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Promising new tools for the LETKF(1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay 
and Hunt, MWR, 2012) 
•  It extracts more information from observations by using them 
more than once. 
•  Useful during spin-up (e.g., hurricanes and tornados). 
•  It uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b. 
•  Typhoon Sinlaku (Yang et al., 2012) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2012) 
•  Very good results! 
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Promising new tools for the LETKF(2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan Lien, 
Eugenia Kalnay and Takemasa Miyoshi, 2013) 

•  Assimilation of precipitation has generally failed to improve 
forecasts beyond a day. 

•  A new approach deals with non-Gaussianity, and assimilation 
of both zero and non-zero precipitation. The model now 
“remembers” the assimilation, so that that medium range 
forecasts are improved. 
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Promising new tools for the LETKF(3) 
3.  Forecast Sensitivity to Observations and “proactive QC” 

 (with Y Ota, T Miyoshi, J Liu, and J Derber)  
•  A simpler, more accurate formulation for the Ensemble 

Forecast Sensitivity to Observations (EFSO, Kalnay et al., 
2012, Tellus). 

•  Ota et al., 2012 tested it with the NCEP EnSRF-GFS 
operational system using all operational observations. 

•  Allows to identify “bad observations” after 12 or 24hr, and then 
repeat the data assimilation without them: “proactive QC”. 

4. Estimation of surface fluxes as evolving parameters 
 (Kang et al., 2011, Kang et al., 2012) 

•  Important for the carbon cycle, surface fluxes of heat, moisture 
and momentum (stress) and eventually for coupled data 
assimilation. 
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Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���

(a square root filter)	



•  Model independent 
(black box) 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  100% parallel 
•  No adjoint needed 
•  4D LETKF extension 
•  Computes the weights 
for the ensemble forecasts 
explicitly 

(Start with initial ensemble) 

LETKF Observation 
operator 

Model 

ensemble  analyses 

ensemble forecasts 

ensemble  
“observations” 

Observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

 

Localization based on observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

All observations (purple diamonds) 
within the local region are assimilated 

Localization based on observations 

The LETKF algorithm can be described in a single slide! 
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Local Ensemble Transform Kalman Filter (LETKF) 

Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, and 
compute the local analysis error covariance and perturbations in 
ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the new 

global analyses. Note that the the output of the LETKF are analysis 
weights         and perturbation analysis matrices of weights        . These 
weights multiply the ensemble forecasts. 
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
! Quasi Outer Loop (QOL)
! “Running in place” (RIP) for faster spin-up
! Use of future data in reanalysis
! Ability to use longer windows and nonlinear perturbations

tn tn-1 
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No-cost LETKF smoother first 
tested on a QG model: it works… 

“Smoother” 
reanalysis  

LETKF Analysis 
xn
a = xn

f +Xn
fwn

aLETKF analysis  
at time n 

Smoother analysis  
at time n-1 !xn!1

a = xn!1
f +Xn!1

f wn
a

Very simple smoother: apply the final weights at the 
beginning of the window. It allows assimilation of 
future data, and assimilating data more than once.  
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Nonlinearities: “Quasi Outer Loop” (QOL) 

Quasi Outer Loop: use the final weights to correct only the 
mean initial analysis, keeping the initial perturbations. 
Repeat the analysis once or twice. It re-centers the 
ensemble on a more accurate nonlinear solution. 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
              +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.66  0.48    0.39  
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Nonlinearities, “QOL” and “Running in Place” 

Quasi Outer Loop: similar to 4D-Var: use the final weights 
to correct only the mean initial analysis, keeping the 
initial perturbations. Repeat the analysis once or twice. 
It centers the ensemble on a more accurate nonlinear 
solution. 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
               +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.68  0.47    0.35  
 
“Running in Place” smoothes both the analysis and the 
analysis error covariance and iterates a few times… 
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Running in Place: Spin-up with a QG model 

Spin-up depends on the  initial perturbations, but RIP works well even with 
uniform random perturbations. RIP becomes even faster than 4D-Var (blue).  

 

RIP accelerates 
the EnKF spin-up 
(e.g., hurricanes, 
severe storms) 

LETKF with uniform 
random initial 
perturbations 

RIP 

4D-Var with 3D-Var 
Initial perturbations 
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Why RIP works: Results with a Linear model 

xn = M (xn!1) = xn!1 +!

! n
2 =G(! n!1

2 ) = C! n!1
2

•  RIP adapts to using an observation N-times by dividing the 
spread by N: RIP converges to the regular optimal KF solution. 

•  The spin-up is faster and the analysis update is “softer” (in 
small steps) rather than in large steps. 
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LETKF-RIP with real observations 
(Typhoon Sinlaku, 2008)  

11/23/2011@NTU-­‐TIMS	
  

SYNOP(+),SOUND(△),	
  
DROPSONDE(○),	
  
Typhoon	
  center	
  (X)	
   RIP	
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Flight	
  data	
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  forecast	
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LETKF-­‐RIP	
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Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan) 
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Observation impact on the forecast:  
Without RIP 

ObservaHon	
  impact	
  with	
  respect	
  
to	
  dropsondes	
  (standard	
  LETKF)	
  	
  

ObservaHons	
  impact	
  at	
  t=0	
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  the	
  
forecast	
  at	
  Hme	
  t	
  	
  
(Kalnay	
  et	
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  and	
  Kalnay,	
  2008)	
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  impact	
  

Forecast	
  error	
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  reduced	
  because	
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  assimilaHng	
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  observaHon	
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Observation Impact for the first set of dropsondes 

The	
  effecHveness	
  of	
  the	
  dropsonde	
  data	
  is	
  greatly	
  improved	
  by	
  RIP	
  and	
  the	
  
negaHve	
  impact	
  shown	
  in	
  the	
  control	
  LETKF	
  is	
  much	
  reduced.	
  

Mean	
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With RIP 

Without RIP 

error reduction 



18 

Steve Penny’s thesis 
defense 

April 15, 2011 

An application of LETKF-RIP to ocean data assimilation 

Data Assimilation of the Global Ocean  
using 4D-LETKF, SODA(OI) and MOM2 

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin 

Penny (now at UMD/NCEP) implemented the LETKF 
with either IAU or RIP and compared it with SODA (OI) 
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LETKF-RIP B/A 

FREE-RUN 

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis  
Temperature  
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LETKF-RIP B/A 

Free-Run 

SODA B 
SODA A 
LETKF-IAU A 

RMSD (psu) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Salinity (psu),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis 
Salinity 
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Why is LETKF-RIP so much better than SODA 
or LETKF-IAU for the ocean reanalysis? 

•  The ocean observations are too sparse for  a 
standard EnKF, or even OI/3D-Var with a short (5-
day) window. 

•  SODA and LETKF-IAU used a much longer window 
(30 days) in order to hammer the system with the 
available observations. 

•  LETKF-RIP uses a 5-day window but re-uses the 
observations in order to extract more information. 
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Summary for LETKF-RIP (or QOL)  

•  Kalman Filter is optimal for a linear, perfect model. 
•  During spin-up, or when the ensemble perturbations grow 

nonlinearly, EnKF is not optimal, since it does not extract 
enough information from the observations. 

•  The LETKF “no-cost” smoother (or, equivalently, the 4D-
EnSRF) allows LETKF-RIP to use the observations more than 
once, and thus extract much more information. 

•  This shortens the spin-up and produces more accurate 
forecasts with the same observations. 

•  For linear models RIP converges to the same optimal KF 
solution but with spread reduced by ~ 

•  For long windows and nonlinear perturbations, RIP advances 
in smaller steps and approaches the true attractor more 
“softly”.  

N
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(2) Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Assimilation of precipitation has been done by changing the moisture Q in 
order to make the model “rain as observed”. 

•  Successful during the assimilation: e.g. the North American Regional 
Reanalysis had perfect precipitation! 

•  However the model forgets about the changes soon after the assimilation 
stops!  

•  The model will remember potential vorticity (PV). 
•  EnKF should modify PV efficiently, since the analysis weights will be 

larger for an ensemble member that is raining more correctly, because it 
has a better PV. 

•  However, 5 years ago, we had tried assimilating precipitation observations 
in a LETKF-SPEEDY model simulation but the results were POOR! 

•  Big problem: precipitation is not Gaussian. 
•  We tried a Gaussian transformation of precipitation and it worked!  



24 

G!1 (x ) = 2erf !1 (2x !1)

How do we transform precipitation y to a Gaussian ytransf? 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 
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Raobs 

Q-only 

All variables 

SH 

NH 

TR 
One year of 

5-day 
forecasts 

The model remembers the impact of pp assimilation 
in the SH, NH and tropics! 
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Assimilated only rain 

Assimilated both rain and no rain 

If we assimilate only rain the results are much worse! 
We need to assimilate both rain and no rain! 
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50% errors, No Gaussian Transform 

50% errors, with Gaussian Transform 

20% errors, with GT 

The impact of the Gaussian Transform is important  
with large observation errors (50% rather than 20%). 
The impact of GT50% is almost as good as GT20%. 
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Vorticity errors and corrections 

There is no vorticity information in the pp observations, but 
the LETKF clearly knows about the vorticity errors 



How about real observations? 
We will use TRMM/TMPA satellite estimates  

(from G. Huffman) with the NCEP GFS 

TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 



TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 

TRMM/TMPA (data from G. Huffman) 



Summary for assimilation of precipitation 

•  The model remembers potential vorticity (dynamics), does not 
remember moisture changes, or even temperature. 

•  For this reason, when using nudging, or variational assimilation 
of precipitation to change Q and T, the model “forgets” this 
information and returns to the original forecast. 

•  EnKF has a better chance to assimilate potential vorticity by 
giving higher weights to ensemble members with good precip. 

•  In addition, EnKF has the advantage of not requiring model 
linearization, a problem for variational systems. 

•  We found that EnKF with a Gaussian transformation of 
precipitation assimilates rain info and remembers it during the 
forecast. 

•  Requiring at least several ensemble forecasts to have Rain>0 
allows the effective assimilation of both rain and no rain. 32 



The NCEP 5-day skill dropout problem 



Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

Here we show a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi: Tellus, 2012) 

The only difference between         and            is the assimilation of observations at 00hr: 

 

 

  Observation impact on the reduction of forecast error:   

(Adapted from Langland 
and Baker, 2004) 
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Ensemble Forecast Sensitivity to Observations 
!e2 = (e t |0

T e t| 0 " e t |"6
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Langland and Baker (2004), Gelaro, solve this with the adjoint: 

!e2 = (y " H (x0 |"6
b ))#$ %&

T
K TMT (et | 0 + e t |"6 )

This requires the adjoint of the model       and of the data 
assimilation system      (Langland and Baker, 2004) KT

MT



Ensemble Forecast Sensitivity to Observations 
Langland and Baker (2004): 

!e2 = MK(y " H (x0 |"6
b )#$ %&

T
(e t |0 + et |"6 )

= (y " H (x0|"6
b )#$ %&

T
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With EnKF we can use the original equation without “adjointing”: 
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T
(e t |0 + et |"6 )

= (y " H (x0|"6
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T
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f Y aTR!1 / (K !1)

This uses the available nonlinear forecast ensemble products. 

Thus, 

Recall that 



Tested ability to detect a poor quality ob impact 
on the forecast in the Lorenz 40 variable model 

 The adjoint and the ensemble 
sensitivity give similar observation 
impact on the 24 hr forecast.  

 The ensemble sensitivity is 
nonlinear and is able to detect bad 
obs for longer forecasts 

 This was done ignoring EnKF 
localization 

Observation impact from LB(+) and from ensemble sensitivity (   ) 
1 day 10 days 

The localization center point for observation impact estimate is now 
moved with the horizontal wind: an approximation 



Impact of dropsondes on a Typhoon   
(Kunii et al. 2012)	


Estimated observation impact	


TY Sinlaku	


Degrading	


Improving	




Denying negative impact data improves forecast!	


Estimated observation impact	
 Typhoon track forecast is 
actually improved!!	


Improved 
forecast	


36-h forecasts	


TY Sinlaku	


Original 
forecast	


Observed
track	




Ota et al. 2012: Applied EFSO to NCEP GFS/
EnSRF using all operational observations. 

Determined regional 24hr “forecast failures” 
• Divide the globe into 30x30o regions 

• Find all cases where the 24hr regional forecast error 
is at least 20% larger than the 36hr forecast error 
verifying at the same time, and 

• where the 24hr forecast has errors at least twice the 
time average. 

• Identify the top observation type that has a negative 
impact on the forecast. 

• Found 7 cases of 24hr forecast  



24-hr forecast error correction (Ota et al.) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

- this could be applied to improve the 5-day skill dropouts 

MODIS 



“Proactive” QC: Bad observations can be 
identified by EFSO and withdrawn from the 

data assimilation 

!

After identifying MODIS polar winds producing bad 24 hr 
regional forecasts, the withdrawal of these winds reduced 
the forecast errors by 39%, as projected by EFSO. 



Other applications: Impacts of 
Observing Systems  

Moist Total Energy (J/Kg) Dry Total Energy (J/Kg) 

The EnKF formulation is nonlinear and thus allows computing 
Moist Total Energy and estimate more accurately the impact of 
the channels on the moisture forecast. Adjoint formulation needs 
TLM. 



Summary and the future 
•  The new EFSO formulation works well and uses available 

EnKF products. 
•  It can be used to detect observations that give bad regional 

12hr or 24hr forecasts. 
•  We can then repeat the data assimilation without the bad obs, 

a powerful tool for a “proactive” QC and monitoring. 
 
•  EnKF is a newer, much simpler technology.  
•  There is much more potential not yet exploited or 

not even explored:  
–  Estimation and correction of model errors and 

parameters (Ruiz et al, Danforth et al, Kang et al) 
–  … 



AGU fall meeting, 
2012 

Simultaneous data assimilation of CO2 and 
meteorological variables within LETKF 

coupled with NCAR CAM model  

*Ji-Sun Kang, *Eugenia Kalnay, +Junjie 
Liu, #Inez Fung, and *Takemasa Miyoshi 

*University of Maryland, College Park,MD 
+NASA/JPL, Pasadena, CA 

# University of California, Berkeley, CA 



Ensemble CO2 Data Assimilation 

•  Local Ensemble Transform Kalman Filter 
(LETKF, Hunt et al. 2007) data assimilation system 
has been applied to analyze atmospheric CO2 (C) and 
surface CO2 fluxes (CF) in addition to meteorological 
variables (U, V, T, q, Ps) 
–  UMD-UCB LETKF-C (Kang et al., 2011, 2012) 
–  Unlike inverse methods, it assimilates atmospheric 

CO2 as well as surface carbon fluxes 
–  It assimilates observations of meteorological 

variables and atmospheric CO2 simultaneously 
–  Ensemble forecast within LETKF includes the 

uncertainty of surface CO2 forcing as well as 
transport errors (forecast uncertainty of wind 
fields) 

–  It uses an assimilation window of only 6 hrs 



UMD-UCB LETKF-C  
• Multivariate data assimilation with “localization of variables” 

– We zero out the error covariance between some 
variables, because CO2 does not have a strong 
physical relation with every variables in the state 
vector, so that sampling errors are reduced 

–  Analysis includes error covariance between 
atmospheric CO2 and wind fields to take account 
for transport errors of CO 

– It has been tested very successfully in simulation 
experiments 

– Other configurations of background error 
covariance matrix can be tested with real cases 

(Kang et al. 2011, JGR) 



UMD-UCB LETKF-C 

•  Advanced inflation methods: 
–  Adaptive multiplicative inflation (Miyoshi, 2011)  
–  Additive inflation for parameters 

•  Vertical localization of column mixing CO2 
observations (GOSAT, OCO-2) 
–  Emphasizes the lower levels of variability within the 

column, even though we use column observations whose 
sensitivity (averaging kernel) is fairly uniform in the 
vertical. 

•  We use a short (6-hour) assimilation 
window 

•  In contrast, CO2 inversion methods adopt 
much longer window lengths (weeks to 
months)  (Kang et al. 2012, JGR) 



Assimilation window in LETKF-
C 

A short assimilation window reduces the attenuation of 
observed CO2 information: the analysis system can use the 
strong correlation between C and CF before the transport of 
atmospheric CO2 blurs out the essential information of 
surface CO2 forcing. 
A long assimilation window blurs this information and 
introduces sampling errors into the EnKF analysis 



LETKF-C with SPEEDY-C 
•  Model: SPEEDY-C (Molteni, 2003; Kang, 2009) 

– Spectral AGCM model with T30L7 
– Prognostic variables: U, V, T, q, Ps, C 

• C (atmospheric CO2): an inert tracer  

– Persistence forecast of CF 
•  Simulated observations 

– Rawinsonde observations of U, V, T, q, Ps 
– Ground-based observations of atmospheric 

CO2  
• 18 hourly and 107 weekly data on the globe 

– Remote sensing data of column mixing 
CO2  
• AIRS whose averaging kernel peaks at mid-

troposphere  
• GOSAT whose averaging kernel is nearly 

uniform throughout the column 

•  Initial condition: random (no a-priori 
information) 

•  20 ensembles 



▼  True CF ▼ ▼  Analysis of CF ▼ 

Results 
00Z01APR  
After three months of DA 

00Z01AUG  
After seven months of DA 

00Z01JAN  
After one year of DA 

We succeed in estimating time-evolving CF at model-grid scale 



A B 



Summary 
•  We have shown the feasibility of simultaneous analysis of 

meteorological and carbon variables within LETKF framework 
through the simulation experiments. 

•  The system LETKF-C has been tested in a intermediate-
complexity model SPEEDY-C with excellent results. 
–   Multivariate data assimilation with “localization of the 

variables”  (Kang et al. 2011) 
–  Advanced data assimilation methods for CO2 flux estimation have 

been explored (Kang et al. 2012) 
•  The implementation of the LETKF-C to NCAR CAM 3.5 model is 

now in progress 
–  Analysis step shows very good performance in OSSE with real 

observation coverage 
–  Analysis cycle with a forecast step will be operated soon 

•  The same methodology has been applied to estimating surface 
fluxes of heat, moisture and momentum, and the results are 
promising! 
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Result: Analysis of SHF 
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Result: Analysis of LHF 
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Time series of LHF/SHF 

Recall that LHF & SHF 
are updated only by the 
data assimilation here! 

Promising results from the 
estimation of “evolving 
parameters” with data 
assimilation 



Summary and the future 
•  RIP can extract more information from observations and 

accelerate spin-up. Examples: Typhoon Sinlaku and Ocean. 
•   EnKF can be used to assimilate and remember precipitation 

information, using a Gaussian Transform. 
•  The Ensemble Forecast Sensitivity to Observations can be 

used to detect observations that give bad regional 6, 12 or 
24hr forecasts. This allows repeating analysis without bad 
observations: “proactive QC” and monitoring. 

•  We can estimate surface fluxes of carbon, heat and moisture 
with the LETKF as evolving parameters. 

•  EnKF is a newer, much simpler technology.  
•  There is much more potential not yet exploited or 

not even explored:  
–  Estimation and correction of model errors and 

parameters (Ruiz et al, Danforth et al, Kang et al)… 



Comparison of 4D-Var and EnKF 

Bold is the best option 
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Improvement for cross-track error due to RIP 


