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Arakawa

| never had the privilege of taking a course from
Akio...but

his NWP class notes were fundamental guidance
on some areas | did not agree completely

many of his ideas went way over my head

but | learned so much from him!

Akio profoundly influenced my book...

“a short but inspiring introduction is presented
in Arakawa (1997)”, “the NWP class notes of
Arakawa at UCLA...”

Thank you Akio!



What is breeding?

Running any nonlinear model twice!... just a black box

This finds the most unstable normal modes in an evolving flow
Example: breeding with the Lorenz model

Undergraduates interns found that with breeding they could
easily predict Lorenz regime changes and their duration

Coupled slow-fast model: can get both slow and fast instabilities
Bred vectors reflect the “errors of the day”

Can be used for ensemble prediction and data assimilation
Example: ENSO bred vectors with the NASA/NCEP CGCMs

Predict evolution of errors, Improve seasonal ensemble prediction

Example: Exploring all the instabilities in the ocean
Explaining instabilities with the KE equation for bred vectors



ENSO has a doubling time of about one month,
baroclinic waves about 2 days, cumulus
convection about 10 minutes...

Linear approaches (like Singular Vectors and
Lyapunov Vectors) can only handle the fastest
instability.

Nonlinear model integrations (like Bred

Vectors, EnKF) allow fast instabilities to
saturate, they can filter out fast instabilities

This allows Bred Vectors to isolate either fast
or slow modes by choosing the amplitude and
rescaling time interval.



Only two tuning parameters:

Forecast values rescaling amplitUde and
rescaling interval
Initial random Bred Vectors ~LLVs
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In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

BV Growth

j Bred Vector Growth:

5. - red, high growth;
green, low growth;
blue, decay
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With just a single breeding cycle, we can estimate the stability
of the attractor (Evans et al, 2004)



Discovered forecasting rules for the
Lorenz model:
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Regime change:The presence of red stars (fast BV growth) indicates that the next
orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red
stars: the next regime will be long lasting.

These rules surprised Lorenz himself!




These are very robust rules, with skill scores > 95%

Growth, numstep = 2000, bst = 8 => 500 steps in 2ach giaph, thiesh = .064




Example of a very predictable 6-day forecast, with “crrors of the day”
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951115/1200V000 500 MB height 5640m VER T126
951115/1200V144 500 MB height 5640m AVN ptbn
951115/1200vV144 500 MB height 5640m AVN T126
951115/1200V132 500 MB height 5640m MRF ptbn
951115/1200V132 500 MB height 5640m MRF T62
951115/1200V132 500 MB height 5640m MRF T126

The bred vectors are the growing
atmospheric perturbations: “errors of the day”



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape

4-day forecast
verifying on
the same day
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Strong instabilities of the background tend to
have simple shapes (perturbations lie in a low-
dimensional subspace of bred vectors)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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Nonlinear saturation allows filtering unwanted fast, small
amplitude, growing instabilities like convection
(Toth & Kalnay, 1993, Pena & Kalnay, 2003, NPG)
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In the case of coupled ocean-atmosphere modes, we cannot
take advantage of the small amplitude of the “weather noise”!
Must use the fact that the coupled ocean modes are slower...

Atmospheric
perturbation
amplitude

Weather “noise”

ENSO signal

time

1 month

Need a long rescaling interval, like 2 weeks or one month



Breeding in a coupled system

Breeding: finite—amplitude, finite-time
instabilities of the system (~Lyapunov
vectors)

In a coupled system there are fast and
slow modes, and a linear Lyapunov
approach (like Singular Vectors) will only
capture fast modes.

Can we do breeding of the slow modes?




We coupled slow and a fast Lorenz (1963)
3-variable models (Penna and Kalnay, 2004)

Fast equations Slow equations
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“Tropical-extratropical” (triply-coupled) system: the ENSO
tropical atmosphere 1s weakly coupled to a fast “extratropical
atmosphere” with weather noise
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Breeding in a coupled Lorenz model:
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Short rescallng mterval (5 steps)

Long rescallng mterval (50 steps)

and small amplitude: fast modes and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



In coupled fast/slow models, we can do
breeding to isolate the slow modes

We have to choose a slow variable and a
long interval for the rescaling

This is true for nonlinear approaches (e.qg.,
EnKF) but not for linear approaches (e.qg.,
SVs, LVs)

We apply this to ENSO coupled instabilities:
Cane-Zebiak model (Cai et al, 2003 JO)
NASA/NCEP fully coupled GCM (Yang et al, 2006
JO)

NASA operational system with real observations
(Yang et al 2007, MWR)



Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities by choosing appropriately the rescaling
amplitude (only within the tropics)




The differences between the control
forecast and perturbed runs

Size of perturbation (e.g., Nino-3 SST)
Rescaling period: one month

Low computational cost

Easy to apply to Coupled GCMs
Captures coupled instabilities



Yang et al 2006: Example of instantaneous
background SST (color) and bred vector SST

(contours)
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Instabilities associated with the equatorial waves in
the NSIPP coupled model are naturally captured by

breeding!




Hoffman et al (2007): finding all ocean instabilities with
breeding time-scale 10-days captures tropical instabilites

Breeding time scale: 10 days
SST Bred Vector on December 1, 1988
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When the rescaling time scale is 30 days,
extratropical instabilities dominate

SST Bred Vector on December 11, 1988
30 Day Rescaling Time, 0.2 Rescaling Factor
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Here we have both tropical and “South Atlantic
Convergence Zone” instabilities. Can we determine the
dynamic origin of the instabilities?

Bred U Vector on 11/11/88
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With the Bred Vector kinetic energy equation it is easy...
(both control and perturbed V satisfy the full equations)!
Example: Baroclinic conversion term
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Yang 2006: NASA and NCEP Coupled GCMs
(ENSO mode regressed with Nino-3 SST)

NASA background NCEP backaround
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These two coupled models have slightly different ENSOs...



NASA Bred Vector vs. NCEP Bred Vector
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Bred vectors obtained with an 8-year NCEP run are
extremely similar to the NASA’s 20-year run!!!



NASA BV vs. NCEP BV

Northern Hemisphere

NASA geopotential height at 500mb
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Even the PNA atmospheric teleconnections are similar!!



Yang: NASA Seasonal-to Interannual
Prediction (NSIPP) coupled GCM

Developed by Suarez (1996)
Resolution: 2°x 2.5°x34 levels

Components
Developed by Schopf and Loughe (1995)
Resolution: 1/3°x 5/8°x 27 layers
Mosaic LSM
Full coupled model

AGCM and OGCM couplec
Current prediction skill (El Nino hindcasts) is up

to
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Yang (2005) Vertical cross-section at Equator for
BV (contour) and 1 month forecast error (color)
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After the event, error
is located mostly in E.
Pacific.



The equatorial temperature 1-month

forecast error structure
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Anomaly correlation between
control hindcast and Reynolds SST in Nino3 region
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Starting from the cold season, forecast skill is high for the first 6
months, but they have difficulties overcoming the “spring barrier”.
When starting from the warm season, forecast skill quickly drops.



Anomaly correlation with 3 pairs of BVs
November and May restarts (1993-2002)
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Nonlinear methods, like breeding and EnKF, can take advantage
of the saturation of fast weather noise. Linear systems cannot.

Coupled Lorenz model experiments show that for slow modes
the rescaling in breeding has to be done using slow variables
and long rescaling intervals

Cane-Zebiak breeding experiments show that the BV growth
depends on season and ENSO phase, and that they can be used
for data assimilation and ensemble forecasting

“Perfect model” experiments with the NASA and NCEP coupled
GCMs show a robust dominant coupled ocean/atmosphere bred
vector.

Results generally agree with those obtained with the C-Z model
BV can easily explain the physical origin of ocean instabilities
Bred Vectors predict well the evolution of forecast errors

Ensembles of BV improve the seasonal and interannual forecast
skill, especially during the “spring barrier”



Bred vectors will be implemented as initial coupled
perturbations for ensemble ENSO forecasting in the
NASA NSIPP operational system.

Because they can detect the month-to-month
background error variability, bred vectors are being
tested to improve oceanic data assimilation.

We will explore all ocean instabilities and their origin
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