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Abstract 
 
Ensemble Kalman Filter (EnKF) may have a longer spin-up time to reach its asymptotic 
level of accuracy than the corresponding spin-up time in variational methods (3D-Var or 
4D-Var). During the spin-up EnKF has to fulfill two independent requirements, namely 
that the ensemble mean be close to the true state, and that the ensemble perturbations 
represent the “errors of the day”. As a result, there are cases, such as radar observations 
of a severe storm, or regional forecast of a hurricane, where EnKF may spin-up too 
slowly to be useful. A scheme is proposed to accelerate the spin-up of EnKF by applying 
a no-cost Ensemble Kalman Smoother, and using the observations more than once in 
each assimilation window during spin-up in order to maximize the initial extraction of 
information. The performance of this scheme is tested with the Local Ensemble 
Transform Kalman Filter (LETKF) implemented in a Quasi-geostrophic model, which 
requires a very long spin-up time when initialized from random initial perturbations from 
a uniform distribution. Results show that with the new “running in place” (RIP) scheme 
the LETKF spins-up and converges to the optimal level of error faster than 3D-Var or 
4D-Var even in the absence of any prior information. Additional computations (2-12 
iterations for each window) are only required during the initial spin-up, since the scheme 
naturally returns to the original LETKF after spin-up is achieved. RIP also accelerates 
spin-up when the initial perturbations are drawn from a well-tuned 3D-Var background 
error covariance, rather than being uniform noise, but the maximum number of iterations 
and RIP cycles required is reduced compared to the case without such prior information.  
 

 
1. Introduction 
 
The relative advantages and disadvantages of 4-dimensional Variational Data 
Assimilation (4D-Var), already operational in several numerical forecasting centers, and 
Ensemble Kalman Filter (EnKF), a newer approach that does not require the adjoint of 
the model, are the focus of considerable current research (e.g., Lorenc, 2003, Kalnay et 
al, 2007a, Gustafsson, 2007, Kalnay et al., 2007b, Miyoshi and Yamane, 2007, 
WWRP/THORPEX Workshop, 2008).  
 
One area where 4D-Var may have an advantage over EnKF is in the initial spin-up, since 
there is evidence that 4D-Var converges faster than EnKF to its asymptotic level of 
accuracy. For example, Caya et al. (2005) compared 4D-Var and EnKF for a storm 
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simulating the development in a sounding corresponding to 00UTC 25 May 1999. They 
found that “Overall, both assimilation schemes perform well and are able to recover the 
supercell with comparable accuracy, given radial-velocity and reflectivity observations 
where rain was present. 4DVAR produces generally better analyses than the EnKF given 
observations limited to a period of 10 min (or three volume scans), particularly for the 
wind components. In contrast, the EnKF typically produces better analyses than 4DVAR 
after several assimilation cycles, especially for model variables not functionally related to 
the observations.” In other words, for the severe storm problem the EnKF eventually 
yields better results than 4D-Var, presumably because of the assumptions made in the 
4D-Var background error covariance, but during the crucial initial time of storm 
development, when radar data starts to become available, EnKF provides a worse 
analysis. For a global shallow water model, which is only mildly chaotic, Zupanski et al. 
(2006) found that initial perturbations that had horizontally correlated errors converged 
faster and to a lower level of error than perturbations created with white noise. In 
agreement with these results, Liu (2007) found using the SPEEDY global primitive 
equations model that perturbations obtained from differences between randomly chosen 
states (which are naturally balanced and have horizontal correlations of the order of the 
Rossby radius of deformation) spun-up faster than white noise perturbations.  
 
Yang et al (2009a) compared 4D-Var and the Local Ensemble Transform Kalman Filter 
(LETKF, Hunt et al., 2007) within a quasi-geostrophic channel model (Rotunno and Bao, 
1996).  They found that if the LETKF is initialized from randomly chosen fields with 
uniform distribution perturbations, it takes more than 100 days before it converges to the 
optimal level of error. If, on the other hand, the ensemble mean is initialized from an 
existent 3D-Var analysis, which is already close to the true state, using the same random 
perturbations, the LETKF converges to its optimal level very quickly, within about 3-5 
days. However, with a well-tuned background error covariance, 3D-Var and 4D-Var 
converge fast without needing a good initial guess. This has also been observed for 
severe storm simulations (Caya et al., 2005), especially when using real radar 
observations (Jidong Gao, 2008, personal communication). It is not surprising that EnKF 
spins-up more slowly than 3D-Var or 4D-Var because in order to be optimal the 
ensemble has to satisfy two independent requirements, namely that the mean be close to 
the true state of the system, and that the ensemble perturbations represent the 
characteristics of the “errors of the day” in order to estimate the evolving background 
error covariance B . In both 3D-Var and 4D-Var, by contrast, B  is tuned and assumed to 
be constant.  
 
Within a global operational system it is feasible to initialize the EnKF from a state close 
enough to the optimal analysis, such an existent 3D-Var analysis, with balanced 
perturbations drawn from a 3D-Var error covariance, so that spin-up may not a serious 
problem. However, there are other situations, such as the storm development discussed 
above, where radar information is not available before the storm starts, so that no 
information is available to guide the EnKF in the spin-up towards the optimal analysis. 
The system may start from an unperturbed state without precipitation, and if a severe 
storm develops within a few minutes and the EnKF takes considerable real time to spin-
up from the observations, it will not give reliable forecasts until later in the storm 
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evolution, and thus give results that are less useful for severe storm forecasting than 4D-
Var or even 3D-Var. Similarly, a regional model initialized from a global analysis at 
lower resolution may take too long to spin-up when confronted with mesoscale 
observations. 
  
In this note we propose a new method to accelerate the spin-up of the EnKF by “running 
in place” (RIP) during the spin-up phase and using the observations more than once in 
order to extract maximum initial information. We find that it is possible to accelerate the 
convergence of the EnKF so that (in real time) it spins-up even faster than 3D or 4D-Var 
without losing accuracy after spin-up and without requiring prior information such as the 
initial background error covariance. Section 2 contains a brief theoretical motivation and 
discussion of the method, results are presented in Section 3 and a discussion is given in 
Section 4. 
 
2. Spin-up, no-cost smoothing and “running in place” in EnKF 
 
In this section we briefly review the conditions that justify the rule that in Kalman Filter 
data should be used once and then discarded. We then suggest that this rule is not strictly 
valid during spin-up, when the initial covariance is still influencing the results, or when 
the statistics of the “errors of the day” suddenly change, as during the initial development 
of a severe storm. During these transition periods, the ensemble perturbations are not 
representative of the “errors of the day” and extracting information from observations 
using them only once is not efficient. 
 
Hunt et al. (2007) provide a derivation of the linear Kalman Filter equations by showing 
that in the cost function 
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After the cost function in (1) is minimized finding the analysis x

n

a and its corresponding 
covariance P

n

a , a similar relationship holds for the analysis at t
n
, and another constant c’: 
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Equating the terms in (3) that are linear and quadratic in x , the linear Kalman Filter 
equations for a perfect model are obtained. 
 
This derivation makes clear that Kalman Filter yields the maximum likelihood estimate 
x
n

a with the corresponding error covariance P
n

a  at time t
n
if the model is linear and perfect 

and if the previous analysis x
n!1

a at t
n!1

is also the maximum likelihood state estimate at 
the previous analysis time. Hunt et al. (2007) also address the problem of initialization: a 
system can be initialized assuming a prior background distribution at the initial time 
t
0
such that the initial background error covariance P

0

b is large but not infinitely large. 
This introduces into the cost function an additional quadratic term, but Hunt et al. (2007) 
point out that “with sufficient observations over time, the effect of this term [on the 
background error covariance] at time t

n
decreases in significance as n increases”. In other 

words, with sufficient observations, the Kalman Filter spins-up and eventually converges 
and yields the maximum likelihood solution and its error covariance independently from 
the initial conditions. During spin-up, however, or when the statistical properties of the 
dynamical system suddenly change, the background may be a very unlikely state, and it 
may be desirable to use the observations more than once in order to extract maximum 
information from them. 
 
The EnKF, like the Kalman Filter, also provides a maximum likelihood analysis, except 
that the background and analysis error covariances are estimated from an ensemble of K 
generally nonlinear forecasts: 
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b is a perturbation matrix whose kth column is the background (forecast) 
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average. Similar equations are valid for the analysis mean x
n

a  and the analysis error 
covariance P

n

a . Thus, EnKF, like the original Kalman Filter, is a sequential data 
assimilation system where, after the new data is used at the analysis time it should be 
discarded (Ide et al., 1997), but this is true only if the previous analysis and the new 
background are not only the most likely states given the past observations, but they also 
have already “forgotten” the choice of initial ensemble. In other words, if the system has 
converged after the initial spin-up, all the information from past observations is already 
included in the background and the data can be discarded after the new analysis is 
computed. In contrast, 4D-Var is a smoother that best fits all the observations (even 
asynoptic data) within an assimilation window. We note that EnKF can be extended to 4-
dimensions as in 4D-Var, allowing for the assimilation at the right time of asynoptic 
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observations made between two analyses (e.g., Hunt et al., 2004, 2007), but, being a 
filter, the EnKF analysis is only obtained at the end of the assimilation window.  
 
In summary, after the initial spin-up, all the information from past observations is already 
included in the background field, so that the observations should be used only once and 
then discarded. However, there is no theoretical reason why this constraint should also be 
applied when EnKF is “cold-started”, and the initial ensemble is not representative of the 
most likely state and its uncertainty, since during spin-up the background term still 
“remembers” the arbitrarily chosen initial ensemble. In practical applications, the rule of 
using the data only once is usually applied even during spin-up (e.g., Zupanski et al. 
2006), and depending on the initial ensemble, a slow EnKF spin-up can then be observed.  
 
In this note we suggest that when a quick EnKF spin-up (in real time) is needed in order 
to make useful short-range forecasts for fast weather instabilities, the initial observations 
can be used more than once in order to extract more initial information from them, and 
that this procedure leads to a much faster spin-up of the initial ensemble. This “running in 
place” (RIP) algorithm is made possible by the use of a “no-cost” Ensemble Kalman 
Smoother (EnKS) (Kalnay et al., 2007b, Yang et al., 2009a).   
 
The no-cost EnKS is based on the property that in EnKF the ensemble analysis is 
computed as a linear combination (weighted average) of the ensemble forecasts at the end 
of the assimilation window (see schematic Figure 1). Since a linear combination of 
ensemble trajectories within an assimilation window is also a model trajectory, a linear 
combination that is close to the truth at one time within the window should remain close 
to the truth over the entire window (at least as close as model errors allow). This 
argument (B. Hunt, personal comm., 2009) indicates that the weights used in constructing 
the analysis ensemble mean, although determined at the end of the assimilation window, 
should be valid throughout the window. A similar argument suggests that the ensemble 
analysis perturbation weights obtained using Bayes’ theorem are also valid throughout 
the assimilation window t

n!1
,t
n[ ]  (Hunt et al., 2007). 
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Figure 1: Schematic of an EnKF assimilation window with a two-member ensemble of 
forecasts (full lines) started from the analysis ensemble (circles). An arrow points to the 
analysis ensemble mean, and the dashed line is the model trajectory that goes through the 
analysis mean at the end of the trajectory. The cross is the analysis smoother valid at the 
beginning of the window, obtained applying the same weights to the forecasts as obtained 
at the end of the assimilation window. The smoother is more accurate than the analysis 
mean because it has information about the “future” observations within the assimilation 
window. 
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The no-cost EnKS is easy to implement if the weights that transform the ensemble 
forecasts into the ensemble analysis are explicitly computed and available, as is the case 
in the LETKF. The analysis ensemble members at time t

n
are each a weighted average 

(linear combination) of the ensemble forecasts valid at t
n
 (Hunt et al., 2007). Since the 

ensemble analysis estimates the linear combination of the trajectories that best fits the 
observations within an assimilation window, not just at the end of the interval, the no-cost 
EnKS valid at the beginning of the window is obtained by simply applying the same 
weights obtained at analysis time t

n
 to the initial ensemble at t

n!1
.  

 
The no-cost EnKS was tested by Yang et al. (2009a) on the quasi-geostrophic model of 
Rotunno and Bao (1996). Figure 2 compares the analysis error of the LETKF with that 
obtained using the no-cost EnKF, and shows that indeed, the no-cost ensemble Kalman 
smoother at t

n!1
is more accurate than the analysis ensemble valid at t

n!1
, as could be 

expected from the fact that the smoothed ensemble at the beginning of the window has 
benefited from the information provided by the “future” observations within the window 
t
n!1
,t
n[ ] . Although the no-cost smoothing improves the accuracy of the initial analysis at 

t
n!1

, it does not improve the final analysis at t
n
, since the forecasts started from the new 

initial analysis ensemble will end as the final analysis ensemble (at least in a linear sense, 
see Figure 1). 
 
 

 
Figure 2: Comparison of the RMS domain averaged error of the LETKF analysis (black 
line) computed at the end of each assimilation window, and the no-cost LETKF smoother  
(red line) computed by combining the forecasts valid at the beginning of the window with 
weights obtained at the end of the window. 
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With the no-cost EnKS it is thus possible to go backwards in time within an assimilation 
window, and then advance with the regular EnKF using the initial observations 
repeatedly in order to extract maximum information from them. During spin-up this 
improves the quality (likelihood) of the initial ensemble mean faster, and leads the 
ensemble-based background error covariance to be more representative of the true 
forecast error statistics.  
 
As indicated above, the EnKF requires the choice of an initial prior ensemble at t

0
 with 

covariance P
0

b . We have tested the RIP algorithm using three different initial ensembles, 
all with the same randomly chosen ensemble mean but with different distributions of the 
random perturbations: 1) a uniform distribution; 2) a Gaussian distribution and 3) 
perturbations drawn from a carefully optimized 3D-Var error covariance. Cases 1) and 2) 
include no prior information, case 3) contains the same prior information used for 3D-
Var, and an optimal rescaling, in 4D-Var. 
 
The RIP algorithm that we have tested (not necessarily optimal) is as follows: at t

0
 we 

integrate the initial ensemble to t
1
. Then the RIP loop with n = 1 , is: 

 
a) Perform a standard EnKF analysis and obtain the analysis weights at t

n
, saving the 

mean square observations minus forecast, OMF2
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computed by the EnKF. 
 
b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at t

n!1
by using 

the same forecast weights obtained at t
n
.  

 
c) Perturb the smoothed analysis ensemble with a small amount of random perturbations, 
a method similar to additive inflation. These added perturbations have two purposes: they 
avoid the problem of otherwise reaching the same final analysis at t

n
as in the previous 

iteration (Figure 1), and they allow the ensemble perturbations to evolve into fast 
growing directions that may not have been included in the unperturbed ensemble 
subspace1.  
 
d) Integrate the perturbed smoothed ensemble to t

n
. If the forecast fit to the observations 

is smaller than in the previous iteration according to a criterion such as 
 
OMF

2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> " ,     (5) 

go to a) and perform another iteration. If not, let t
n!1

" t
n
and proceed to the next 

assimilation window. In the results presented here we have used ! = 0.05  as the criterion 
for relative improvement. 
                                                
1 We have tested the use of additive perturbations with a Gaussian and with a uniform 
distribution, and both worked well. The results presented here have Gaussian additive 
perturbations. 
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e) If no additional iteration beyond the first one is needed, the RIP analysis is the same as 
the standard EnKF. When the system converges, no additional iterations are needed, so 
that if several assimilation cycles take place without invoking a second iteration, the RIP 
can be switched off and the system returns to a normal EnKF. In the results presented 
here we switched off RIP after 5 cycles without invoking a second iteration. 
 
 
3. Results  
 
The LETKF with the RIP method was implemented in the Rotunno and Bao (1996) 
quasigeostrophic model. The data assimilation experiments are performed with a 6-hour 
analysis cycle. The analysis is validated every 6-hour against the truth simulation, a long 
nature run of this QG model. The validation is done through the RMS analysis error, 
defined as the domain-averaged RMS difference of the model variables (potential 
vorticity and temperature) between the analysis and truth. The observations are zonal and 
meridional wind components and temperature, generated by adding random Gaussian 
errors on the truth. Details of the QG DA setup can be found in Yang et al. (2009a). 
 
In this section we compare several data assimilation methods started from the same 
randomly chosen mean. We define the (real time) spin-up as the number of cycles it takes 
to reduce the RMS error in potential temperature, which starts from a nondimensional 
value of 0.76, to a level of 0.038 (i.e., 5% of the initial analysis error). The results, 
including both spin-up time and asymptotic level of analysis error are also summarized in 
Table 1. 
 
Figures 3a, b and c show the RMS error of the analysis obtained during spin-up, using 
several methods over 200 analysis cycles of 12 hours each (corresponding to a total of 
100 days). In Figure 3a we compare the number of cycles required for spin-up for the 
LETKF with initial random perturbations uniformly distributed, with and without using 
RIP (black), with 3D-Var and 4D-Var (grey). As indicated before, all the experiments 
started from the same a randomly chosen mean state. 3D-Var (dashed grey line) takes 
about 60 cycles to spin-up, and 4D-var (full grey line) takes about 80 cycles, but 
converges to a much lower RMS error than 3D-Var. The standard LETKF (full black line) 
using the observations once and discarding them takes much longer, a total of 170 cycles. 
It is interesting the LETKF devotes the first 120 cycles essentially to create ensemble 
perturbations representative of the “errors of the day”, with little reduction in the 
analysis mean error, and only then, between 120 and 170 cycles, the LETKF converges 
rather quickly to the optimal level of error. After spin-up, the LETKF and 4D-Var have a 
similar asymptotic RMS error but significant day-to-day differences.  
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 LETKF 
(1) Random 

Uniform Initial 
Ensemble 

LETKF 
(2) Random 

Gaussian Initial 
Ensemble 

LETKF 
(3) B3DVar 

Initial 
Ensemble 

LETKF 
Random 
Initial  

Ensemble 

Variational 

 No 
RIP 

With 
RIP 

No 
RIP 

With 
RIP 

No 
RIP 

With 
RIP 

Fixed 10 
RIP  

iterations 

3D-Var/ 
B3DVar 

4D-Var/ 
0.05B3
D-Var 

Spin-up: 
DA cycles 
needed to 

reduce error 
to 5% 

 
141 

 
47 

 
57 

 
37 

 
53 

 
39 

 
37 

 
44 

 
54 

RMS error 
(x10-2) .51 .51/.53 0.51 .51/.56 .50 .50/.56 1.26 1.24 .53 

 
Table 1: Comparison of the spin-up time (number of cycles to reduce the initial RMS 
error in potential temperature to 5% of the original value) and the asymptotic RMS error 
for LETKF ensembles with and without RIP, and fixing the number of RIP iterations to 
10 rather than determining them adaptively. In the runs with RIP the first value of the 
RMS error (averaged over 120 cycles after spin-up) corresponds to the case RIP is 
switched off after 5 cycles with only one iteration (step e of the RIP algorithm). The 
second value is the average error if the RIP continues to be executed even after 
convergence, so that an occasional second iteration is executed and slightly degrades the 
results. Variational methods starting from the same initial state as the ensemble mean are 
also compared. The variational error covariances have been optimally tuned for both 3D 
and 4D-Var. 
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Figure 3: a) Comparison of the analysis RMS error in potential temperature versus the 
number of analysis cycles for the LETKF started from a random ensemble (1), i.e., 
perturbations from a uniform distribution (black full line), LETKF with RIP (black dot-
dashed line), 4D-Var (grey full line) and 3D-Var (grey dot-dashed line), both with tuned 
initial error covariances. b) Comparison of the LETKF analysis errors starting from 
random uniform perturbations with and without RIP (black lines as in 3a), and LETKF 
starting from 3D-Var random perturbations with and without RIP (full and dot-dashed 
grey lines). c) Comparison of the LETKF analysis errors starting from random Gaussian 
perturbations with and without RIP (full and dot-dashed black lines), and LETKF starting 
from 3D-Var random perturbations with and without RIP (grey lines as in 3b). 
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Figure 3b compares the spin-up of the LETKF starting from a random uniform ensemble 
(Case 1), with and without RIP, as in Figure 3a, with the LETKF started from 
perturbations drawn from the 3D-Var error covariance (Case 3), i.e., where each ensemble 
perturbation is a column of the matrix B

3D!Var
E . Here E is an MxK matrix whose 

columns are random Gaussian numbers such that EET
! I , M is the dimension of the 

model and K the number of ensemble members. It is apparent from Figure 3b that, as 
suggested by both Anderson (2008, personal communication) and Zupanski et al. (2006), 
when the initial ensemble is drawn from the 3D-Var covariance matrix, the spin-up is 
much faster than when started from random, uniformly distributed perturbations. We can 
view Figure 3b as a comparison between the worst and best choices of the initial ensemble 
perturbations one could make, since in the first case we make no use of prior information 
and assume perturbations are non-Gaussian, and in the second we use best tuned 3D-Var 
prior information. Nevertheless it is remarkable that even in the case of faster spin-up, the 
application of the RIP algorithm is able to accelerate the spin-up even further.  
 
Figure 3c compares the spin-up of the LETKF starting from 3D-Var covariance ensemble 
(Case 3) with and without RIP, as in Figure 3b, and Gaussian initial ensemble (Case 2), 
without any a-priori information. Initializing from perturbations with 3D-Var structures 
spins-up faster than using uncorrelated Gaussian perturbations, but such difference 
disappears when RIP is applied and similar results are obtained. Given that an optimally 
tuned 3D-Var covariance matrix may not be always available for ensemble-based data 
assimilation systems, the use of RIP appears to be an attractive alternative. 
 
In an additional experiment in which the LETKF RIP algorithm was forced to always 
perform 10 iterations (not shown), the LETKF showed an even faster spin-down but it 
converged to a higher level of error, close to that of 3D-Var (Table 1). This is not 
surprising, since once the system is close to the maximum likelihood solution, as indicated 
by the theoretical arguments discussed above, observations should be used only once and 
then discarded. By performing 10 iterations even after the system spun-up, the EnKF 
analysis fits the data too closely and this increases the analysis errors.  
 
Finally, Figure 4 shows the number of iterations needed to accelerate the spin-up in the 
RIP algorithm when started with random initial ensemble perturbations and with the 3D-
Var initial perturbations. One iteration in the figure corresponds to the normal LETKF 
case, i.e., when a second iteration would give a relative improvement in the fit of the 
forecast to the observations of less than ! = 0.05  (equation 5), and thus it is not used. 
For the 3D-Var initial ensemble (Case 3) only 2-6 iterations are needed during the spin-
up, but the other two ensembles without prior information need 11 iterations at cycle 19. 
The last second iteration is executed at cycle 65, 46 and 41 for ensembles (1), (2) and (3) 
respectively. After RIP is turned off, the analysis accuracy for the three ensembles is 
essentially identical (Table 1).   We found that using a lower value of ! = 0.01 (not 
shown) leads to a faster initial reduction of errors but requires a large number of iterations. 
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Values of ! within a range of 0.02-0.05 gave optimal results, leading to a spin-down of 
the initial errors similar to 3D-Var and faster than 4D-Var, and converging to and error 
level at least as good as that of 4D-Var. 
 

 
 
Figure 4: Number of iterations used by the RIP adaptive algorithm (5) with ! = 0.05 , and 
one iteration corresponding to the regular LETKF system. After 5 cycles without 
requiring a second iteration RIP is switched off. Black: ensemble (1), uniform random 
initial ensemble perturbations. Blue: ensemble (2), Gaussian random initial ensemble 
perturbations. Red: ensemble (3), initial ensemble perturbations from the 3D-Var error 
covariance matrix. 
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4 Discussion 
 
 
The “Running in Place” algorithm could be used to accelerate the spin-up of the EnKF 
whenever the background error statistics change suddenly, as in the case of a developing 
storm, or are otherwise not appropriate, as when a regional model with high resolution is 
started from initial conditions from a global model, or when no prior information is 
available to start the ensemble.   
 
The results obtained with RIP are very encouraging: it is possible to significantly 
accelerate the spin-up of the LETKF (and other EnKF algorithms for which the weights 
of the ensemble forecasts are available) when fast convergence to the optimal level of error 
(in terms of real time) is required by simply using the initial observations several times 
rather than only once. The no-cost Ensemble Kalman Smoother, with the smoothed 
analysis ensemble at the beginning of an assimilation window given by using the analysis 
weights of the ensemble forecast at the end of the window enables this algorithm to 
extract the maximum information from the initial observations. It is necessary to add small 
perturbations to the ensemble, in a procedure akin to additive inflation. The number of 
iterations needed is estimated by checking whether the smoothed analysis reduces the 
forecast error, estimated from the innovation OMF. A level of relative reduction !  of 
about 2-5% was found to work well in this quasi-geostrophic model, leading to about 2-6 
iterations during spin-up. After the system converges it naturally returns to the original 
LETKF.  
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