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Chaos in Numerical Weather Prediction
and how we fight it

• Lorenz (1963) introduced the concept of “chaos” in
meteorology. (Yorke, 1975, coined the name chaos!)
 Even with a perfect model and perfect initial conditions we cannot

forecast beyond two weeks: butterfly effect
 In 1963 this was only of academic interest: forecasts were

useless beyond a day or two anyway!
 Now we exploit “chaos” with ensemble forecasts and routinely

produce skillful forecasts beyond a week
 The El Niño coupled ocean-atmosphere instabilities are allowing

one-year forecasts of climate anomalies
• “Breeding” is a simple method to explore and fight chaos

 Undergraduate interns found that with breeding they could easily
predict Lorenz regime changes and their duration

• Chaos-Weather research led to the UMD Local Ensemble
Transform Kalman Filter (LETKF, Hunt et al., 2007)



Central theorem of chaos (Lorenz, 1960s):Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

TRUTH TRUTH

FORECAST

FORECAST

a) Unstable dynamical system b) Stable dynamical system



8-day forecast and verification

Almost all the centers of low and high pressure are very well
predicted after 8 days!

Need good models, good observations, good data assimilation
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8-day forecast and verification

Almost all the centers of low and high pressure are very well
predicted after 8 days!

Over Southern California forecast has a cut-off low, not a trough
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8-day forecast and verification

Southern California: winds are from the wrong direction!



Fires in California (2003)

8-day
cool, moist
wind
forecast:
It would
have
stopped
the fires



Fires in California (2003)

Warm, dry,
Santa Ana
winds:
locally
wrong
prediction
(8 days in
advance!)



A simple chaotic model:
Lorenz (1963) 3-variable model
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Has two regimes and the transition between
them is chaotic



If we introduce an infinitesimal
perturbation in the initial conditions, the

forecast soon loses all skill



Definition of Chaos
(Lorenz, March 2006, 89 years old)

WHEN THE PRESENT DETERMINES

THE FUTURE

BUT

THE APPROXIMATE PRESENT DOES NOT

APPROXIMATELY DETERMINE THE FUTURE



The approximate present does not
approximately determine the future!



Initial conditions that are unstable
(with growing “errors of the day”)

grow much faster

Predictability depends on the initial conditions (Palmer, 2002):

stable unstableless stable



• We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1993), a very simple method to study the
growth of errors.

• We told them: “Imagine that you are forecasters that
live in the Lorenz ‘attractor’. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

• “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”

An 8 week RISE project for undergraduate women (2002)An 8 week RISE project for undergraduate women (2002)



Breeding: simply running the nonlinear model a
second time, from perturbed initial conditions.
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Bred Vectors ~LLVs

Unperturbed control forecast

Forecast values

Only two tuning parameters: rescaling
amplitude and rescaling interval



4 summer interns computed the Lorenz Bred
Vector growth rate: red means large BV growth,

blue means perturbations decay

Time steps

warm

cold



In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

With just a single breeding cycle, we can estimate the stability
of the whole attractor (Evans et al, 2004)

Bred Vector Growth:
red, high growth;
yellow, medium;
green, low growth;
blue, decay



This looked promising, so we asked the interns
to “paint” x(t) with the bred vector growth, and

the result almost made me faint:



This looked promising, so we asked the interns
to “paint” x(t) with the bred vector growth, and

the result almost made me faint:

Growth rate of
bred vectors:

A * indicates
fast growth
(>1.8 in 8 steps)



Forecasting rules for the Lorenz model:

“warm”

“cold”

Growth rate of
bred vectors:

A * indicates
fast growth
(>1.8 in 8 steps)

X

1. Regime change:The presence of red stars (fast BV growth) indicates that
the next orbit will be the last one in the present regime.

2. Regime duration: One or two red stars, next regime will be short. Several
red stars: the next regime will be long lasting.

These rules surprised Lorenz himself!



These are very robust rules, with skill scores > 95%



Summary for this partSummary for this part
and rest of the talkand rest of the talk

• Breeding is a simple generalization of Lyapunov vectors,
for finite time, finite amplitude: simply run the model
twice, take the difference and rescale…

• Breeding in the Lorenz (1963) model gives accurate
forecasting rules for the “chaotic” change of regime and
duration of the next regime that surprised Lorenz!

Rest of the talk:
• The same ideas can be applied to fight chaos in the full

forecast models that have dimension 10-100 million
rather than just 3!

• In the atmosphere, in the ocean, and in coupled systems
• We can also use breeding to understand the physical

mechanisms of the instabilities that create chaos
• Apply it to Mars!



An ensemble forecast starts from initial perturbations to the
analysis…

In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”

CONTROL

TRUTH

AVERAGE

POSITIVE
PERTURBATION

NEGATIVE
PERTURBATION

Good ensemble
C

P-

Truth

P+

A

Bad ensemble

A major tool to A major tool to ““fight chaosfight chaos”” is is
ensemble forecastingensemble forecasting



In ensemble forecasting we need to represent
the uncertainty: spread or “spaghetti plots”



Breeding: running the nonlinear model a second time,
from perturbed initial conditions: introduced by Toth and

Kalnay (1993) to create initial ensemble perturbations
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Example of a very predictable 6-day forecast, with “errors of the day”

The bred vectors are the growing 
atmospheric perturbations: “errors of the day”

L



The errors of the day are The errors of the day are instabilities of theinstabilities of the
background flow.background flow. At the same verification time, At the same verification time,
the forecast uncertainties have the forecast uncertainties have the same shapethe same shape

4 days and 6 days ensemble forecasts verifying on 15 Nov 1995



2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors 
(difference between the 
forecasts) lie on a 1-D space

Strong instabilities of the background tend toStrong instabilities of the background tend to
have simple shapes (perturbations lie in a low-have simple shapes (perturbations lie in a low-

dimensional subspace of bred vectors)dimensional subspace of bred vectors)

This simplicity (local low-dimensionality, Patil et al.
2000) inspired the Local Ensemble Transform Kalman

Filter (Ott et al. 2004, Hunt et al., 2007)



5-day forecast “spaghetti” plot

•The ensemble is able to
separate the areas that are
predictable from the ones that
are chaotic.
• Even the chaotic ones have
local low-dimensionality
• This is what makes possible
to do Ensemble Kalman Filter
with 50 (not a million!)
ensemble members with good
results



15-day forecast “spaghetti” plot: Chaos!

After 15 days, Lorenz’
chaos has won!
No predictability left in
the 15-day forecast
(except in East Asia)



ECMWF presents their 10-day ensemble
forecasts with uncertainty for a city

cloud cover

precipitation

wind speed

surface temperature



In the rest of this talk, we will study
chaos in coupled fast-slow systems

• The atmosphere has fast (e.g., convective clouds, 20 min)
and slow instabilities (e.g., baroclinic or weather instabilities
3-7 days)
• The coupled ocean-atmosphere system has even slower
instabilities (El Niño-Southern Oscillation, 3-7 years)
• In order to predict these phenomena, we need to isolate
fast and slow instabilities
• If we can predict ENSO, we can predict climate anomalies a
year or more in advance



In the atmosphere there are many instabilities, e.g., fast
(convective clouds) and slow (baroclinic)

Nonlinear breeding saturates convective noise

AMPLITUDE
(% of climate
variance)

1%

10%

100%

1hour 1 day 1 week

BAROCLINIC (WEATHER)
MODES

CONVECTIVE MODES

ANALYSIS ERRORS

“weather + convection” coupled model



Coupled ocean-atmosphere modes (El Niño-Southern Oscillation)
The “weather noise” has large amplitude! Must use the fact that

the coupled ocean modes are slower…

Atmospheric
perturbation
amplitude

time1 month

Weather “noise”

ENSO signal

Need a long rescaling interval, like 2 weeks or one month



Breeding in a coupled system

• Breeding: finite-amplitude, finite-time
instabilities of the system (~Lyapunov
vectors)

• In a coupled system there are fast and
slow modes,

• A linear approach (like Singular or
Lyapunov Vectors) will only capture fast
modes.

• Can we do breeding of the slow modes?
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Slow equations
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We coupled slow and a fast Lorenz (1963)
3-variable models (Peña and Kalnay, 2004)

“Tropical-extratropical” (triply-coupled) system: the ENSO
tropical atmosphere is weakly coupled to a fast “extratropical
atmosphere” with weather noise



Tropical ocean

Tropical atmosphere

Extratropical atmosphere



Breeding in a coupled Lorenz model:
“Weather plus ENSO”

Short rescaling interval (5 steps)
and small amplitude: fast modes

Long rescaling interval (50 steps)
and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



Examples of breeding in a coupled ocean-
atmosphere system with coupled instabilities

• In coupled fast/slow models, we can do
breeding to isolate the slow modes

• We have to choose a slow variable and a long
interval for the rescaling

• This identifies coupled instabilities. 
Examples
 Madden-Julian Bred Vectors (Chikamoto et
 NASA operational system with real observations

(Yang et al 2007, MWR)
 Ocean instabilities and their physical mechanisms

(Hoffman et al, 2009, GRL)
 Mars instabilities (Greybush et al, in preparation)



Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities BV by choosing an appropriate rescaling

amplitude (only within the tropics)



Finding the shape of the errors in El Niño
forecasts to improve data assimilation

• Bred vectors:
 Differences between the control forecast and

perturbed runs:
 Should show the shape of growing errors

• Advantages
 Low computational cost (two runs)
 Capture coupled instabilities
 Improve data assimilation



Before 97’ El Niño,
error is located in W.
Pacific and near coast
region

During development,
error shifts to lower
levels of C. Pacific.

At mature stage, error
shifts further east and
it is smallest near the
coast.

After the event, error
is located  mostly in E.
Pacific.

Niño3 index Yang (2005): Vertical cross-section at Equator for 
BV (contours) and 1 month forecast error (color)



Yang: Impact of forecasts of El Niño with 3 pairs of
BVs: November and May restarts (1993-2002)

Nov May

May Nov

Start from
cold season

Start from
warm season

Forecast month

Forecast month

BV ensemble
improves upon
the control
“Spring barrier”
loss of skill

Control

BV ensemble mean



Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST): making them grow and break!

model yr. JUN2024



Hoffman et al (2008): finding ocean instabilities with
breeding time-scale 10-days captures tropical instabilities

Breeding time scale: 10 days



When the rescaling time scale is 30 days,
extratropical instabilities dominate



Here we have both tropical and “South Atlantic
Convergence Zone” instabilities. Can we determine the

dynamic origin of the instabilities?



The Bred Vector Kinetic Energy equation can be
computed exactly because both control solution and

perturbed solution satisfy the full equations!

PE KE PE!KE

!KEbv

!t
= horizontal fluxes " #bgwb + ...

Conversion from potential
to kinetic energy



Bred vectors in Mars: annual cycleBred vectors in Mars: annual cycle

Steve Greybush



Day 078 (Ls= 302, Boreal Winter): BV activity near surface
temperature front begins to flare up.

winter



Day 080 (Ls= 304, Boreal Winter): Just two days later, BV now
extends vertically along the length of the front.  Connection to
the upper level tropics begins.

2 days later



Day 175 (Ls= 358, near boreal vernal equinox): Typical winter
BV activity along temperature front with upper level tropical
connection. First hint of southern hemisphere activity.

equinox



Day 235 (Ls= 22, early boreal spring): Winter BV activity has
begun to weaken, as the tropical connection has disappeared.

spring



Day 240 (Ls= 230, early boreal spring): Southern hemisphere
activity has now grown rapidly along austral front.

springfall
5 days later!



Day 372 (Ls= 90, austral winter solstice): Southern
hemisphere active in polar regions; northern hemisphere
activity has subsided.

winter



Day 430 (Ls= 116. austral mid-winter): Southern hemisphere
BV activity now assumes full spatial extent.

winter



Day 549 (near boreal autumn equinox): Signs BV of activity in
the northern hemisphere have resumed.

equinox



Day 551 (Ls= 180, boreal autumn equinox): Activity in northern
hemisphere has extended vertically.



Day 590 (mid boreal autumn): Activity in both hemispheres,
but most intense along southern polar front.

fall



Day 668 (Ls= 252, prior to boreal winter solstice): The
seasons have returned full circle, with southern hemisphere
activity fading and northern winter dominant.

winter



Summary: We can fight chaos and extend
predictability by understanding error growth

• Chaos is not random: it is generated by physical instabilities
• Breeding is a simple and powerful method to find the growth and shape of

the instabilities
• These instabilities also dominate the forecast errors: we can use their shape

to improve data assimilation.
• Ensemble Kalman Filter is the ultimate method to explore and “beat chaos”

through data assimilation.
• In the “chaotic” Lorenz model the growth of bred vectors predicts regime

changes and how long they will last.
• Nonlinear methods, like Breeding and EnKF, can take advantage of the

saturation of fast weather noise and isolate slower instabilities.
• Bred Vectors predict well the evolution of coupled forecast errors, and help

explain the physical origin of ocean instabilities
• Ensembles of BV improve the seasonal and interannual forecast skill,

especially during the “spring barrier”
• Mars!

REFERENCES: www.weatherchaos.umd.edu
www.atmos.umd.edu/~ekalnay


