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Data Assimilation

• Combine “optimally” short-term forecasts with
observations.
• 3D-Var and Optimal Interpolation: used for
many years, fixed background error covariance B
• Advanced methods: they evolve B (“errors of
the day”):

• 4D-Var: widely used in operations. Requires model
adjoint.  :-(
• Ensemble Kalman Filter, no adjoint   :-)
• Hybrids: B from EnKF, variational solution
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Conclusions from the THORPEXConclusions from the THORPEX
Workshop in Buenos Aires (2008)Workshop in Buenos Aires (2008)

  4D-Var and EnKF are competitive in skill4D-Var and EnKF are competitive in skill
  Hybrid approach best (Buehner et al, 2008, 2009)Hybrid approach best (Buehner et al, 2008, 2009)
 There are no fatal disadvantages for either system There are no fatal disadvantages for either system
  Computationally competitiveComputationally competitive
  About 40-100 ensemble membersAbout 40-100 ensemble members  needed from storm to globalneeded from storm to global
scales for EnKFscales for EnKF
 Both methods have developed approaches to deal with model Both methods have developed approaches to deal with model
errors and nonlinearitieserrors and nonlinearities

As a result, Japan, NCEP, ECMWF, Canada, Brazil,… are
exploring EnKF (or hybrid EnKF+variational) for operations.
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Tools that improve LETKF/EnKFTools that improve LETKF/EnKF

We adapted ideas inspired by 4D-VarWe adapted ideas inspired by 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
  “Quasi Outer loop”, nonlinearities and long windows (Yang and Kalnay)
 Accelerating the spin-up with Running in Place (Kalnay and Yang, 2008)
 Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008) (correction)
 Coarse analysis resolution without degradation (Yang et al., QJ, 2009)
 Low-dimensional model bias correction (Li et al., MWR, 2009)
 Simultaneous estimation of optimal inflation and observation errors (Li et
al., QJ, 2009).

Examples of applications:
 Estimates of surface carbon fluxes as parameters (Kang et al, 2011)
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Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(a square root filter)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel: fast
• No adjoint needed
• 4D LETKF extension
• Computes weights
explicitly

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer loop (comparable to 4D-Var)
 “Running in place” (faster spin-up)
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations
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No-cost LETKF smoother
tested on a QG model: it works…

“Smoother” reanalysis

LETKF Analysis
xn
a = xn

f + Xn
fwn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  !xn!1

a = xn!1
f + Xn!1

f wn
a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the t have the outer loopouter loop  so important in 3D-Var andso important in 3D-Var and
4D-Var (DaSilva, pers. 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model
(Kalnay et al. 2007a Tellus),
RMS analysis error:

4D-Var  LETKF
Window=8 steps 0.31    0.30 (linear window)
Window=25 steps 0.53    0.66 (nonlinear window)

With long windows + Pires et al. => 4D-Var clearly wins!
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““Outer loopOuter loop”” in 4D-Var in 4D-Var
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

Quasi Outer Loop (QOL): correct the analysis mean at tn-1
Running in Place (RIP): correct all the analyses at tn-1

…and then do the data assimilation to tn again
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Nonlinearities: Nonlinearities: ““Quasi Outer LoopQuasi Outer Loop”” (QOL) (QOL)

Quasi Outer Loop: use the final weights to correct only the
mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the
ensemble on a more accurate nonlinear solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
         +QOL             +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39
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Nonlinearities,Nonlinearities,  ““QOLQOL”” and  and ““Running in PlaceRunning in Place””

Quasi Outer Loop: similar to 4D-Var: use the final weights
to correct only the mean initial analysis, keeping the
initial perturbations. Repeat the analysis once or twice.
It centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
          +QOL             +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39

“Running in place” smoothes both the analysis and the
analysis error covariance and iterates a few times…



16

Running in Place: Results with a QG modelRunning in Place: Results with a QG model

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It
becomes as fast as 4D-Var (blue). RIP takes only 2-6 iterations.
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24 hr forecast of simulated Typhoon Sinlaku
(trajectory and intensity were both improved with RIP)

Tinit=	
  09/15	
  06Z

Tinit=	
  09/15	
  12Z

Tinit=	
  09/15	
  18Z
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Steve Penny’s defense
April 15, 2011

An application of LETKF-RIP to ocean data assimilation
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• It is computed by a sequential method based on
the state and uncertainty at the previous step.

• It explicitly propagates uncertainty. 3D-Var does
not propagate uncertainty (uses constant B
matrix as approximate uncertainty at all
timesteps)

• It does not require a tangent linear model or
adjoint (as is required by 4D-Var, very costly in
man-hours)
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•Computational cost and storage of the
ensemble

•Solution is limited to the space spanned by
the ensemble (Though this is improved upon
by introducing methods such as Running in
Place1 and Hybrid Filters2)

•Under-predicts forecast uncertainty (Though
this is improved by use of adaptive inflation3)

1.) Kalnay, Yang 2008
2.) Hamill and Snyder 2000, Wang et al 2007
3.) Miyoshi 2010
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LETKF-IAU B

SODA

LETKF-RIP

LETKF-RIP A/B
LETKF-IAU A/B

SODA

Free Run

Temp (ºC)

Salt (psu)

(All vertical levels)

LETKF-IAU A
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Forecast sensitivity to observations
“Adjoint sensitivity without adjoint” (Liu and K, 2008)

The only difference between         and            is the assimilation of observations at 00hr:

 Observation impact on the reduction of forecast error:

(Adapted from Langland
and Baker, 2004)
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f ! xt
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T et |0 " et |"6
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Forecast sensitivity to observations

!e2 = (et |0
T et |0 " et |"6
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Langland and Baker (2004), Gelaro, solve this with the adjoint:

!e2 = (y " H (x0|"6
b ))#$ %&

T
KTMT (et |0 + et |"6 )

This requires the adjoint of the model       and of the data
assimilation system      (Langland and Baker, 2004)KT

MT
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Forecast sensitivity to observations

Langland and Baker (2004):

!e2 = MK(y " H (x0|"6
b )#$ %&

T
(et |0 + et |"6 )
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b )#$ %&

T
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With EnKF we can use the original equation without “adjointing”:
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This is a product using the available nonlinear forecast
ensemble           and

Thus,

Recall that
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Test ability to detect a poor quality ob impact on the
forecast in the Lorenz 40 variable model

The adjoint and the ensemble sensitivity give identical observation impact on the
24 hr forecast.

The ensemble sensitivity is nonlinear and is able to detect bad obs for longer
forecasts

Observation impact from LB(+) and from ensemble sensitivity (   )
1 day 10 days 20 days
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Impact of each real observation (Miyoshi et al., 2011)
00UTC Sep. 11 2008 Forecast error reduction (J/kg, KE)

SONDE

AMV SPSSMI

TY Sinlaku

D
egrading

Im
proving

D
egrading

Im
proving

D
egrading

Im
proving
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Observation impact for each type

Forecast error reduction (J/kg, KE)

Observation count

Typhoon Sinlaku forecast
(9/8 12 UTC ‒ 9/12 12UTC, NW Pacific)

All types of observations reduce the typhoon forecast error.
Upper soundings (ADPUPA) have the largest impact.
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Impact of dropsondes on a Typhoon
Estimated observation impactEstimated observation impact

TY Sinlaku

Degrading

Improving
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Denying negative impact data improves forecast!
Estimated observation impactEstimated observation impact Typhoon track forecast is

actually improved!!

Improved
forecast

36-h forecasts

TY Sinlaku

Original
forecast

Observed
track
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• In LETKF the analysis is a weighted average of the forecast ensemble
• We performed experiments with a QG model interpolating weights

compared to analysis increments.
• Coarse grids of 11%, 4% and 2% interpolated analysis points.
• Weight fields vary on large scales: they interpolate very well

 

1/(3x3)=11% analysis grid

Coarse analysis with interpolated weights Yang et al (2008)
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Weight interpolation versus Increment interpolation

With increment interpolation, the analysis degrades quickly…
With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties
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Impact of coarse analysis on accuracy

With increment interpolation, the analysis degrades
With weight interpolation, there is no degradation, the analysis is

actually slightly better!
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Model error: comparison ofModel error: comparison of  methods tomethods to
correct model bias and inflationcorrect model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi, and Eugenia
Kalnay, MWR (2009)

Inspired by the work of Dee and DaSilva, but with model
errors estimated in model space, not in obs space
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Model error: If we assume a perfect model in EnKF,Model error: If we assume a perfect model in EnKF,
we underestimate the analysis errors (Li, 2007)we underestimate the analysis errors (Li, 2007)

imperfect modelimperfect model
(obs from NCEP- NCAR(obs from NCEP- NCAR
Reanalysis NNR)Reanalysis NNR)

perfect SPEEDY modelperfect SPEEDY model
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— Why is EnKF vulnerable to model errors ?

 In the theory of Extended Kalman filter,
forecast error is represented by the growth
of errors in IC and the model errors.

 However, in ensemble Kalman filter, error
estimated by the ensemble spread can only
represent the first type of errors.

Pi
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# " x f )(xi
f " x f )T

1 1
1a a

i i

f a T
i i

! !
!= +

x x
P M P M Q

Ens mean

Ens 1

Ens 2

Truth

Imperfect model

Forecast
error

The ensemble spread is ‘blind’
to model errors
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• Generate a long time series of model forecast minus reanalysis
from the training period

2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)

t=0
t=6hr

model

fx

xtruth

Bias removal scheme: Low Dimensional Method

e
hrx6

We collect a large number of estimated errors   and estimate from them bias, etc.

NNR

NNR
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model error = b + !n,l
l=1

2

" el + # n,m
m=1

10

" fm

Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

Having a large number of estimated errors   allows to
estimate the global model error beyond the bias
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SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

•  For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
strong diurnal cycle errors because it lacks
diurnal radiation forcing

Leading EOFs for 925 mb TEMP

pc1
pc2

e
hr

e
hri

e
hr xxx 66
'
)(6 !=
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imperfect model
perfect model

Low Dimensional Method to correct the bias (Danforth et al, 2007)
combined with additive inflation

We compared several methods to handle bias and
random model errors
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Simultaneous estimation of EnKF inflation and
obs errors in the presence of model errors

Hong Li, Miyoshi and Kalnay (AMS, Jan 2007, QJ, 2009)

 Any data assimilation scheme requires accurate statistics for the observation
and background errors (usually tuned or from gut feeling).

 EnKF needs inflation of the background error covariance: tuning is
expensive

 We introduce a method to simultaneously estimate ob errors and
inflation.

 Now extended to correlated ob errors by Miyoshi et al. (2009)

Inspired by Houtekamer et al. (2001) and
Desroziers et al. (2005)
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Diagnosis of observation error statistics

< do!ado!b
T >= R

These relationships are correct if the R and B statistics are correct and
errors are uncorrelated!

HPbHT ! H"PbHT

Desroziers et al, 2005, introduced two new statistical relationships:

OMB*OMB

OMA*OMB

AMB*OMB

< do!bdo!b
T >= HPbHT + R

Houtekamer et al (2001) well known statistical relationship:

< da!bdo!b
T >= HPbHT

With inflation: ! > 1with
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Diagnosis of observation error statistics

Here we use a simple KF to estimate both     and       online.!

 
( !! o )

2 = do"a
T do"b / p = (yj

o

j=1

p

# " yj
a )(yj

o " yj
b ) / p OMA*OMB

!o =
(do"b

T do"b ) " Tr(R)
Tr(HPbHT )

!o = (yj
a

j=1

p

" # yj
b )(yj

o # yj
b ) /Tr(HPbHT ) AMB*OMB

OMB2

! o
2

Transposing, we get “observations” of        and! ! o
2



45

SPEEDY model: online estimated observational
errors, each variable started with error 2 (not 1)

The original wrongly specified R quickly converges to
the correct value of R (in about 5-10 days)
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Estimation of the inflation

Using a perfect R and estimating      adaptively
Using an initially wrong R and       but estimating them adaptively!

 

Estimated Inflation

!

After R converges, the time dependent inflation factors are quite similar 
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Adaptive inflation (Miyoshi, 2011)

T=t0 T=t1

P

Forecast ensembles tend to be
under-dispersive.
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Covariance inflation

T=t0 T=t1

P(1+a)P

Covariance inflation inflates
the underestimated covariance.
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Previous inflation methods

~50 hPa T ensemble spread

K
Problematic in real applications

Sparse obs  over-dispersive
Dense obs  under-dispersive

Tuned constant
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Previous inflation methods

~50 hPa T ensemble spread

K

This brings new directions to span,
but it is not trivial to have proper random fields.

Generally better spread, but an unfavorable
high-frequency pattern appears.

Problematic in real applications

K

~50 hPa T ensemble spread

Sparse obs  over-dispersive
Dense obs  under-dispersive

Tuned constant
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Previous inflation methods

~50 hPa T ensemble spread

K

This brings new directions to span,
but it is not trivial to have proper random fields.

Generally better spread, but an unfavorable
high-frequency pattern appears.

Problematic in real applications

K

Zhang et al. (2004) showed this worked well.

~50 hPa T ensemble spread

Sparse obs  over-dispersive
Dense obs  under-dispersive

Tuned constant
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Adaptive inflation

Posterior
./)()|()|()|()( 11 normpypypypp b

iipiiiii
a
i !!!!! +""= !

PriorObs
Li et al. (2009) applied the Gaussian assumption.

./)(),()( normpvNp b
i

o
i

o
i

a
i !!! =

Posterior PriorObs

Non-Gaussianity
is very weak.

Miyoshi (2011) 
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Localization of inflation estimates

Apply the maximum likelihood estimate
at each grid point independently.

./)(),()( normpvNp b
i

o
i

o
i

a
i !!! =

Posterior PriorObs

Miyoshi (2011) 

: Grid points
: Local observations
: Remote observations

: Current grid point
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Application to CO2 data assimilation

Adaptive inflation
improved the CO2

analysis

Courtesy of J.-S. Kang

ADAPTIVE

FIXED

ppmv

Near-surface CO2 concentration error

RMSE=0.91

RMSE=0.59
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Results of Mars GCM

ADAPTIVE

FIXED

Clear advantage of
adaptive inflation

Courtesy of S. Greybush

Zonal mean temperature RMSE

K

Global average RMSE

Pa

Pa
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JMA operational NWP system
500 hPa Geopotential Height AC

Forecast lead time [days]
0 3 6 9

An
om
al
y 
C
or
re
la
tio
n 
[%
]

850 hPa Temperature RMSE

Te
m
pe
ra
tu
re
 R
M
SE
 [K
]

Relative to radiosondes

Forecast lead time [days]
0 3 6 9

Adaptive inflation
Fixed inflation

Courtesy of Y. Ota (JMA)

Adaptive inflation improved the
global 9-day forecasts significantly.



57

Example with Lorenz model (simulation with noisy obs.)

Left: estimation of parameters with LETKF from the error
covariance;   Right: standard regression from observations

 
 

Application: parameter estimation in EnKF.
The state vector is augmented with the parameters a,r,b
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Application: Parameter Estimation in EnKF

• Example of carbon cycle data assimilation
– Surface CO2 fluxes (CF): a forcing for atmospheric CO2

• State vector augmentation
– State vector is augmented by CF which is updated by error covariance

between the variables in the state vector
• Variable localization

– In a multivariate analysis of EnKF, error covariance is zeroed out when
there is no significant physical relationship between variables, in order
to reduce a sampling error

• Inflation
– It helps represent background uncertainty more accurately

• Vertical localization of satellite column data
– Averaging kernel is nearly uniform in the vertical, although a forcing

term (our ultimate estimate) is at the surface.  Then…?

Kang et al. (2011, JGR)
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Variable localization
• Analysis of surface CO2 fluxes

assimilating atmospheric CO2
observations
– A case with a constant forcing

Ps
q
T
V
U
C

CF
PsqTVUCCF

Ps
q
T
V
U
C

CF
PsqTVUCCF

True fluxes

CF estimation w/ varloc

CF estimation w/o varloc

Fully multivariate analysis 

1-way multivariate analysis    
with variable localization 

Kang et al. (2011, JGR)
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Inflation methods also have an impact

True fluxes

adaptive
multiplicative

+additive
fixed multiplicative

+additive
standard: fixed
multiplicative

APR

JUL

JAN

Adaptive inflation by Miyoshi (2011, Mon. Wea. Rev.)
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Vertical localization of CO2 column data
• OCO (Orbiting Carbon Observatory) & GOSAT (Greenhouse

gases Observing Satellite)
– Satellites dedicated to mapping Earth's CO2 levels

OCO, GOSAT

(Wang et al.,2009) 
Forcing of CO2 is at the surface!!!

Averaging kernel is quite flat from the surface to the
middle troposphere

In order to estimate surface CO2 fluxes with
those satellite data, we have localized the
column CO2 data, updating only lower
atmospheric CO2 rather than a full column of
CO2.
(the vertical localizing function is broad in the
lower troposphere but zero in the upper layers)
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Vertical localization improves results

• Time series of CF for one year

• Time series of pattern correlation between CF estimation
and its true state
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MiyoshiMiyoshi’’s LETKF codes LETKF code

Takemasa Miyoshi has a new LETKF code
based on the work he did at JMA. He has
made it available to all at “Google code
Miyoshi LETKF”.

It is MPI (parallel) modular and very efficient.
The same code has been coupled to
Lorenz (1996), SPEEDY, the Regional
Ocean Modular System (ROMS) at high
resolution and the WRF model.

It contains all the advances discussed
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SummarySummary
• EnKF and 4D-Var are competitive, hybrid seems best
• Several countries are now testing EnKF (quite a change!)
• Many ideas to further improve LETKF work very well:

– No-cost smoothing and “running in place”
– A simple outer loop to deal with nonlinearities
– Forecast sensitivity without adjoint model, valid for longer forecasts
– Analysis sensitivity and exact cross-validation
– Coarse resolution analysis without degradation
– Correction of model bias combined with additive inflation gives the

best results
– Can estimate simultaneously optimal inflation and ob. errors.
– The impact of adaptive inflation is very large.
– LETKF code with examples available at Miyoshi’s Google Code
The estimation of surface fluxes of carbon as evolving parameters

seems to work well if several improvements are implemented
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Thoughts on hybridThoughts on hybrid

Dale Barker suggested that a fast path for NCEP to the use of hybrid would be to
make first a GSI-EnKF hybrid, and then replace GSI with 4D-Var. Seems a
very sensible idea.

As shown by Buehner et al., hybrid Var and EnKF may be the most accurate
approach (“sweet spot”).

RMS error

a=0 a=1

x x4D-Var EnKF

Hybrid=a*EnKF+(1-a)*4D-Var


