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Data Assimilation
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e« Combine “optimally” short-term forecasts with
observations.

e 3D-Var and Optimal Interpolation: used for
many years, fixed background error covariance B

 Advanced methods: they evolve B (“errors of
the day”):
* 4D-Var: widely used in operations. Requires model
adjoint. :-(
 Ensemble Kalman Filter, no adjoint :-)
e Hybrids: B from EnKF, variational solution



Conclusions from the THORPEX
Workshop in Buenos Aires (2008)

v 4D-Var and EnKF are competitive in skill

v Hybrid approach best (Buehner et al, 2008, 2009)
v There are no fatal disadvantages for either system
v' Computationally competitive

v About 40-100 ensemble members needed from storm to global
scales for EnKF

v Both methods have developed approaches to deal with model
errors and nonlinearities

As a result, Japan, NCEP, ECMWEF, Canada, Brazil,... are
exploring EnKF (or hybrid EnKF+variational) for operations.



Tools that improve LETKF/EnKF

We adapted ideas inspired by 4D-Var:

v No-cost smoother (Kalnay et al, Tellus 2007)

v" “Quasi Outer loop”, nonlinearities and long windows (Yang and Kalnay)

v" Accelerating the spin-up with Running in Place (Kalnay and Yang, 2008)
v Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008) (correction)
v Coarse analysis resolution without degradation (Yang et al., QJ, 2009)

v Low-dimensional model bias correction (Li et al., MWR, 2009)

v Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).

Examples of applications:

v" Estimates of surface carbon fluxes as parameters (Kang et al, 2011)



[Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)
(a square root filter)

(Start with initial ensemble)

Observations

l

Observation | ensemble

operator “observations

I ensemble [analyses

Model

ensemble forecasts

* Model independent
(black box)

* Obs. assimilated
simultaneously at each
grid point

* 100% parallel: fast

* No adjoint needed

* 4D LETKEF extension
* Computes weights
explicitly



Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot




Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

of

The LETKF algorithm can be described in a single slide!




Local Ensemble Transform Kalman Filter (LETKF)

Globally:
b a
Forecaststep: X, =M, (Xn—l,k
Analysis step: construct b _ | 0 _ %P b _gb .
y P X —|:X1—X .. Ix, —X ],

y =HX) Y, =]y =¥ 1.1y, =" |

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

P =[(K-DI+ Y RY | ; W = [(K - )P']"”

Analysis mean in ensemble space: W' =P‘Y”'R7'(y° -y")
and add to W¢“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of

X! = XzW“ +X” . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W and perturbation analysis matrices of weights W¢. These
weights multiply the ensemble forecasts. 8



No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

t,_, time t

The no-cost smoother makes possible:

v Quasi Outer loop (comparable to 4D-Var)
v “Running in place” (faster spin-up)

v Use of future data in reanalysis
v

Ability to use longer windows and nonlinear perturbations



No-cost LETKF smoother
tested on a QG model: it works...

Analysis error of potential vorticity

LETKEF analysis <t % X
. Xa =X + Wa 0016
at time n n n no_n LETKF Analysis

Smoother analysis _,
od - X' w¢
at time n-1 X =X T A

n

“Smoother” reanalysis

RMS Error

This very simple smoother allows us to go back

and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis®



Nonlinearities and “outer loop”

The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

It doesn’t have the outer loop so important in 3D-Var and
4D-Var (DaSilva, pers. comm. 2006) -

Lorenz -3 variable model
(Kalnay et al. 2007a Tellus),
RMS analysis error:

4D-Var LETKF
Window=8 steps  0.31 0.30 (linear window)
Window=25 steps 0.53 0.66 (nonlinear window)

With long windows + Pires et al. => 4D-Var clearly wins! 1"



“Outer loop” in 4D-Var

Incremental 4D-Var

Ty = Iy

Outer loop

Inner loop

Low resolution linear model

Low resolution adjoint model

Itcrative minimisation algorithm

Tipr =wi+ 87 (b

Incremental 4D-Var - 7

SCECMWF
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No-cost LETKF smoother (x): apply at t_, the same
weights found optimal at t.. It works for 3D- or 4D-LETKF

4D-LETKF

-5
X g ™ =
- ¥
%’

o, time ,
Quasi Outer Loop (QOL): correct the analysis mean at t__,
Running in Place (RIP): correct all the analyses at t,

...and then do the data assimilation to t, again

13



Nonlinearities: “Quasi Outer Loop” (QOL)

Quasi Outer Loop: use the final weights to correct only the
mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the
ensemble on a more accurate nonlinear solution.

Lorenz -3 variable model RMS analysis error
4D-Var LETKF

Window=8 steps  0.31 0.30
Window=25 steps 0.53 0.66
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Nonlinearities, “QOL" and "Running in Place”

Quasi Outer Loop: similar to 4D-Var: use the final weights
to correct only the mean initial analysis, keeping the
initial perturbations. Repeat the analysis once or twice.
It centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF

+QOL
Window=8 steps  0.31 0.30 0.27
Window=25 steps 0.53 0.66 0.48

“‘Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times...

15



Running in Place: Results with a QG model

Analysis error of potential temperature

10 § T T T T T T

[ Original LETKF (K=40) i
—— Spin-up LETKF (Epsin=0.05, K=40) -
——— Spin-up LETKF (Epsin=0.05, K=20) -
——4D-Var (12H) 1

T

RMS error

107}

V
| | |
20 40 60 80 100 120 140 160 180 200
DA cycles

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It
becomes as fast as 4D-Var (blue). RIP takes only 2-6 iterations.
16



24 hr forecast of simulated Typhoon Sinlaku
(trajectory and intensity were both improved with RIP)
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An application of LETKF-RIP to ocean data assimilation

*Data Assimilation of the

Global Ocean using
4D-LETKF and MOM2

Steve Penny’s defense

April 15, 2011
With:
Eugenia Kalnay . Kayo lde
Jim Carton . Takemasa Miyoshi
Brian Hunt . Gennady

Chepurin 18



*Key advantages of Ensemble
Kalman Filter

* [t is computed by a sequential method based on
the state and uncertainty at the previous step.

* [t explicitly propagates uncertainty. 3D-Var does
not propagate uncertainty (uses constant B
matrix as approximate uncertainty at all
timesteps)

* [t does not require a tangent linear model or
adjoint (as is required by 4D-Var, very costly in
man-hours)

19



*Primary Disadvantages of
EnKF

* Computational cost and storage of the
ensemble

*Solution is limited to the space spanned by
the ensemble (Though this is improved upon
by introducing methods such as Running in
Place'! and Hybrid Filters?)

*Under-predicts forecast uncertainty (Though
this is improved by use of adaptive inflation?)

1.) Kalnay, Yang 2008
2.) Hamill and Snyder 2000, Wang et al2g007
3.) Miyoshi 2010



*7-year reanalysis with
LETKF-RIP, LETKF-IAU, SODA
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RMSD (°C) (All vertical levels)
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RMSD (psu) (All vertical levels)

0.90

0.80

0.70

0.60

0.50

0.40 | . Free-Run
0.30 ; W o - A B. /|A.

| L2 iy 2wl ETKF-IAU B.
0.20 ' ; ~ et FTKE-|AU A,

0.10

OOO \ \ \ \ \ \ \
Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04

*12-month moving average
Salinity RMSD (psu)



Forecast sensitivity to observations
“Adjoint sensitivity without adjoint” (Liu and K, 2008)

etl—6

€ Cio = itJTO X,
Adapted from Langland
BS, e 9

and Baker, 2004)

-6hr  00hr analysis t

The only difference between €,,;and €,,_¢ is the assimilation of observations at 00hr:
(Xp — Xg16) = K(y - H(Xgl—6 )
» Observation impact on the reduction of forecast error:

Ae — (etIOeIIO - et|—6et|—6) — (eﬂo T et|—6 )(etlo + ef|—6)
24



Forecast sensitivity to observations

2 T T T T
Ae” = (etIOetIO — etl—6etl—6) — (etIO — €5 )(eno T etl—6)
T
(Xno — X, ) (e, +¢€,, )

= [M(X — X, 6)]T (e, +¢€,),so that

Ae = I:MK(y — H(X8|_6 )):IT (etIO T et|—6)

Langland and Baker (2004), Gelaro, solve this with the adjoint:

Ae’ = I:(y — H(X[(9)|—6 ))]T K'M' (€, 1+€)

This requires the adjoint of the model M" and of the data

assimilation system K'(Langland and Baker, 2004) e



Forecast sensitivity to observations

Langland and Baker (2004):

Ae2 = I:MK(y — H(X3|_6):|T (etlo T et|—6)

= [(y — H(Xg|—6)]T K'M' (€, te€, )

With EnKF we can use the original equation without “adjointing”:
Recallthat K=P‘H'R™ =1/(K -DX‘X“H'R™ so that
MK = MX‘X“H R /(K-1)= XflOY“TR_1 [(K—1)

Thus,

Ae2 = [MK(Y — H(X8|_6):|T (etIO T et|—6)

- [(y — H(Xg|—6)]T R_lY(?X{l{) (€, +€,¢)/(K-1)

This is a product using the available nonlinear forecast

ensemble X/

and Y/ =(HX") #

t10




Test ability to detect a poor quality ob impact on the
forecast in the Lorenz 40 variable model

Observation impact from LB(+) and from ensemble sensitivity ( o)
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v'The adjoint and the ensemble sensitivity give identical observation impact on the
24 hr forecast.

v'The ensemble sensitivity is nonlinear and is able to detect bad obs for longer
forecasts
27



Impact of each real observation (Miyoshi et al., 2011)

O0UTC Sep. 11 2008 Forecast error reduction (J/kg, KE)

“‘v‘ ADPUPA — 1SEP2.00‘
ot LB SONDE

N
(@]

6u!p;,u69(]

50N 100 50N

N
&

50 45N

40N A 1018 e + 2 40 40N

BN PO N Ty T 30 sy
70N ‘ ,.‘“ ‘:",‘10':1?.2_'; (4 4 _‘ . : 1.15 ; o W 25 30N
TY Sinlaku figea> IR AT RS || 20
20N 4 ._0_8 7 o O ‘. ‘ . b

e ;. 20N §
15N “\\ ﬂ . 15N _8-2
10N iT\ A ; 10N —122
5N “\ o4 5N ”E'
i -2
USGN 2 O
s D 1.6 D
Q 456 CQ‘
=
2 8_40"' 1.2 8_
8 o8 X
4 > 0.4 =2
Q gy “Q
25N °
—o.4§20N —o.4§
—o.gc - —O.ﬁc
1,28 Jon —1,28
1<, - eSS,
> >

6

110E  120E 130E  140E 150E 180E  170E 110E  120E 130E  140E 150E 180E  170E



Observation impact for each type

Typhoon Sinlaku forecast
(9/8 12 UTC - 9/12 12UTC, NW Pacific)

15000 .
Observation count

10000

m OBSIMP
B OBSNUM / 10

5000

0 - T — T HH—J
UPA AIRCFT S ND VADWND ADPSFC SFCSHP SPSSMI QKSWND

-5000 -

Forecast error reduction (J/kg, KE)

All types of observations reduce the typhoon forecast error.
Upper soundings (ADPUPA) have the largest impact.




Impact of dropsondes on a Typhoon
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Denying negative impact data improves forecast!

Estimated observation impact Typhoon track forecast is
DOTSTAR  00Z11SEP2008 actually improved!!
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Coarse analysis with interpolated weights Yang et al (2008)

o ————
« In LETKF the analysis is a weighted average of the forecast ensemble

*  We performed experiments with a QG model interpolating weights
compared to analysis increments.

* Coarse grids of 11%, 4% and 2% interpolated analysis points.
Weight fields vary on large scales: they interpolate very well
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Weight interpolation versus Increment interpolation
i —

ANALYSIS INCREMENTS FROM WEIGHTS INTERPOLATION

(a) Full Analysis {b) 11% Analysis grids (c) 4% Analysis grids (d) 2% Analysis grids
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ANALYSIS INCREMENTS FROM INCREMENTS INTERPOLATION (FROM FULL ANALYSIS)
(f) 11% Analysis grids (g) 4% Analysis grids (h) 2% Analysis grids
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With increment interpolation, the analysis degrades quickly...

With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties
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Impact of coarse analysis on accuracy
T ee—a—.—.—.—.—.—.—....——.—.—

Analysis error of potential vorticity
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With increment interpolation, the analysis degrades

With weight interpolation, there 1s no degradation, the analysis 1s
actually slightly better! 34



~ Model error: comparison of methods to

correct model bias and inflation
e

Hong Li, Chris Danforth, Takemasa Miyoshi, and Eugenia
Kalnay, MWR (2009)

Inspired by the work of Dee and DaSilva, but with model
errors estimated in model space, not in obs space

35



Model error: If we assume a perfect model in EnKF,

— we underestimate the analxsis errors gLi, 20072

perfect model

-------- LDM+ simplified DdSM+
ANALYSIS RMSE — - DdSM+ —— mulinfl
addinfl —— control run
100 — ~—
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©
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- |
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o
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900'_ L i1l

0 "04 08 12 16 2 24 2B 32 36 4 44 4fa\512 5.6
U—wind RMSE (m/s)
Imperfect model

perfect SPEEDY model (obs from NCEP- NCAR

Reanalysis NNR) o



— Why 1s EnKF vulnerable to model errors ?

Ens 1
00 Background ensemble spread |mperfeCt model
Ens 2
200 ~
300- \\‘\\ Forecast
RN errg
400 ST \ruth
& 2 > In the theory of Extended Kalman filter,
& ) _ forecast error is represented by the growth
= 8007 ~ Imperfect of errors in IC and the model errors.
/ — - perfect
700
800 » However, in ensemble Kalman filter, error
estimated by the ensemble spread can only
900 represent the first type of errors.

12 15 18 21 24 27 3 33 36
HEIGHT RMSE [m]

The ensemble spread 1s ‘blind’
to model errors




2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

« Generate a long time series of model forecast minus reanalysis X,
from the training period !

: ¥ NNR
NNR NNR
NNR+ xtruth
=0 NNR
xf

We collect a large number of estimated errors - and estimate from them bias, etc.

L M
el =X, —xX AMEH-ME)+b+Y B.e+ D V. .L,
T =1 \ m=1 \

\
Forecast error Time-mean Diurnal degéatgent
due to error in IC model bias model error modeperror 38



Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

S

model error = b + ﬁn’lel

Having a large number of estimated errors - allows to
estimate the global model error beyond the bias

39



SPEEDY 6 hr model errors against NNR (diurnal cycle)

Leading EOFs for 925 mb TEMP

Error anomalies = = 0. P
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* For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has =&
strong diurnal cycle errors because it lacks oy
diurnal radiation forcing :
120 50U



We compared several methods to handle bias and
random model errors

perfect model
simplified DdSM+

ANALYSIS RMSE — - DdSM+ —— mulinfl

addinfl —— control run
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LoW"DimensionaI Method to correct the bias (Danforth et al, 2007)
combined with additive inflation



Simultaneous estimation of EnKF inflation and

obs errors in the presence of model errors
©———

Hong Li, Miyoshi and Kalnay (AMS, Jan 2007, QJ, 2009)

Inspired by Houtekamer et al. (2001) and
Desroziers et al. (2005)

» Any data assimilation scheme requires accurate statistics for the observation
and background errors (usually tuned or from gut feeling).

» EnKF needs inflation of the background error covariance: tuning is
expensive

» We introduce a method to simultaneously estimate ob errors and
inflation.

= Now extended to correlated ob errors by Miyoshi et al. (2009) 49



Diagnosis of observation error statistics

Houtekamer et al (2001) well known statistical relationship:

omB*oMB <d__d’_, >=HP'H +R

Desroziers et al, 2005, introduced two new statistical relationships:

OMA*OMB <d,_d ,>=R
T _ byyT
AMB*OMB <d,,d _,” >>=HP'H

These relationships are correct if the R and B statistics are correct and
errors are uncorrelated!

With inflation: HP’H' — HAP’H! with A>1
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Diagnosis of observation error statistics
© I —

Transposing, we get “observations” of A and ¢’

A° = (dZ—bdo—b)_Tr(R) OMB2
Tr(HP'H")
A= Y5 = Y0 =¥ | Tr(HPPH) AMBTOMB
j=1
~ \2 T N\ b
(6,0 =d,_d,,/p=2,0/-y)y ~-y)/p  OMA*OMB

j=1

Here we use a simple KF to estimate both A and 602 online.
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SPEEDY model: online estimated observational
errors, each variable started with error 2 (not 1

online estimating A

2.5 I | | | | | | | |
o — uwind
5 — temperature ||
5 10000
: — Pa/100
B
Q
Q
QO -
§ — -— .

| | | | | | | | |

Time Step

The original wrongly specified R quickly converges to
the correct value of R (in about 5-10 days)
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Estimation of the inflation

Estimated Inflation

}
0.06-
0.05-
b
0.04
0.03F ."\' i l‘
ooz

=0.01

1 ! ! 1 1 1 1 1 1 1 1
20 40 &0 B0 100 120 140 160 180 200 220
Time steps

Using an initially wrong R and A but estimating them adaptively
Using a perfect R and estimating A adaptively

After R converges, the time dependent inflation factors are quite similar
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Adaptive inflation (Miyoshi, 2011)

Forecast ensembles tend to be
under-dispersive.

T=t0 T=tl

47



Covariance inflation

Covariance inflation inflates
the underestimated covariance.

.....
-------

48



Previous inﬂation methods

“““

) ‘-’ " Dense obs = under-dispersive
“\. K - ..—A .‘.
Ao WP Sparse obs = over-dispersive

‘() .-\ §“l4' ,h‘

v

Problematic in real applications
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Previous inﬂation methods

“““

~50 hPa T ensemble spread \ Tuned constant

) ~>' __4.ae Dense obs = under-dispersive
AT e .A
Ao W 1., Sparse obs = over-dispersive

4 » - §\_‘l"' ,u‘

.zaK

v

Problematic in real applications

aan
..........

. .,
o‘ .

v \
-----------

This brings new directions to span,
but 1t 1s not trivial to have proper random fields.

Generally better spread, but an unfavorable
high-frequency pattern appears.
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Previous inﬂation methods

“““

Variable:T Member

~50 hPa T ensemble spread \ Tuned constant

Sparse obs = over-dispersive

Problematic in real applications

zaK

nun
..........
. .,
o‘ .

T v
-----------

’TQQVJ},E a T ensemble spread
This brings new directions to span,
but 1t 1s not trivial to have proper random fields.

Generally better spread, but an unfavorable
—e high-frequency pattern appears.
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3. Relaxation to prior: §x* « (1 —B) - 6x* + S - 6x/ 8~0.7
Zhang et al. (2004) showed this worked well. J




Adaptive inflation

Anderson (2007; 2009) applied the Bayesian estimation theory to
estimate the inflation parameter a adaptively.

pe )= p(y la)p(yi o) p(yi o Hp_(a,-” )| norm.

Posterior

Obs

Prior

Li et al. (2009) applied the Gaussian assumption.

p(o)|=|N Ocl ,v “D(OC )V norm.
Posterior Prior 1
g ||
7))
éo.a- Non.G it .
. . on-Gaussiani
The Gaussian approachis | & | i . y
: o 3 0671 is very weak.
adopted, with additional 3
enhancements of v{ and So4
- . u )
localization (next slide). N . — Bayesian posterior
Miyoshi (2011) E° T Bayesian sbeenvation
- 0 L ———Gzl:lussian opsewation
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inflation
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[Localization of inflation estimates

o o o o o ¢ Currentgrid point

O . .
b & Lol o ® : Grid points

o |\ e : Local observations
® .0 5 0 0 _

| @ ‘o O : Remote observations
®© & e o o

- O
b

e @ © o o plo))=IN(e”,v )IU(OC,-) norm.

Posterior Obs Prior

Apply the maximum likelihood estimate
at each grid point independently.

@ MiyOShi (2011)

a=a(x,vy,zt)
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Application to CO, data assimilation
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Adaptive inflation
improved the CO,
analysis

RMSE=0.59
Courtesy of J.-S. Kdhg



Results of Mars GCM

, Zonal mean temperature RMSE
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Clear advantage of
adaptive inflation

Courtesy of S. Greybush



JMA operational NWP system

—— Adaptive inflation

500 hPa Geopotential Height AC —— Fixed inflation

— 100
>, 850 hPa Temperature RMSE
é X - | Relative to radiosondgs
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Forecast lead time [days] Forecast lead time [days]

Adaptive inflation improved the
global 9-day forecasts significantly.

Courtesy of Y. Ota {dMA)



Application: parameter estimation in EnKF.
The state vector is augmented with the parameters a,r,b

parameter estimation regression for a
. ; : 150 '
40 —a - data
_ r 100} regression
— | | true
30 ----- A Sgen pp— Tm—" - 50-
20" 0
-50
1) Se— o
-100-" -
. = -15 ' -
00 100 200 300 ‘q 0 =9 0 9 10

assimilation steps

Example with Lorenz model (stmulation with noisy obs.)

Left: estimation of parameters with LETKF from the error

covariance; Right: standard regression from observations



Application: Parameter Estimation in EnKF

« Example of carbon cycle data assimilation
— Surface CO, fluxes (CF): a forcing for atmospheric CO,
« State vector augmentation

— State vector is augmented by CF which is updated by error covariance
between the variables in the state vector

 Variable localization

— In a multivariate analysis of EnKF, error covariance is zeroed out when
there is no significant physical relationship between variables, in order
to reduce a sampling error

» Inflation
— It helps represent background uncertainty more accurately

 Vertical localization of satellite column data

— Averaging kernel is nearly uniform in the vertical, although a forcing
term (our ultimate estimate) is at the surface. Then...?
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Variable localization

» Analysis of surface CO, fluxes
assimilating atmospheric CO,
observations

— A case with a constant forcing
CFC UV T qPs

CF
C

U
1-way multivariate analysis vy
with variable localization =2 T

q
Ps

CFC UV T qPs
CF
C
U

Fully multivariate analysis & V
T

q

Kang et al. (2011, JGR) Ps

True fluxes

m

1r

""" ' s R
10990-8(}-79-60-50-40-30-20-1010 20 30 40 50 630 70 BQ 0901CQ

CF estimation w/ varloc




Inflation methods also have an impact

adaptive
multiplicative fixed multiplicative standard: fixed
True fluxes +additive +additive multiplicative
True_CF @ 00ZO1APR1997 PR1997 Analysis @ 00ZO1APR1997 Analysis @ 00Z01APR1997
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Adaptive inflation by Miyoshi (2011, Mon. Wea. Rev.)



Vertical localization of CO, column data

« OCO (Orbiting Carbon Observatory) & GOSAT (Greenhouse
gases Observing Satellite)

— Satellites dedicated to mapping Earth's CO, levels

: ')Averaging kernel is quite flat from the surface to the
| middle troposphere

200

In order to estimate surface CO, fluxes with
those satellite data, we have localized the
column CO, data, updating only lower
atmospheric CO, rather than a full column of
CO.,.

(the vertical localizing function is broad in the
lower troposphere but zero in the upper layers)

400

re (hPa)

Pressu

60!

[=]

800

s 11';- Forcing of CO, is at the surface!!! o



Vertical localization improves results

« Time series of CF for one year

(a) CF over N Equatorial Africa (b) CF over S Equatorial Africa
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Miyoshi's LETKF code

Takemasa Miyoshi has a new LETKF code
based on the work he did at JMA. He has
made it available to all at “Google code
Miyoshi LETKF”.

It is MPI (parallel) modular and very efficient.
The same code has been coupled to
Lorenz (1996), SPEEDY, the Regional
Ocean Modular System (ROMS) at high
resolution and the WRF model.

It contains all the advances discussed



Summary

EnKF and 4D-Var are competitive, hybrid seems best
Several countries are now testing EnKF (quite a change!)

Many ideas to further improve LETKF work very well:
No-cost smoothing and “running in place”
A simple outer loop to deal with nonlinearities
Forecast sensitivity without adjoint model, valid for longer forecasts
Analysis sensitivity and exact cross-validation
Coarse resolution analysis without degradation

Correction of model bias combined with additive inflation gives the
best results

Can estimate simultaneously optimal inflation and ob. errors.
The impact of adaptive inflation is very large.
LETKF code with examples available at Miyoshi’'s Google Code

The estimation of surface fluxes of carbon as evolving parameters

seems to work well if several improvements are implemented



Thoughts on hybrid

Dale Barker suggested that a fast path for NCEP to the use of hybrid would be to
make first a GSI-EnKF hybrid, and then replace GSI with 4D-Var. Seems a

very sensible idea.

As shown by Buehner et al., hybrid Var and EnKF may be the most accurate

approach (“sweet spot”).

RMS error

4D-Var
\

__—

x EnKF

Hybrid=a*EnKF+(1-a)*4D-Var

a=0

a=1
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