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Data assimilation

* Combination of a forecast (background) 7, with
observations 7, to give a “best” estimate of the true
state of the atmosphere (analysis) 7.

 We need information about the errors: sz , Gj
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We can now use the analysis as initial conditions for the
next forecast, get new a new observation, and repeat,
this 1s called the “analysis cycle”.



Ensemble Forecasting

* Normally a single control forecast 1s
integrated from the analysis (initial
conditions)

* In ensemble forecasting several forecasts
are run from slightly perturbed initial
conditions (or with different models)

* The spread among ensemble members gives
information about the forecast errors



Ensemble forecasts

An ensemble forecast starts from 1nitial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”
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Example of a very predictable 6-day forecast, with “errors of the day’

AN [ - T RNV
T T, G S e N

./I/@%K'-L“!‘E‘—‘\ w e G

I SO N

\‘{-‘.;-'._ “.“ M S é . ‘“‘;\'\\' "q\‘!')’.:‘é’*'a/// ;“F}

'.-j:l .-\\.I. o \\§?4 - \ I’t}’./ _P\
N —><

of ra L ‘L.: Y% \
! " T }g ; ‘-‘*&‘%‘\T\l 1A *
3 NI 9.8 BN \ N\ TP
g “". h*"aﬂ&! ?!’ \\gs‘a‘j

-,
NS
S _

x

. | TSI\ D tﬂ?_f.{"!iﬁfﬁ ~

E | \:‘_..__ ‘—‘-E}- SN I&“‘\",‘i"f;ﬂ'f
r'y"gf.l_a}*\‘sm‘,l‘;.%mﬁﬁi‘w\\‘
Qw2 s b))

|
N

TN T

-
T
=

\_L{D -120 -8 -100

951115/1200V000 500 MB height 5640m VER T126
951115/1200vV144 500 MB height 5640m AVN ptbn

951115/1200v144 500 MB height 5640m AVN T126
951115/1200v132 500 MB height 5640m MRF ptbn
951115/1200V132 500 MB height 5640m MRF Té62
951115/1200V132 500 MB height 5640m MRF T126

Errors of the day tend to be localized and have simple shapes
(Patil et al, 2001)
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The errors of the day are instabilities of the
background flow. At the same verification time, the
forecast uncertainties have the same shape

4-day forecast
verifying on
the same day
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Strong instabilities of the background tend to have simple
shapes (perturbations lie in a low-dimensional subspace)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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It makes sense to assume that the errors in the analysis
(initial conditions) have the same shape as well:
the errors lie in the subspace of the bred vectors
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Errors of the day

ney are 1nstabilities of the background flow

ney dominate the analysis and forecast errors

ey are not taken into account 1n data

assimilation except for 4D-Var and Kalman
Filtering (very expensive methods)

Their shape can be estimated with breeding

Their shape 1s frequently simple (low
dimensionality, Patil et al, 2001)



One approach to create initial perturbations for
ensemble forecasting with errors of the day: breeding

* Breeding is simply running the nonlinear model a
second time, from perturbed initial conditions

Forecast values
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QG simulation of data assimilation (Corazza et al, 2003)

Bred vectors (color) have shapes similar to forecast error (contours).

Backg Error (cont) and bred vector n.1 [al6sfl10, t=74]
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The bred vector clearly knows about the “errors of the day”



Bred vectors (like forecast errors)
are independent of the norm

Bred vector normalized Bred vector normalized
using enstrophy norm using streamfunction norm

Backg Error (cont) and bred vector n.1 [a32sfl10, t=154]
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Data assimilation: combine a forecast with observations. We
make a temperature forecast 7, and then take an observation 7.
A popular way to optimally estimate the truth (analysis) 1s to
minimize the “3D-Var” cost function:
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The analysis is givenby 1 =17, + K(T, —1,)
where KZsz /(sz-l-daz)

and the analysis error 2 2
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variance 1s smaller
than the forecast or obs.



3D-Var used in operational forecasting centers

J = min%[(xb - X )TB‘1 (x, —x,)+(y,6 — HX, )T R™ (y, —Hx )]

Distance to forecast Distance to observations

It’s the same as the scalar formula for 7, but now x 1s a
model state vector, with 10%-%d.o.f., and y, is the set of
observations, with 10> d.o.f.

*R 1s the observational error covariance, B the forecast
error covariance.

In 3D-Var B 1s constant: it does not include “errors of the
day”



As 1n the scalar case, the 3D-Var analysis is given by
Xa — Xb T K(yo _be)

where the weight matrix is

-1 Ty -1 —1yy7 -1
K=(B +HR H) HR
and the analysis error covariance is given by

A=(I-KH)B

e In 3D-Var B 1s assumed to be constant: 1t does not include “errors
of the day”

* 4D-Var 1s very expensive and does not provide the analysis error
covariance.

* In Kalman Filtering B 1s forecasted. It 1s like running the model N
times, where N~10°3, so that it is impractical without simplifications



The solution: Ensemble Kalman Filtering

1) Perturbed observations and ensembles of data assimilation
« Evensen, 1994
 Houtekamer and Mitchell, 1998

2) Square root filter, no need for perturbed observations:
« Tippett, Anderson, Bishop, Hamill, Whitaker, 2003
 Anderson, 2001

 Whitaker and Hamill, 2002

« Bishop, Etherton and Majumdar, 2001

In these, the obs are assimilated one at a time

3) Local Ensemble Kalman Filtering, also a square root filter,
but done in local patches

o Ottetal, 2003, MWR under review



Suppose we have a 6hr forecast (background) and new observations

The 3D-Var Analysis doesn’t know
about the errors of the day

Background ~1068 d.o.f.



An example with the QG system (Corazza et al, 2003)

Background error (color) and 3D-Var analysis correction (contours)

The analysis corrections due to the observations are isotropic
because they don’t know about the errors of the day



With Ensemble Kalman Filtering we get perturbations pointing
to the directions of the “errors of the day”

igns ~10>-7 d.o.f. @ Background ~1068 d.o.f.

Errors of the day: they lie
on the low-dim attractor

3D-Var Analysis: doesn’t knox
about the errors of the da



Ensemble Kalman Filtering 1s efficient because
matrix operations are performed in the low-dimensional
space of the ensemble perturbations

Ensemble Kalman Filter Analysis:
correction computed in the low dim
attractor

Observatig e Background ~1068 d.o.f.

Errors of the day: they lie
on the low-dim attractor

3D-Var Analysis: doesn’t knox
about the errors of the da




QG model example of Local Ensemble KF (Corazza et al)

Background error (color) and LEKF analysis correction
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The LEKF does better because it captures the errors of the day



After the EnKF computes the analysis and the analysis error covariance
A, the new ensemble initial perturbations oa, are computed:

ft . These perturbations represent the
Z o 315 a, = A analysis error covariance and are
i=1 used as initial perturbations for the

next ensemble forecast

Observations ~1057 d.o.f. . 6-8
/Background ~1008 d.o.f.

Errors of the day: they lie
on the low-dim attractor



The process 1s repeated: an ensemble of forecasts 1s started from each of
the initial perturbed analyses and integrated for 6 hours. The new
background 1s the average of the forecasts, and the new low-dimensional
attractor 1s given by the forecast perturbations.

ew ensemble KF analysis

.~ New background

New errors of the day (smaller)

New observations @




Again, from the QG simulation (Corazza et al, 2003)

Background error and 3D-Var analysis increment, June 15

The 3D-Var does not capture the errors of the day



Background error (color) and LEKF analysis increments
(contours), June 15
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The LEKF makes better use of the obs. because it
iIncludes the errors of the day



Area averaged Analysis Error: 3d-Var (black), LEKF
(green), LEKF with covariance inflation (yellow)
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This advantage continues 1nto the
3-day forecasts
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Why use a “local” ensemble approach?

* In the Local Ensemble Kalman Filter we compute the
generalized “bred vectors™ globally but use them locally (3D
patches around each grid point of ~1000km x 1000km).

* These local columns provide the local shape of the “errors of
the day”’.

At the end of the local analysis we create a new global
analysis and 1nitial perturbations from the solutions obtained at
cach grid point.

* This reduces the number of ensemble members needed.

* It also allows to compute the KF analysis independently
at each grid point (“embarrassingly parallel”).



Results with Lorenz 40 variable model

Used by Whitaker and Hamill (2002) to validate
their ensemble square root filter (EnSRF)

A very large global ensemble Kalman Filter
converges to an “optimal” analysis rms error=0.20

This “optimal” rms error 1s achieved by the LEKF
for a range of small ensemble members

We performed experiments for different size
models: M=40 (original), M=80 and M=120, and
compared a global KF with the LEKF



FULL ENSEMBLE KALMAN FILTER ANALYSIS ERROR
AS A FUNCTION OF THE NUMBER OF ENSEMBLE MEMBERS
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With the global EnKF approach, the number of ensemble members
needed for convergence increases with the size of the domain M



LEKF ANALYSIS ERROR AS A FUNCTION OF
THE NUMBER OF ENSEMBLE MEMBERS

RME ERROR
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With the local approach the number of ensemble members remains small



Why 1s the local analysis more efficient?

Schematic of a system with 3 independent regions of instability,
A, B and C. Each region can have either wave #1 or #2 instability

From a local point of view, BV1 and BV2 are enough to represent all
possible states.

From a global point of view, BV2 and BV3 are independent, and
there are 63 possible different states...



Time mean error: optimal=0.20, eps=0.012

k = Rank of B
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Time mean error: optimal=0.20, 21+1=13

eps = enhanced
inflation
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From Szunyogh, Kostelich et al

Preliminary LEKF results with NCEP’s global model

 T62,28 levels (1.5 d.o.f.)

e The method 1s model independent: the same code
was used for the L40 model as for the NCEP
global spectral model

* Simulation with observations at every grid point
(1.5 million obs)

* Very parallel! Each grid point analysis done
independently

* Very fast! 20 minutes in a single 1GHz Intel
processor with 10 ensemble members



RMS ERROR IN TEMPERATURE ANALYSIS (500 hPa)
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From Szunyogh, Kostelich et al

Preliminary results with NCEP’s global model

A) observations at every grid point

* With 40 members and no tuning, the rms
error was half of the observations rms error

B) observations were thinned until only 2.5%
of the grid points had observations

* The solution of LEKF converged to the
same level of errors!!



Advantages of Ensemble KF

It knows about the “errors of the day” through B.

Matrix computations are done in a low-
dimensional space.

In LEKF computations for each grid point are
independent from the neighbors (very parallel).

It can handle many observations

Both accurate and efficient: can be done
frequently (e.g., once every hour)

EnKF generates perfect initial perturbations for
ensemble forecasting (bred vectors are now both
scaled and rotated to represent the analysis error
covariance).



In summary

New ensemble Kalman Filtering methods have
become feasible

They provide optimal analysis and initial
ensemble perturbations

Howeyver,...

The most important remaining problem is how to
handle model deficiencies

EnKF may also be the most efficient way to tune
models and reduce errors...
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