR NNR
NNR% xtruth
— NNR
r\(xo tzﬁ\
xf

We collect a large number of estimated errors = and estimate from them bias, etc.

L M
el =x/, —x\, = MEH-ME)+b+> B.e,+ > V,..L,
T =1 \ m=1 \

| N\ \

Forecast error Time-mean Diurnal deséatgent
due to error in IC model bias model error mo%eperror




Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

T

2
model error = b + Eﬁn’lel
[=1

Having a large number of estimated errors allows to
estimate the global model error beyond the bias



SPEEDY 6 hr model errors against NNR (diurnal cycle)

Error anomalies
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» For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
diurnal cycle errors because it lacks diurnal
radiation forcing
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We compared several methods to handle
bias and random model errors

perfect model
simplified DdSM+
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Simultaneous estimation of EnKF
inflation and obs errors 1n the presence
of model errors

Eugenia Kalnay
Hong Li'~
Takemasa Miyoshi’

’Typhoon Institute of Shanghai

3SNumerical Prediction Division, JMA



We use the “observation” of inflation to update the
inflation online with a simple KF (adaptive regression)

B d,_d _,)—-Tr(R) ) Assumption: R is known
= pp— —1 (OMB?)
Tr(HP'H")

o

This gives an “observation”

of A

Online estimation: use scalar KF (adaptive regression), Kalnay 2003, App. C:

oAS f A0 f
Aa:vA + v A V= (1— fV )/
VO + Vf Vv +V
where Aft+1 = Aaz Vft+1 = (1 + 0.03)Va

This scalar KF is used for all the online estimation experiments discussed here

The method works very well to estimate the optimal inflation if R is correct, but it
fails if R 1s wrong: one equation (1a) with two unknowns...



Diagnosis of observation error statistics
(Desroziers et al, 2005, Navascues et al, 2006)

Desroziers et al, 2005, introduced two new statistical relationships:

oma*omB  <d _d’_, >=R | -
o—a—o correct if the R and B statistics are

correct and errors are uncorrelated!
AMB*OMB  «d__d, _," >=HP'H'

Writing their inner products we obtain two more equations which
we can use to “observe” Rand A :

p
(6, =d_d,,/p=D07=-yD0=¥)/p OMA*OMB
j=1

p
A =dl_d, ,/Tr(HP'H ) - 1= Y () = y)(y - y)/ Tr(HP’"H )=1  AMB*OMB

j=1



Diagnosis of observation error statistics
(Desroziers et al, 2005, Navascues et al, 2006)

Ao - (doyd, )= Tr(R) OMB?
Tr(HP’H")
A= 05 =¥ =y Tr(HP'H') - 1 AMBTOMB
j=1
~ \2 T N\ b
6,0 =d,_d,,/p=2,07=y) —¥)/p OMA*OMB

j=1

Desroziers et al. (2005) and Navascues et al. (2006) have used these
relations 1n a diagnostic mode, from past 3D-Var/4D-Var stats.
Here we use a simple KF to estimate both A and O 02 online.



Tests within LETKF with Lorenz-40 model

Perfect model experiments. True ob error 6, . =1

o(true)
Optimally tuned A=0046 1rms=0.201
Right O 3 , estimate inflation using OMB? or AMB*OMB: both work

) rms
A method O, (specified) A
1 0.044 0.202
OMB2
R ’ 0.042 0.202

Wrong g{f , estimate inflation using OMB? or AMB*OMB: both fail

method 2 rms
A Go(speciﬁed) A
0.021 1.635
OMmB? 4.0
0.033 1.523

AMB*OMB



Tests with LETKF with perfect L40 model

Now we estimate ob error and inflation simultaneously using
OMB? or AMB*OMB and OMA*OMB : it works great!

I;] d A Initizal Estimated Estimated
metho 5
method O, o A rms
OMB?2 0.95 1.002 0.046 0.208
OMA*OMB AMB*OMB 1.003 0.043 0.205
1.000 0.046 0.202
OMB? 4.0
1.000 0.043 0.203
AMB*OMB

The question 1s: will this method work 1f the model is not
perfect, 1.e., 1f 1t has either random errors or biases?



Tests with LETKF with imperfect L40 model:
added random errors to the model

Error A:true 0.=1.0 B: true 0.=1.0 | C: adaptiveo,
amplitude (tuned) constant A | adaptive A adaptive A
(random)

a A RMSE A RMSE | A RMSE 002

4 0.25 0.36 0.27 | 0.36 [0.39] 0.38 |0.93

20 0.45 0.47 0.41 | 047 038 0.48 |1.02

A A
100 1.00 0.64 0.87 | 0.64 |0.80|( 0.64 )| 1.05

The method works quite well even
with very large random errors!



Tests with LETKF with imperfect L40 model:
added biases to the model

Error A:true 62=1.0 B:truec.=1.0 | C: adaptivec’
amplitude
. (tuned) constant A | adaptive A adaptive A
(bias)
o A RMSE A RMSE | A RMSE| ¢?
1 0.35 0.40 0.31 | 0.42 |0.35| 0.41 |0.96
4 1.00 0.59 0.78 | 0.61 |0.77| 0.61 |1.01
7 1.50 @ 1.11 | 0.71 ]0.81 @ 1.36

The method works well for low biases, but fails
for large biases: Model bias needs to be accounted
by a separate bias correction method, not by
multiplicative inflation



Tests within LETKF with SPEEDY

OBSERVATIONS

Generated from the ‘truth’ plus “random errors”
with error standard deviations of 1 m/s (u), 1 m/s(v),
1K(T), 104 kg/kg (q) and 100Pa(Ps).

D
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A\
_(\
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A\

Dense observation network: 1 every 2 grid points
in X and y direction

EXPERIMENTAL SETUP

* Run SPEEDY with LETKF for two months ( January and
February 1982) , starting from wrong (doubled) observational errors
of 2 m/s (u), 2 m/s(v), 2K(T), 2*10* kg/kg (q) and 200Pa(Ps).
 Estimate and correct the observational errors and inflation

adaptively.



online estimated observational errors

online estimating A

2.5 I | | | | | | | |
o — Uind
& — temperature ||
5 10000
: — Pa/100
B
o
L e ————
: R

| | | | | | | | |

Time Step

The original wrongly specified R converges to the
right R quickly (in about 5-10 days)



Estimation of the inflation

Estimated Inflation

003 \ﬁ' l‘

=0.01

1 ! ! 1 1 1 1 1 1 1 1
20 40 &0 8O 100 120 140 160 180 200 220
Time steps

Using an initially wrong R and A but estimating them adaptively
Using a perfect R and estimating A adaptively

After R converges, they give similar inflation factors (time dependent)



2008/1/31 WCRP Conference on Reanalysis, Tokyo

Developments of a local ensemble
transform Kalman filter at JIMA

Takemasa Miyoshi (NPD/JMA)
Shozo Yamane (CIS, JAMSTEC), Takeshi Enomoto (ESC/JAMSTEC),
Y oshiaki Sato (NCEP and NPD/JMA), Takashi Kadowaki (NPD/IMA),
Ryouta Sakai (NPD/JIMA), and Masahiro Kazumori (NPD/JMA)



A core concept of EnKF

Complementary relationship between data
assimilation and ensemble forecasting

Data Assimilation

NL Error FCST err

Ensemble Forecasting

This cycle process = EnKF

Analyze with the flow-dependent forecast error, ensemble
forecast with 1nitial ensemble reflecting the analysis error



Advantages of EnKF

* Automatic estimation of flow-dependent error
covariance (background and analysis)
— Automatic adjustment to observing density in each era

« Large B 1n the past (sparse observations)
« Small B in the present (dense observations)

— Quantitative information of analysis uncertainties

* Generally model-independent

— Relatively easy application to many kinds of
dynamical models



EnKF vs. 4D-Var

EnKF 4D-Var
“advanced” method? Y Y
Simple to code? Y N (e.g., Minimizer)
Adjoint model? N Y
Observation operator Only forward Adjoint required
(e.g., TC center)
Asynchronous obs? Y (4D-EnKF) Y (intrinsic)
Initialization after N? Y
analysis?
Analysis errors? Y (ensemble ptb) N

Limitation

ensemble size

Assim. window

EnKF with infinite ensemble size and 4D-Var with
infinite window would be equivalent (linear perfect

model).




(AFES-LETKF Experimental Ensemble Reanalysis)

data are now available online for free!!

http://www3.es.jamstec.go.jp/

Contents
Ensemble reanalysis dataset for over 1.5 years since May 1, 2005
»40 ensemble members
»ensemble mean
»ensemble spread

Available ‘AS-IS’ for free ONLY for research purposes
Any feedback is greatly appreciated.



Analyzing the analysis errors

 EnKF provides not only analysis itself but also the
analysis errors (or uncertainties of the analysis)

 What is the dynamical meaning of the analysis errors?

ALERA

GOES-9 Image

oy B

- B V. .

W p
-
AV

] ;b.,5 7.




Pressure (mb)

10

30

50

70

100 —

ALERA

ooE £8.6n Larie spread at
4 105E.55- £
2005060?]11llllIJllll\l}lllll ll#llllll lllllllllllIllllllllllllll111111111%1911061018/ the lnltlal Stage
U of phase change
w
\ €
.
— 24
i
2
)
T
— 20
3. ‘ ‘
¢ w
Al\ A . . o \ N 1 |
Aug

Oct Dec Feb Apr Jun Aug Oct
'CONTOUR FROM 3 TO 4 BY .25|

-30-25-20-15-10 -5 0 5 10 15 20 25 30 Courtesy of T. Enomoto

Jun




ALERA

20050601 T10 65N-90N 20061017
250 —llllllll Jlllllllllllllll[lll[ lllllll[llllllllll [ llllllllllllllll |lllllllllllll|l[lllll - 4.0
: ALERA . SPREAD - 35

240 — -
: ;’\ | — 3.0
230 — /4 | — 25
- '- = 2.0

220 — NCEP/NCAR / -
- — 1.5

210 — : -
. \/ - 1.0
200 llllllll Illl]llllllllllllllll ||l|llllllll|||ll| | llllllll’lllllll Illl]lllllllll'lllllll - 0-5

8/1 101 121 2/1 4/1 6/1 8/1 10/1
Courtesy of T. Enomoto



Large spread 1n tropical lower
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Tropical lower wind and the spread
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Lag correlation between
mean and spread

0.52

ISR 2 3 4 5678910
spread leads days spread lags

Courtesy of T. Enomoto




Summary so far (Miyoshi)

Ensemble spread represents errors well.

There seems to be dynamical meanings of analysis
ensemble spread, which could be investigated 1n various
scales.

Long-term ensemble reanalysis...

— would be more accurate because of the automatic adaptation of
B appropriate for each observing system

— would have a great potential to promote research using the
analysis errors

It 1s important to develop with a quasi-operational
environment



LETKF developments at JMA

e LETKF (Local Ensemble Transform Kalman Filter, U of MD,
Hunt et al. 2007; Ott et al. 2004) has been applied to 3
models

— AFES (AGCM for the Earth Stmulator)
Miyoshi and Yamane, 2007: Mon. Wea. Rev., 3841-3861.

_ NHPRSh Yamane, and Baomoto, 2007: SOLA, 45-48.

— GSM (JMA global spectral model) >
Mivoshi and Aranami, 2006: SOLA, 128-131

Miyoshi and Sato, 2007: SOLA, 37-40.



Typhoon Rananim, August 2004
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position error (km)
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Improvement (%) relative to 4D-Var

Pseaéurf'

Tropics

6.86

3.39

3.09

S. Hem

-7.60

-8.91

-7.91

-0.08

Wspd850 | Wspd250

Global | -9.00 2.38 0.13

N. Hem. 3.74 0.66

Tropics 0.48 9.88

S. Hem. -1.62 -3.81

Apply adaptive bias correction

PseaSurf | T850 Z500 | Wspd850 | Wspd250

Global | —6.19 | -436 | -571 3.66 1.32

N.Hem. | -4.18 1.12 0.91 3.98 0.57

-1.62

PseaSurf

1850

Z500

Wspd850

Wspd250

Global

-5.21

-2.33

—4.21

3.94

1.73

N. Hem.

-3.89

2.06

1.32

S. Hem.

-6.35

-6.47

-6.20

4.30

1.30

é Some bugs fixed 1n surface emissivity calculation
Tropics | 7.05 6.49 7.44 9.57

0.39

-1.14

Period: August 2004
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PseaSurf | T850 Z500 Wspd850 | Wspd250
Global 3.62 3.07 4.67 9.55 7.60
N. Hem. 0.32 4.32 5.28 7.93 5.09
Tropics
S. Hem. 3.84 0.23 4.00 6.08 5.41

Period: August 2004



Computational time

LETKF AD-Var
11 min x 60 nodes 17 min x 60 nodes
5 min for LETKF
......... 6 min for 9-hr ensemble forecasts |
TL319/L60/M50 Inner: T159/L.60
Outer: TL959/1.60

Estimated for a proposed next generation operational condition

6 min (measured) x 8 nodes for LETKF with TL159/L40/M50

Computation of LETKF 1s reasonably fast,
good for the operational use.



850 hPa Temperature bias of (LETKF — 4D-Var)
000HR T850 BIAS (ABC-4DV) Period: August 2004
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Summary (Miyoshi)
» Relative forecast scores (August 2004)

NH LETKF ~ or > 4D-Var >> 3D-Var
Tropics |LETKF >>4D-Var >> 3D-Var
SH 4D-Var >> LETKF > 3D-Var

* Surface pressure forecasts in the extratropics
need to be improved

« SH forecasts need to be improved

— Positive bias 1n lower tropospheric temperature over
ocean



Summary

Both 4D-Var and EnKF are similar and better than 3D-Var

4D-Var with perfect model and long windows is better than
EnKF (but expensive).

A 3D-Var hybrid with BVs improves at low cost.

LETKF can assimilate asynchronous obs just as 4D-Var,
simple no-cost smoother.

EnKF does not require adjoint of the NWP model (or the
observation operator), or simplifications of the physics.

Can estimate R and inflation online

|deal for adaptive observations. Can compute obs sensitivity
Methods developed for 4D-Var can be adapted to LETKF
Free 6 hr forecasts in an ensemble operational system
Provides optimal initial ensemble perturbations: D, 6x!6x{" = A
More operational testing is needed




Discussion: 4D-Var vs. EnKF “war”

Correcting the bias with a simple low-dim method (Danforth et al. 2007) and
combining it with additive inflation should effectively deal with both
systematic and random model errors. But it needs an “unbiased” reanalysis.

We should be able to adopt some simple strategies to capture the advantages of
4D-Var:

Smoothing and running in place

A simple outer loop to deal with nonlinearities

Adjoint sensitivity without adjoint model

Coarse resolution analysis without degradation

It seems like there is nothing that 4D-Var can do that 4D-LETKF cannot do as
well, usually simpler, cheaper and better.



