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Numerical Weather Prediction

We create models to simulate the atmosphere
Instabilities increase forecast errors

The models need initial conditions (today’s analysis)
Initial conditions have errors

Errors grow because of instabilities and model error
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Ensemble forecasts
We create ensembles of forecasts to simulate the uncertainty

of the forecasts. We need to include:

Uncertainties in the initial conditions (today’s analysis errors)
Uncertainties in the models (model errors or deficiencies)

FORECAST 2

FORECAST 1



Chaos in Numerical Weather Prediction
and how we fight it with ensembles

* Lorenz (1963) introduced the concept of “chaos” in
meteorology:

— Even with a perfect model and perfect initial conditions we
cannot forecast beyond two weeks: butterfly effect

— In 1963 this was only of academic interest: forecasts were
useless beyond a day or two anyway!

— At that time, statistical prediction was more skillful than with
dynamical models.

— Now we exploit “chaos” with ensemble forecasts and
routinely produce skillful forecasts beyond a week

— The EI Nifo coupled ocean-atmosphere instabilities are
allowing 6-12 month forecasts of ENSO climate anomalies



Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system

TRUT TRUT

FORECAST
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We have come a long way!
8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt: 2003102612 {192h}
] N

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Need good models, good observations, good data assimilation



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt 2003102612 {192h)
o T =

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Over Southern California forecast has a cut-off low, not a trough



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
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Southern California: winds are from the wrong direction!



Fires in California (2003)

| Santa Ana
| winds:
¢ | locally

| wrong
prediction
(8 days in
advance!)




Example of a very predictable 6-day forecast, with “errors of the day”
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951115/1200V000 500 MB height 5640m VER T126

951115/1200V144 500 MB height 5640m AVN ptbn
951115/1200vV144 500 MB height 5640m AVN T126
951115/1200V132 500 MB height 5640m MRF ptbn
951115/1200V132 500 MB height 5640m MRF T62
951115/1200vV132 500 MB height 5640m MRF T126

It shows the growing atmospheric perturbations: the instabilities of
the atmospheric flow are the “errors of the day” or bred vectors



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape
4 days and 6 days ensemble forecasts verifying on 15 Nov 1995
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Strong instabilities of the background have simple
shapes (perturbations lie in a low-dim subspace of bred
vectors)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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This simplicity (local low-dimensionality, Patil et al.
2000) inspired the Local Ensemble Transform Kalman
Filter (Ott et al. 2004, Hunt et al., 2007)



Deterministic Chaos...

In 1951 Charney indicated that NWP forecast
skill would break down after a few days, but
he attributed this to model errors and errors in
the initial conditions...

In the 1950’s and 60’s the forecasts were skillful
for only one or two days.

Statistical prediction skill was equal or better
than dynamical predictions.

Until recently this has been also true for El Nifo
(ENSO) predictions!



Lorenz (1950’'s) wanted to show that statistical
prediction could not match prediction with a

nonlinear model for the Tokyo (1960) NWP
conference

So, he tried to find a model with non-periodic solutions
(otherwise statistics would win!)

He programmed in machine language on a 4K memory,
60 ops/sec Royal McBee computer

He developed a low-order model (12 d.o.f) and
changed the parameters and eventually found a
nonperiodic solution

Printed results with 3 significant digits (plenty!)
Tried to reproduce results, went for a coffee and
He discovered Chaos!



A simple chaotic model:

Lorenz (1963) 3-variable model
Has two regimes and the transition between them is

chaotic
dx
—=0(y—x
7 (¥ —x)
dy
—— =rxX—y—Xz
i Y
%zxy—bz

dt



Example: Lorenz (1963) model, y(t)
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Lorenz (1963) discovered that even with a
perfect model and essentially perfect initial
conditions the forecast loses all skill in a finite
time interval: “A butterfly in Brazil can change
the forecast in Texas after one or two weeks”.

In the 1960’°s this was only of academic
interest: forecasts were useless in two days

Now, we are getting closer to the 2 week limit
of predictability, and we have to extract the
maximum information from a chaotic forecast



Definition of Deterministic Chaos
(Lorenz, March 2006, 89 yrs)

WHEN THE PRESENT DETERMINES
THE FUTURE

BUT
THE APPROXIMATE PRESENT DOES NOT
APPROXIMATELY DETERMINE THE FUTURE
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Predictability depends on the 1nitial conditions (Palmer, 2002):

stable less stable unstable
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A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)
grow much faster than if they are stable



An 8 week RISE project for undergraduate women (2002)

 We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1993), a very simple method to study the
growth of errors.

« We told them: “Imagine that you are forecasters that
live in the Lorenz “attractor’. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

« “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”



Breeding: simply running the nonlinear model a
second time, from perturbed initial conditions.

Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval

Initial random Bred Vectors ~LLVs

perturbation / \ \
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Unperturbed control forecast

time

Local breeding growth rate: g(?) ——111 (6x|/|6x,|)



4 summer interns computed the Lorenz Bred Vector

growth rate: red means large BV growth,
blue means perturbations decay
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In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

BV Growth

) Bred Vector Growth:
red, high growth;
green, low growth;
blue, decay

20

With just a single breeding cycle, we can estimate the stability
of the whole attractor (Evans et al, 2004)



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result
almost made me faint:



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result
almost made me faint:

X vs time, painted with Growth
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Forecasting rules for the Lorenz model:

X vs time, painted with Growth
T T

20
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Growth rate of
bred vectors:
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%j fast growth
4 (>1.8 in 8 steps)
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Regime change:The presence of red stars (fast BV growth) indicates that the next
orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red stars:
the next regime will be long lasting.

These rules surprised Lorenz himself!




These are very robust rules, with skill scores > 95%

Growth, numstep = 2000, bst = 8 => 500 steps in 2ach gigph, thiesh = .064




Summary
Charney made the first successful NWP, Lorenz
discovered “chaos” at about the time IMO => WMO:

Instabilities (“errors of the day”) make the atmosphere
unpredictable beyond two weeks.

All perturbations evolve to the most unstable shape
(Lyapunov Vectors ~ Bred Vectors).

Breeding in the Lorenz (1963) model gives accurate
forecasting rules for the “chaotic” regime change and
duration that surprised Lorenz himself!

With ensemble forecasting, we “fight chaos”, and we
can estimate predictability in space and time.

Can be applied to fast convective storms and to slower
ocean-atmosphere instabilities (ENSQO).

Ensemble Kalman Filter also “fights chaos” and is now
competitive with 4D-Var.



Example of NWP success:
operational forecasts from ECMWF

Anomaly correlation of 500hPa height forecasts
Southern hemisphere

Northern hemisphere

Updated from

Simmons and

Hollingsworth,
2002

Operations

| 1 |

301980 1982 1984 1986 1985 1990 1992 1994 1996 1995 2000 2002 2004 2006 3008
Improvements over time are due to:
 Model improvements
« Data improvements
e Assimilation method improvements (4D-Var)
Note how SH caught up with NH in forecast skill!




Data assimilation: We need to continue improving
observations, analysis and models

OBSERVATIONS

A) forecasts ]
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ERA-Interim (4D-Var) vs. ERA-40 (3D-Var) (Dee, 2009)
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ERA-Interim and ERA-40 used exactly the same
observations, so the improvement reflects 5 years of
development in modeling and data assimilation



DATA ASSIMILATION

orecas
analysis *
observa tions

The analysis combines the model forecast with observations.



DATA ASSIMILATION: EnKF

The analysis combines the model forecast with observations.
The ensembles give the uncertainty of the forecast and analysis:
they provide the error covariance matrix between all variables.



The EnKF gives the uncertainty in the analysis!

(ALERA: AFES-LETKF Experimental Reanalysis)

ALERA

2005060812 u sprd m/s

S b, 10
Aty S 3 .

and Takemasa Miyoshi



Status of “4D-Var and/or EnKF?”

4D-Var and EnKF have similar skill (Workshop in
Buenos Aires, November 7-10, 2008, Buehner et al., 2009a,
b). Canada implemented both 4D-Var and EnKF!

EnKF has several diagnostic advantages.

Currently several operational weather centers are
also exploring EnKF:

- JMA

— Brazil

— United States

— ltaly

— Germany

— ECMWE (for diagnostic studies only)

Hybrids (Var-EnKF) may be optimal.



ENSO Prediction

ENSO is an instability of the coupled ocean-
atmosphere

The same ideas apply but with the longer seasonal
and interannual time scales of El Niho

As in the beginning of NWP, statistical models had
more skill than dynamical models for ENSO.

This is because statistical models are not affected
by model errors.

Now, as in NWP, dynamical coupled ocean-
atmosphere models have improved enough to be
better than statistical models.
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Nino3 index

Yang (2005): Vertical cross-section at Equator for
BV (contours) and 1 month forecast error (color)
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NINO3.4 SST Anomaly(°C)

ENSO current prediction

Model Forecasts of ENSO from May 2010
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ENSO Predictions (6 months)

ENSO Forecast for statistical models, Aug 08 — May 10

ENSO Forecast for dynamical models, Aug 08 — May 10
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Dynamical forecasts:

go to zero with time

have more courage!



Nino3.4 SST Anomaly (°C)

Nino3.4 SST Anomaly (°C)
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How do the ENSO predictions
compare?

ENSO Forecast from Aug 2008 to May 2010

ENSO Forecast from Aug 2008 to May 2010
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Two very good
dynamical
coupled models:
NCEP and
ECMWF

Two very good
statistical models:

CPC Constructed
Analog and Markov



Summary

IMO=> WMO on 23 March 1950... this was at the
time of the beginning of NWP (Charney et al. 1950)
and Chaos theory (Lorenz, 1960, Tokyo).

Forecast errors grow through instabilities and
model errors.

We can predict changes of regime and their
duration for the Lorenz “unpredictable” model.

We have learned to “fight chaos” with ensembles.
Similar ideas can be applied to the ENSO coupled
instabilities

Initially statistical methods were better than
dynamical models, but models are now better.

Ensemble Kalman Filter data assimilation also
“fights chaos”, and is now competitive with 4D-Var.



There is still a lot to do: We need to continue
Improving observations, analysis and coupled models
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There is still a lot to do: We need to continue

Improving observations, analysis and coupled models
A) forecasts ]
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Thank you!



Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST): making them grow and break!
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Example of a good and a bad ensemble

An ensemble forecast starts from initial perturbations to the analysis...

In a good ensemble “truth” looks like a member of the ensemble

The initial perturbations should reflect the analysis “errors of the day”

The “bad” ensemble is still useful: it shows there is a model or a system error

POSITIVE

PERTURBATION

Good ensemble Bad ensemble

CONTROL

~. AVERAGE

N\
* TRUTH

NEGATIVE
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