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1. Introduction 
 
Until 1991, operational NWP centers used to run a single computer forecast 
started from initial conditions given by the analysis, which is the best available 
estimate of the state of the atmosphere at the initial time. In December 1992, 
both NCEP and ECMWF started running ensembles of forecasts from slightly 
perturbed initial conditions (Molteni and Palmer, 1993, Buizza et al, 1998, Buizza, 
2005, Toth and Kalnay, 1993, Tracton and Kalnay, 1993, Toth and Kalnay, 
1997).  
 
Ensemble forecasting provides human forecasters with a range of possible 
solutions, whose average is generally more accurate than the single deterministic 
forecast (e.g., Fig. 4), and whose spread gives information about the forecast 
errors.  It also provides a quantitative basis for probabilistic forecasting.  
 
Schematic Fig. 1 shows the essential components of an ensemble: a control 
forecast started from the analysis, two additional forecasts started from two 
perturbations to the analysis (in this example the same perturbation is added and 
subtracted from the analysis so that the ensemble mean perturbation is zero), the 
ensemble average, and the “truth”, or forecast verification, which becomes 
available later. The first schematic shows an example of a “good ensemble” in 
which “truth” looks like a member of the ensemble. In this case, the ensemble 
average is closer to the truth than the control due to nonlinear filtering of errors, 
and the ensemble spread is related to the forecast error.  The second schematic 
is an example of a “bad ensemble”: due to a poor choice of initial perturbations 
and/or to model deficiencies, the forecasts are not able to track the verifying 
truth, and remain relatively close to each other compared to the truth. In this case 
the ensemble is not helpful to the forecasters at all, since the lack of ensemble 
spread would give them unjustified overconfidence in the erroneous forecast. 
Nevertheless, for NWP development, the “bad” ensemble is still very useful: after 
verification time, the poor performance of the ensemble clearly indicates that 
there is a deficiency in the forecasting system. A single failed “deterministic” 
forecast, by contrast, would not be able to distinguish between a deficiency in the 
system and growth of errors in the initial conditions as the cause of failure.  
 
Ideally, the initial perturbations should sample well the analysis “errors of the 
day” and the spread among the ensemble members should be similar to that of 
the forecast errors. The two essential problems in the design of an ensemble 
forecasting system are how to create effective initial perturbations, and how to 



 

 2 

handle model deficiencies, which, unless included in the ensemble, result in the 
forecast error being larger than the ensemble spread.  
 
In this paper we give a brief historic review of ensemble forecasting, current 
methods to create perturbations, and discuss Ensemble Kalman Filtering 
methods designed to perform efficient data assimilation, but which can, at the 
same time, provide optimal initial ensemble perturbations and estimate the model 
errors. We compare the properties of Ensemble Kalman Filters with those of 4D-
Var, the only operational data assimilation method that currently includes the 
effect of the “errors of the day”. 
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Figure 1: Schematic of the essential components of an ensemble of 
forecasts: The analysis (denoted by a cross) constitutes the initial condition 
for the control forecast (dotted); two initial perturbations (dots around the 
analysis), chosen in this case to be equal and opposite; the perturbed 
forecasts (full line); the ensemble average (long dashes); and the verifying 
analysis or truth (dashed). The first schematic is a “good ensemble” in which 
the truth is a plausible member of the ensemble. The second is an example 
of a bad ensemble, quite different from the truth, pointing to the presence of 
deficiencies in the forecasting system (in the analysis, in the ensemble 
perturbations and/or in the model).  

“Bad” ensemble 
RUN FROM POSITIVE 
PERTURBATION 

RUN FROM NEGATIVE 
PERTURBATION 

CONTROL FORECAST 

ENSEMBLE AVERAGE 

TRUTH 

CONTROL FORECAST 

TRUTH 

ENSEMBLE 
AVERAGE 

RUN FROM POSITIVE 
PERTURBATION 

RUN FROM NEGATIVE 
PERTURBATION 

“Good” ensemble 



 

 4 

 
2. Ensemble forecasting methods 
 
Human forecasters have always performed subjective ensemble forecasting by 
either checking forecasts from previous days, and/or comparing forecasts from 
different centers, approaches similar to lagged forecasting and multiple systems 
forecasting. The consistency among these forecasts at a given verification time 
provided a level of confidence in the forecasts, confidence that changed from day 
to day and from region to region.  
 
2.1 Early methods 
 
Epstein (1969), introduced the idea of Stochastic-Dynamic forecasting (SDF), 
and pointed out that it could be also used in the analysis cycle to provide the 
forecast error covariance. Epstein designed SDF as a shortcut to estimate the 
true probability distribution of the forecast uncertainty, given by the Liouville 
equation (Ehrendorfer, 2005), which Epstein approximated running a huge (500) 
number of perturbed (Monte Carlo) integrations for the 3-variable Lorenz (1963) 
model. However, since SDF involves the integration of forecast equations for 
each element of the covariance matrix, this method is still not computationally 
feasible for models with large number of degrees of freedom. 
  
Leith (1974) suggested the direct use of a Monte Carlo Forecasting approach 
(MCF), where random perturbations sampling the estimated analysis error 
covariance are added to the initial conditions. He indicated that a relatively small 
number of integrations (of the order of 8) is enough to approximate an important 
property of an infinite ensemble. In a large ensemble the average forecast error 
variance at long time leads converges to the climatological error variance, 
whereas individual forecast errors have an average error variance that is twice as 
large. Since the estimation of the analysis error covariance was constant in time, 
the MCF method did not include the effects of “errors of the day”. Errico and 
Baumhefner (1987) applied this method to realistic global models, using 
perturbations that represented a realistic (but constant) estimation of the error 
statistics in the initial conditions. Hollingsworth (1980) showed that for 
atmospheric models, random errors in the initial conditions took too long to spin-
up into growing “errors of the day”, making MCF an inefficient approach for 
ensemble forecasting. 
 
Hoffman and Kalnay (1983) suggested as an alternative to MCF, the Lagged 
Averaged Forecasting (LAF) method, in which forecasts from earlier analyses 
were included in the ensemble. Since the ensemble members are forecasts of 
different length, they should be weighted with weights estimated from the 
average forecast error for each lead-time. Hoffman and Kalnay found that 
compared to MCF, LAF resulted in a better prediction of skill (a stronger 
relationship between ensemble spread and error), presumably because LAF 
includes effects from “errors of the day”. The main disadvantage of LAF, namely 
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that “older” forecasts are less accurate and should have less weight, was 
addressed by the Scaled LAF (SLAF) approach of Ebisuzaki and Kalnay (1991), 
in which the LAF perturbations (difference between the forecast and the current 
analysis) are scaled by their “age”, so that all the initial SLAF perturbations have 
errors of similar magnitude. They also suggested that the scaled perturbations 
should be both added and subtracted from the analysis, thus increasing the 
ensemble size and the probability of “encompassing” the true solution within the 
ensemble. SLAF can be easily implemented in both global and regional models, 
including the impact of perturbed boundary conditions (Hou et al, 2001). 
 
 
2.2 Operational Ensemble Forecasting methods 
 
In December 1992 two methods to create perturbations became operational at 
NCEP and at ECMWF. They are based on bred vectors and singular vectors 
respectively, and like LAF, they include “errors of the day”. These and other 
methods that have since become operational or are under consideration in 
operational centers are briefly discussed. More details are given in Kalnay 
(2003). 
 
a. Singular Vectors (SVs) 
 
Singular vectors are the linear perturbations of a control forecast that grow 
fastest within a certain time interval (Lorenz, 1965), known as “optimization 
period”, using a specific norm to measure their size. SVs are strongly sensitive to 
the length of the interval and to the choice of norm (Ahlquist, 2000). Ehrendorfer 
and Tribbia (1997) showed that if the initial norm used to derive the singular 
vectors is the analysis error covariance norm, then the initial singular vectors 
evolve into the eigenvectors of the forecast error covariance at the end of the 
optimization period. This indicates that if the analysis error covariance is known, 
then singular vectors based on this specific norm are ideal perturbations. 
  
ECMWF implemented an ensemble system with initial perturbations based on 
singular vectors using a total energy norm (Molteni and Palmer, 1993, Molteni et 
al, 1996, Buizza et al, 1997, Palmer et al 1998, Buizza, 2005).  
 
b. Bred Vectors (BVs) 
 
Breeding is a nonlinear generalization of the method to obtain leading Lyapunov 
vectors, which are the sustained fastest growing perturbations (Toth and Kalnay, 
1993, 1997). Bred Vectors (like leading Lyapunov Vectors) are independent of 
the norm and represent the shapes of the instabilities growing upon the evolving 
flow. In areas where the evolving flow is very unstable (and where forecast errors 
grow fast), the BVs tend to align themselves along very low dimensional 
subspaces (the locally most unstable perturbations). An example of such 
situation is shown in Fig. 2, where the forecast uncertainty in a 2.5-day forecast 
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of a storm is very large, but the subspace of the ensemble uncertainty lies within 
a one-dimensional space. In this extreme (but not uncommon) case, a single 
observation at 500hPa would be able to identify the best solution. The 
differences between the forecasts are the bred vectors. The nonlinear nature of 
BVs allows for the saturation of fast growing instabilities such as convection, or, 
in the case of ENSO coupled instabilities, the weather noise (Peña and Kalnay, 
2004). 
 
In unstable areas of fast growth, BVs tend to have shapes that are independent 
of the forecast length or the norm, and depend only on the verification time. This 
suggests that forecast errors, to the extent that they reflect instabilities of the 
background flow, should have shapes similar to bred vectors, and this has been 
confirmed with model simulations (Corazza et al, 2003). 
 
NCEP implemented an ensemble system based on breeding in 1992, and the US 
Navy, the National Centre for Medium Range Weather Forecasting in India, and 
the South African Meteorological Weather Service implemented similar systems. 
The Japanese Meteorological Agency implemented an ensemble system based 
on breeding, but they impose a partial global orthogonalization among the bred 
vectors, reducing the tendency of the bred vectors to converge towards a low 
dimensional space of the most unstable directions (Kyouda and Kusunoki, 2002). 
 
 

Fig. 2: “Spaghetti plots” showing a 2.5 day ensemble forecast verifying on 
95/10/21. Each 5640gpm contour at 500 hPa corresponds to one ensemble 
forecast, and the dotted line is the verifying analysis. Note that the uncertainty 
in the location of the center of the predicted storm in the Midwest of the US is 
very large, but that it lies on a 1-dimensional space (thick line).  
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c. Multiple data assimilation ensembles 
 
Houtekamer et al (1996) developed a system based on running an ensemble of 
data assimilation systems using perturbed observations, implemented in the 
Canadian Weather Service. Hamill et al (2000) showed that in a quasi-
geostrophic system, a multiple data assimilation system performs better than the 
singular vectors and the breeding approaches. With respect to the computational 
cost, the multiple data assimilation system and the singular vector approach are 
comparable, whereas breeding is essentially cost-free.  
 
d. Perturbed physical parameterizations 

 
The methods discussed above only include perturbations in the initial conditions, 
assuming that the error growth due to model deficiencies is small compared to 
that due to unstable growth of initial errors. Several groups have also introduced 
changes in the physical parameterizations to allow for the inclusion of 
uncertainties in the model formulation (Houtekamer et al, 1996, Stensrud et al, 
2000). Buizza et al (1999) developed a perturbation approach that introduces a 
stochastic perturbation of the impact of subgrid scale physical parameterizations 
by multiplying the time derivative of the “physics” by a random number normally 
distributed with mean 1 and standard deviation 0.2. This simple approach 
resulted in a clear improvement of the performance of the ensemble system. 
 
Both the perturbations of the initial conditions and of the subgrid scale physical 
parameterizations have been shown to be successful towards achieving the 
goals of ensemble forecasting. However, since they both introduce changes to 
the best estimate of the initial conditions and the model, which are used for the 
control forecast, it is not surprising that on the average, the individual forecasts 
are worse than the unperturbed control (see example in Figure 3). Nevertheless, 
the ensemble average is an improvement over the control, especially after the 
perturbations grow into a nonlinear regime that tends to filter out some of the 
errors because the ensemble solutions tend to diverge in the most uncertain 
components of the forecast. 
 
e. Multiple system ensembles 
 
An alternative to the introduction of perturbations is the use of multiple systems. 
Different operational or research centers, each aiming to be the best, choose 
different competitive approaches to data assimilation and forecasting systems. In 
principle, a combination of these different systems should sample well the 
uncertainty in both the models and the initial conditions. It has been known that 
the ensemble average of multiple center forecasts is significantly better than 
even the very best individual forecasting system (e.g., Kalnay and Ham, 1989, 
Fritsch et al, 2000, Arribas et al, 2004). This has also been shown to be true for 
regional models (Hou et al, 2001). Krishnamurti et al (2000), Krishnamurti (2005) 
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introduced the concept of “superensemble”, a multiple system ensemble where 
linear regression is used to correct the bias of each of the operational systems 
from past performance, and the predictors are combined to minimize the 
ensemble average prediction errors. This results in remarkable forecast 
improvements (e.g., Fig. 4). This method is also called “poor person” ensemble 
approach to reflect that it does not require running a forecasting system (Arribas 
et al, 2004). 
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Fig. 3: Average anomaly correlation of the ensembles during the winter 
of 1997/1998 (data courtesy Jae Schemm, of NCEP). Note that, on the 
average, the individual perturbed forecasts are worse than the control, 
but their ensemble average is better. 
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Fig. 4: Mean typhoon track and intensity errors for the west Pacific, 1998-2000 for 
several global models (ECMWF, UK MetOffice, US MRF, US Navy NOGAPS, 
Japan JMA global and typhoon models, the ensemble mean of all these models), 
and a superensemble obtained by linear regression trained on the first half of the 
same season. From Kumar et al. (2003). 
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f. Other methods 

 
This field is changing quickly, and improvements and changes to the operational 
systems are under development. For example, ECMWF has implemented 
changes in the length of the optimization period for the SVs, a combination of 
initial and final or evolved SVs (which are more similar to BVs), and the 
introduction of a stochastic element in the physical parameterizations, all of 
which contributed to improvements in the ensemble performance (Buizza et al, 
2000). NCEP is considering the implementation of the Ensemble Transform 
Kalman Filter (Bishop et al, 2001) to replace breeding since the BVs have a 
tendency to converge to the leading Lyapunov Vectors, providing insufficient 
spread. A recent comparison of the ensemble performance of the Canadian, US 
and ECMWF systems (Buizza et al, 2004) suggests that the ECMWF SV 
perturbations behave well beyond the 2-day optimization period, at which time 
the model advantages of the ECMWF system are also paramount, giving the 
best performance. The BV perturbations of NCEP are somewhat better at short 
ranges, and the multiple analysis method performs well at all ranges. See 
Hagedorn et al, 2005, Lalaurette and van der Grijn, 2005, Mylne, 2005 Palmer, 
2005, Shukla and Kinter, 2005, Tibaldi et al, 2005, Timmermann and Jin, 2005, 
Latif et al, 2005, Toth et al, 2005, Waliser, 2005 and Webster et al, 2005 for 
further discussions on applications of ensemble forecasting at all ranges. 
 
 
3. Ensemble Kalman Filtering for data assimilation and ensemble 

forecasting. 
 
As indicated before (e.g., Ehrendorfer and Tribbia, 1997), “perfect” initial 
perturbations for ensemble forecasting should sample well the analysis errors. 
Thus, ideal initial perturbations 
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a covariance that spans well the analysis error covariance A :    
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Until recently, the problem has been the lack of knowledge of A , which changes 
substantially from day to day and from region to region due to instabilities of the 
background flow. These instabilities, associated with the “errors of the day”, are 
not taken into account in data assimilation systems, except for 4D-Var and 
Kalman Filtering, methods that are computationally very expensive. 4D-Var has 
been implemented at ECMWF, MeteoFrance, the Canadian Meteorological 
Service (CMS) (Andersson et al, 2004, Gauthier, 2004, Desroziers et al, 2003) 
and Japan. The implementation of 4D-Var at ECMWF required some cost-saving 
simplifications such as reducing the resolution of the analysis from ~40km in the 
forecast model to ~120km in the assimilation model. Even at the lower resolution, 
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the 4D-Var clearly outperformed the previous operational 3D-Var. Versions of 
4D-Var are also under development in other centers. 
 
The original formulations of Kalman Filtering and Extended Kalman Filtering are 
prohibitive because they would require the equivalent of N model integrations, 
where N is the number of degrees of freedom (dof) of the model, of the order of a 
106 or more. Considerable work has been done on finding simplifying 
assumptions to reduce the cost of KF (e.g., Fisher et al, 2003), but so far they 
have been successful only under special circumstances. 
 
An alternative approach to Kalman Filter which is much less expensive is 
Ensemble Kalman Filter (EnKF) suggested first by Evensen (1994) and now 
under development by several groups (Hamill, 2005). In the original Extended KF 
the background error covariance is updated by using the linear tangent model 
and its adjoint (Ghil et al, 1981, Cohn, 1997), equivalent to running the model 
about N times, where N is the number of degrees of freedom. By contrast, EnKF 
attempts to estimate the evolution of the background error covariance from an 
ensemble of K forecasts, with K<<N. In the formulation of EnKF of Evensen 
(1994) and Houtekamer and Mitchell (1998), ensembles of data assimilation are 
driven by perturbed observations and used to derive the background error 
covariance from the ensemble of forecasts. A more recent class of EnKF is 
known as square-root filters (Tippett et al, 2002, Bishop et al., 2001, Anderson, 
2001, Whitaker and Hamill, 2002, Ott et al, 2002, Ott et al, 2004). The ensemble 
forecasts are used to obtain a most likely forecast (the ensemble mean 
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Filter equations and the new observations are then used to obtain the most likely 
analysis
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, with the analysis increment (difference between the single analysis 

and the forecast) lying within the subspace of the forecast ensemble 
perturbations. After this is completed, the new initial analysis perturbations 
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for the next analysis cycle are obtained by solving the square root problem  
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# , where A is the analysis error covariance estimated by the 

Kalman Filter, and K is the number of ensemble members. The solution of this 
problem is not unique and different square-root filters have adopted different 
solutions to the square-root problem (Tippett et al, 2002, Ott et al, 2002). An 
advantage of the square-root filter approach is that there is no need to add 
perturbations to the observations, which reduces the sampling error (Whitaker 
and Hamill, 2002). 
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 Several of the EnKF approaches reduce the computational cost by 
assimilating the observations one at a time, for the whole physical domain, a 
method known as sequential assimilation of observations. This is done using a 
localization of the error covariance in the horizontal and in the vertical, to avoid 
spurious long-distance correlations due to sampling. Although the sequential 
assimilation of observations is very efficient with limited observations (such as 
those available before 1979), it becomes less practical with the abundant satellite 
observations currently available (about 3.5 million data per assimilation cycle, 
about 40 times more than a decade ago) and planned for the next decade.     
 
 A different approach, also within the class of the square-root filters is the 
Local Ensemble Kalman Filter (LEKF) method (Ott et al, 2002, 2004, Szunyogh 
et al, 2004). In the EnKF problem is solved locally in physical space, not in 
observation space. For each grid point a local 3D volume of the order of 700km 
by 700km by a few vertical layers is used to perform the analysis. The Kalman 
Filter equations are solved exactly in the subspace locally spanned by the global 
ensemble members, using all the observations available within the volume. This 
localization in space results in a further reduction of the number K of ensemble 
members needed to obtain an accurate solution, so that matrix operations are 
done in a very low dimensional space. The analysis is carried out independently 
at each grid point, leading to a completely parallel algorithm.  
 
 In schematic Fig 6 we compare Ensemble Kalman Filtering (EnKF) with 
the 3D-Var approach, in which the background error covariance is estimated as 
an average over many cases. Fig. 6a shows how the 3D-Var analysis maximizes 
the joint probability defined by the observations error covariance and the 
background error covariance, both of which are high dimensional. Since the 3D-
Var background error covariance is a statistical average, the 3D-Var analysis 
does not know about “errors of the day”. Fig. 6b shows that in the EnKF, the 
ensemble perturbations define a very low-dimensional subspace within which the 
forecast errors lie, and the KF analysis maximizes the joint probability within that 
subspace. Because the computations are performed within this subspace, the 
rank of the matrices involved is low, and the Kalman Filter equations providing 
the analysis and analysis error covariance can be solved directly, not iteratively.  
 
 Figure 7 shows the background errors and the analysis corrections based 
on a given set of noisy observations in a quasi-geostrophic data assimilation 
system (Morss et al, 2000, Hamill and Snyder, 2000, Corazza et al, 2004). The 
top panel corresponds to 3D-Var, with a background error covariance constant in 
time. Because the system does not know about the dynamical stretching 
produced by the “errors of the day”, the analysis increments introduced by the 
new observations tend to be isotropic. The bottom panel shows that the Local 
Ensemble Kalman Filter (Ott et al, 2004, Szunyogh et al, 2004) is much more 
efficient in correcting the background errors. The large improvements made on 
the analysis are also apparent in forecasts (not shown). 
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 Performing the EnKF locally in space substantially reduces the number of 
ensemble members required for the analysis, as shown in Figure 8, from Ott et 
al, 2004, obtained using the Lorenz (1996) model. When performed globally, the 
number of ensemble members required for the EnKF to converge to the optimal 
value is proportional to the size of the model. When done locally, the number of 
ensemble members is reduced from 27 to 8, and it does not increase with the 
size of the model. In addition, the analysis for different grid points can be carried 
out in parallel, since they are independent from each other. The efficiency of 
localization is schematically shown in Figure 8, where three independent 
unstable regions A, B, C, can each have wavenumber 1 and wavenumber 2 
instabilities, in the same way that different areas of the world can develop 
baroclinic instabilities that evolve independently from each other. Three of the 
possible ensemble perturbations are depicted. From a local point of view, the first 
two perturbations are enough to represent all possible combinations of 
wavenumbers 1 and 2 instabilities, whereas from a global point of view, the third 
perturbation and many others are linearly independent from the first two.  
 The LEKF has been tested in a “perfect model” mode, using the 
operational NCEP Global Forecasting System at a resolution of T62/28 levels, 
with excellent results (Szunyogh et al, 2004). Fig. 9 shows the evolution of the 
analysis of surface pressure, when about 11% of the points (separated by about 
200km) have “rawinsonde” observations. The analysis errors for temperature and 
winds show similar quick convergence to values much smaller than the 
observational errors. Fig. 10 shows the vertical rms analysis errors for 
temperature and zonal wind for several levels of observational density, including 
11% of the grid points, a density similar to that of the rawinsondes in the NH 
extratropics, and 2%, a density similar to rawinsondes in the SH. The ability of 
the LEKF to extract information through the knowledge of the “errors of the day” 
is very encouraging. Fig. 10 shows that the despite the local nature of the 
analysis, in the perfect model simulation, the LEKF, with just 2% observations, is 
able to reach “superbalance”, being able to reproduce the evolution of not only 
slow synoptic waves but also that of a gravity wave present in the “nature” run. 
 
4. Prospects for operational implementation 
 
 At the time of this writing (December 2004), tests of the LEKF with real 
observations have not yet been carried out. Tests with other square-root filters 
have been performed only with rawinsonde upper air observations and cloud 
tracked winds, and yield results comparable in the Northern Hemisphere with the 
3D-Var used in the NCEP Reanalysis, which also used satellite retrievals (Jeff 
Whitaker, pers. comm., 2004). The perturbed observations approach has been 
tested at CMC in an operational environment and also yields results comparable 
to those of the very mature operational 3D-Var in the CMS (Houtekamer et al, 
2004). By contrast, 4D-Var has been shown to be superior to 3D-Var in several 
centers (ECMWF, MeteoFrance, CMC). This relatively disappointing 
performance of the EnKF approach, although it is to be expected in the still early 
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stages of testing, is in contrast with the excellent results obtained with perfect 
model simulations.  
 
 From this experience we cannot say at this point in time whether EnKF will 
be able to compete with or replace 4D-Var in operational centers as the next data 
assimilation system of choice. However, EnKF has a number of very attractive 
advantages that hold promise once the new systems are tested and tuned. 
Because of familiarity we will describe the advantages of the LEKF system that 
has been developed at the University of Maryland (Ott et al, 2002, 2004, Hunt et 
al, 2004, Szunyogh et al, 2004), comparing with the corresponding 
characteristics of 4D-Var, but some of the advantages are generic to other 
EnKFs.   
 
a) The LEKF is very efficient, due to its complete parallelism and relatively few 
required ensemble members, and can use data simultaneously. In the original 
formulation it takes only 15 minutes to assimilate 1.5 million observations using 
40 ensemble members on a cluster of 25 dual processor 2.8 GH PCs. This 
includes the 6 hour 40-member ensemble forecast, which takes about 6 minutes 
(and which would be free within an operational center that performs ensemble 
forecasting). Hunt (pers. comm., 2003) has developed an alternative algorithm 
(Local Ensemble Transform Kalman Filter, LETKF) not based on singular value 
decomposition, which is about 3 times faster than the LEKF while yielding 
essentially identical results (I. Szunyogh, and E. Kostelich, pers. comm., 2004). 
The efficiency of the LEKF ensures that it can be used operationally with a 
resolution at least the same as that of the operational ensemble forecasting 
system. 
b) Like other EnKF methods, the LEKF does not require the development and 
maintenance of the model’s linear tangent or adjoint models, saving the large 
effort needed for these models, and avoiding the need for linear approximations, 
since the full nonlinear model is used for every operation.  
c) Similarly, like other EnKF, the LEKF does not require the Jacobian or the 
adjoint of the observation operator H, another important advantage (Houtekamer 
and Mitchell, 2001, Miyoshi, 2004, Szunyogh et al, 2004). Basically, if we define 
a matrix  E  of perturbation vectors, so that    B = EE

T ; HBH
T
= (HE)(HE)T , one 

can replace the linear  HE with its fully nonlinear expression, 
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1
) ' H (x)"# $% , which is simpler and 

more accurate. 
d) It can be easily extended to 4 dimensions (4DLEKF), so that observations can 
be assimilated at their time of observation, in between analysis times (Hunt et al, 
2004). This is performed at a relatively low computational cost, by using the 
ensemble to “transport” observational increments from the time of observation to 
the analysis time. This is important since experience suggests that the ability to 
assimilate observations at the right time is the main advantage of 4D-Var (rather 
than the evolution of the covariance). 



 

 15 

e) The 4DLEKF can be used as a smoother, taking advantage of future 
observations, as would be possible in a Reanalysis mode, at the cost of doubling 
the computations. At a given time t0 a preliminary (operational) analysis and 
analysis error covariance is performed using only past observations, then 
ensemble forecasts between this time and the next analysis time t1 are used to 
bring the observations in that interval back to t0 , and a final, more accurate 
analysis and analysis error covariance can be obtained at t0. The problem of 
using the data twice (which would erroneously reduce the analysis error 
covariance) can be handled by increasing the observation error covariance (e.g., 
doubling it for observations used both at t0 and t1). 
f) The LEKF provides diagnostic tools that can be used to tune the system in the 
future. One of them is the local effective dimension ED (Patil et al, 2000) 

obtained from the singular values
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et al (2004) showed that there is a strong relationship between the projection of 
the forecast error on the ensemble perturbations (not available in real data 
assimilation experiments) and the effective dimension. Their Fig. 7 shows that in 
regions where the projection of the error on the ensemble is close to 100%, as in 
most of the mid-latitudes, the effective dimension (about 10) is much smaller than 
the actual ensemble dimension (40). In the tropics, where the projection is only 
about 40%, the effective dimension is larger, of the order of 30 or more. Other 
diagnostics that can be used for tuning are comparisons of observations minus 
forecast and observations minus analysis, which can be compared with their 
predicted values. 
g) EnKF can be used to obtain best estimates of model bias as part of the data 
assimilation (e.g., Anderson, 2001). 
h) Finally, the LEKF provides estimates of the background and the analysis error 
covariances, (and thus ideal initial perturbations) although they are based on a 
space with limited dimension given by the ensemble size. This information has 
other important applications such as adaptive observations, a new area of great 
growth in recent years (Thorpe and Petersen, 2005). Fig. 12 suggests that EnKF 
makes possible to have interactive targeted observations, with remote sensing 
instruments dwelling only on regions identified by the ensemble as having low 
accuracy forecasts. 
 
 
5. Final comments 
 
 Although the EnKF approach in general and the LEKF/LETKF in 
particular, seem to have many advantages, so far there has been no direct 
comparison between LEKF and 4D-Var in a realistic system. The EnKF is based 
on a reduced dimension, albeit computed with full nonlinearity, and it provides an 
estimate of the background and analysis covariances. 4D-Var requires an 
estimate of the background error covariance  B at the initial time of the 
assimilation window, and it is common to start with a 3D-Var  B . Obtaining a 
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better evolving estimate of  B with a reduced Kalman Filter has been difficult 
(Fisher et al, 2003). Mike Fisher showed in a recent presentation that 4D-Var is 
equivalent to a full Kalman Smoother (which at the end of the interval yields the 
same estimate as the Kalman Filter) if the assimilation window is sufficiently long, 
because the lack of an initial  B  is “forgotten”. Fisher proposed that a 4D-Var with 
a 3-10 day window and including model errors (weak constraint) will provide a 
solution equivalent to a full rank Kalman Filter, and it could perhaps be made 
computationally affordable. This is an attractive alternative to EnKF and only 
experience will tell whether one is better than the other.  
 
 An important remaining problem is that of model deficiencies, leading to 
model systematic errors and to problems such as those suggested in figure 1b. A 
successful approach to start addressing this problem for ensemble forecasting 
applications is using multiple models (Krishnamurti et al, 2000, Hou et al, 2001). 
Other approaches (DelSole and Hou, 1999, Kaas et al, 1999) rely on empirical 
methods to reduce the errors using past observations. Yet another method, 
known as “dressing” adds random perturbations to the ensemble forecasts in 
order to reproduce the observed error covariance with the ensemble (Roulston 
and Smith, 2003, Wang and Bishop, 2004). It is possible that the Ensemble 
Kalman Filtering approach will also be able to handle efficiently model errors by 
augmenting the model variables with a relatively small number of parameters 
associated with model errors, and using the observations to estimate the optimal 
value of their time-varying coefficients. 
 
 If current research in Ensemble Kalman Filtering methods achieves their 
promise, then the problems of data assimilation and ensemble forecasting may 
indeed have a unified solution. 
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Figure 5: Schematic of the analysis given the background forecast in a very large 
dimensional space, the background error covariance B (which in the case of 3D-
Var is isotropic and constant in time), the vector of observations, in a very large 
dimensional space, with observations error covariance R. The analysis estimate of 
the true state of the atmosphere maximizes the joint probability distribution. Top: 
3DVar. Bottom: EnKF, in which the ensemble forecast members define a subspace 
within which the analysis lies. 
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Fig. 6: Simulation of data assimilation in a quasi-geostrophic model, assimilating 
potential vorticity observations at a particular day (June 15). The shades represent the 
12 hr forecast (background) error and the contours the analysis corrections. Top: 3D-
Var. Bottom: Local Ensemble Kalman Filter. Figures courtesy of Matteo Corazza. 

Background error (shaded) and 3D- Var analysis increments 
increment (contours) 

  Background error (shaded) and LEKF analysis increments 
(contours) 
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the Kaplan-Yorle dimension is about 27 for the 40 variable model and increases linearly 
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Fig. 8: Schematic showing the advantage of performing a local rather than a 
global analysis. The domain in composed of three regions, a, b, c, each of which 
has possible instabilities with wave numbers 1 and 2. From a local point of view, 
the ensemble perturbations V1 and V2 are sufficient to represent all possible 
unstable perturbations, whereas from a global point of view, V3 is independent 
from V2, and there are many more independent perturbations. 
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Fig. 9: Evolution of the LEKF analysis error in surface pressure in hPa as 
a function of assimilation step (in units of 6 hr). The rms error of the 
observations is shown by the dashed line. Observations are made at 
11% of the grid points, and the model has T62 horizontal resolution 
(about 200km).  (From Szunyogh et al., 2004). 
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Fig. 10: RMS global analysis error for temperatures (left, oC) and tropical 
analysis error for zonal winds (right, m/sec). The dashed line is the rms of 
observations. From left to right, the following percentage of the grid points 
have “rawinsonde” data: 100% , 11%, 5%, 2%. Since the grid resolution is 
about 200km, the second is similar to the current rawinsonde density in the 
Northern Hemisphere, and the 4th to the Southern Hemisphere and tropics 
(From Szunyogh et al., 2004). 

Fig. 11: Comparison of the true (crosses) and analyzed 
(circles) gravity wave observed at 30N 150W. The 
observing network has density similar to that of the SH. 
(From Szunyogh et al, 2004) 
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Fig. 12: Example of a 6 hr trace of the 500mb height forecast error 
covariance showing the potential use of LEKF for adaptive observations. 
Regions in blue and purple do not need immediate observations. Mid- 
latitude areas marked with red have large errors but a low effective ensemble 
dimension, so that they are prime areas for targeting. Tropical regions with 
large errors (ovals), on the other hand, have also large effective ensemble 
dimension presumably because the error growth is dominated by convection. 
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