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Abstract

This study addresses the issue of model errors with the ensemble Kalman filter. 

Observations generated from the NCEP/NCAR reanalysis fields are assimilated into 

the SPEEDY model. Absent an effort to account for model errors, the performance of 

the Local Ensemble Transform Kalman Filter (LETKF) is seriously degraded when 

compared to the perfect model scenario. Several methods to account for model errors, 

including model bias and system-noise, are investigated. The results suggest that the 

two pure bias removal methods considered (DdSM and LDM) are not able to beat the 

multiplicative or additive inflation schemes used to account for the effects of total 

model errors. In contrast, when the bias removal methods are augmented by additive 

noise representing random errors (DdSM+ and LDM+), they outperform the pure 

inflation schemes. Of these augmented methods, the LDM+, where the constant bias, 

diurnal bias and state-dependent errors are estimated from a large sample of 6-hour 

forecast errors, gives the best results. The advantage of the LDM+ over other methods 

is bigger in data sparse regions than in data dense regions.
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1. Introduction

After more than 10 years of research, variants of the Ensemble Kalman Filter 

(EnKF) proposed by Evensen (1994) are now becoming viable candidates for the next 

generation of data assimilation in operational NWP. The advance is primarily due to 

the fact that (1) they include a flow-dependent background error covariance; 2) they 

are easy to code and implement; and 3) they automatically generate an optimal 

ensemble of analysis states to initialize ensemble forecasts. Many studies to date have 

tested EnKF systems under the perfect model assumption with simulated observations, 

and only within the last few years have EnKF assimilating real atmospheric 

observations been tested (e.g., Houtekamer et al. 2005; Whitaker et al. 2008; 

Szunyogh et al. 2008; Torn and Hakim 2008; Meng and Zhang 2008). Notably, an

EnKF has been operational since 2005 in the Canadian Meteorological Centre 

(Houtekamer and Mitchell 2005) and when using the same model and observations, 

the EnKF scores are about the same as the 4D-Var scores1.

In practice, forecast errors derive not only from errors in the initial conditions 

but also from errors due to model deficiencies. The latter type of error is usually 

called model error. Model error can be due to lack of resolution, approximate 

parameterizations of physical processes, numerical discretization, etc. For 

assimilation of real observations, assuming that the model is perfect is overly 

optimistic (Dee 1995). In this case, the ‘true’ forecast error covariance should include 

uncertainties from both inaccurate initial condition and model errors. As a result, the 
  

1 http://4dvarenkf.cima.fcen.uba.ar/Download/Session_7/Intercomparison_4D-Var_EnKF_Buehner.pdf
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background error covariance in EnKF associated with errors associated only with the 

initial conditions is smaller than the ‘true’ forecast error covariance because it does 

not account for the second type of forecast error. To address this problem, most 

applications account for model errors by simply enlarging the background error 

variance (multiplicative inflation, Anderson and Anderson 1999), adding additional 

terms to the background error variance (additive inflation, Mitchell and Houtekamer 

2000; Mitchell et al. 2002; Hamill and Whitaker 2005; Corazza et al. 2007; Whitaker 

et al. 2008). Though these techniques are easy to implement, they account for model 

error within the second moment of the ensemble by enlarging the background 

ensemble spread, rather than directly correcting the model errors in the ensemble mean.

Another approach has been to use different physical parameterization schemes (Fujita 

et al. 2007; Meng and Zhang 2007, 2008). Dee and da Silva (1998) proposed a 

method for the on-line estimation and correction of model bias from the ensemble 

mean. This bias correction method (DdSM, hereafter) has been successfully tested, for 

example, by Dee and Todling (2000), Carton et al. (2000), Chepurin et al. (2005), 

Keppenne et al. (2005). Recently, Baek et al. (2006) developed another bias correction 

method similar to the DdSM except that it allows for “adjusting” the observations, 

rather than the model bias, and it accounts for the cross-correlation of uncertainties in 

model state and bias that had been ignored in the DdSM. They successfully tested this 

approach with the Lorenz-96 model. However, both of these two methods assume that 

the bias is static in time, resulting in estimates of only the slowest varying component 

of model error. In reality, model error likely varies with time (e.g., errors in the 
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diurnal cycle) or with the state of the atmosphere (e.g., biases are different during an 

El Niño episode). 

Danforth et al. (2007) proposed an approach where the state-independent model 

error (bias) was estimated from the average of a large ensemble of 6-hour forecast 

minus analysis fields (i.e., 6-hour apparent forecast errors), diurnal errors were 

estimated from the dominant Empirical Orthogonal Functions (EOFs), and 

state-dependent errors were determined using the leading terms in a Singular Value 

Decomposition. They found this low-dimensional method (LDM, hereafter), where 

the state-dependent errors are expressed in terms of very few degrees of freedom 

(d.o.f.), to be very successful and computationally efficient. This method has been 

successfully tested with the coupled Lorenz-96 model (Danforth and Kalnay 2008) 

and the simple but realistic global SPEEDY model (Danforth et al. 2007). However, 

in both studies there is no data assimilation involved since the initial conditions were 

taken to be a system trajectory and the NCEP-NCAR Reanalysis, respectively. It is 

worthwhile to expand the application of the LDM to more realistic situations where 

the forecast-analysis is cycled and, as a result, forecast error includes both model error 

and dynamical growing error due to the imperfect initial condition.

In this study we investigate the performance of an ensemble Kalman filter in a 

perfect model and in the presence of significant model errors and then apply different 

approaches to deal with model errors in ensemble data assimilation. The Local 

Ensemble Transform Kalman Filter (LETKF, Hunt et al. 2007) is used as a 

representative of other EnKF systems. A review of the LETKF is given in section 2. 



6

The different techniques for treating model errors are described in section 3. Section 4 

contains the performance of the LETKF in a perfect model scenario. In section 5, the 

LETKF performance in the presence of model errors due to assimilating observations 

generated from the NCEP/NCAR reanalysis fields is examined. Two inflation 

schemes (multiplicative and additive inflation) and two bias correction methods 

(DdSM and LDM) are applied to account for and/or correct model errors. Their 

results are compared and discussed in both a uniform and a rawinsonde-like 

observation network. Section 6 gives our summary and discussion.

2. LETKF data assimilation scheme

The LETKF is one of the ensemble square-root filters (Tippett et al. 2003) in 

which the observations are assimilated to update only the ensemble mean by

)]([ fofa H xyKxx −+=  (1)

where ax , fx are the ensemble mean of analysis and background (forecast)

respectively, K the Kalman gain, oy the observations and )(•H the observation 

operator. Here we use the superindex f rather than b to denote the background 

(forecasts) in order to avoid confusion with the subindex b used to denote the bias in 

the next section. 

The ensemble perturbations are updated by transforming the background 

perturbations through a transform matrix T , as proposed by Bishop et al. (2001)

TXX fa = (2)

where fa XX , are the analysis and background ensemble perturbations 
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(matrices whose columns are the difference between the ensemble members and 

the ensemble mean), and the error covariances are given by Tfafafa )( ,,, XXP = .

In the LETKF, the Kalman gain and transform matrix are given by

1)(~ −= RHXPXK Tfaf (3)

2/1]~)1[( aK PT −= (4)

where aP~ , the analysis error covariance in ensemble space, is given by

[ ] 11 )()()1(~ −−+−= fTfa K HXRHXIP (5)

with dimension KK × , where the ensemble size K is usually much smaller than 

both the dimension of the model and the number of observations. As a result, the 

LETKF performs the analysis in the space spanned by the forecast ensemble members, 

which greatly reduces the computational cost. The LETKF is computed locally for 

each grid point by choosing the observations that will influence that grid point. More 

details about the LETKF are available in Hunt et al. (2007) and Szunyogh et al. 

(2008).

3. Methods to deal with model errors

3.1. Multiplicative inflation

Multiplicative inflation simply inflates the ensemble error covariance f
eP by a 

factor 1+∆ to approximate the ‘true’ error covariance fP

f
e

f PP )1( ∆+← (6)

where ∆ is a tunable parameter. Equation (6) provides an increase in the ensemble 

covariance f
eP to account for the model errors that are not included in the original f

eP .
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This method implicitly assumes that model errors have the same error structure as the 

internal errors so that their error covariance is proportional to the dynamically evolved 

error covariance f
eP .  

3.2. Additive inflation

Additive inflation parameterizes model errors by adding random perturbations 

with a certain covariance structure to each ensemble member. Following Whitaker et al. 

(2008), in this study we randomly select samples from a subset of NCEP/NCAR 

(NNR hereafter, Kalnay et al. 1996) 6-hour tendency fields in January and February 

for the years 1982-1986. Unlike random numbers, these randomly selected tendency 

fields are geostrophically balanced. In each analysis cycle, we randomly select K

tendency fields, remove their mean, scale these zero-mean fields, and add each of 

these scaled fields to one background ensemble member, i.e.,

kk
f
e

f
k rqxx += )( (7)

so that

0=kq (8)

and denote

Qqq =
T

kk (9)

Here k is the index for each ensemble member, and )(k
f
ex denotes the kth

ensemble forecast. kq is the additive field added to ensemble member k, and r is its 

amplitude, a tunable parameter. Our procedure for making the additive fields is 

similar to that of Whitaker et al. (2008) ensuring that the added fields will only 
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enlarge the background error covariance by Q and will not change the ensemble

mean.

3.3. Dee and da Silva bias estimation method (DdSM)

Dee and da Silva (1998) developed a two-stage bias estimation algorithm, in 

which the estimation procedures for the bias and the state are carried out successively. 

At the first step bias is estimated on every model grid point by 

)]([ ffo
b

fa H bxyKbb −−−= (10)

1][ −++= RHHPHHPHPK Tf
xx

Tf
bb

Tf
bbb  (11)

where the matrix f
xxP and f

bbP is the forecast error covariance for the state variables

and for the bias respectively.

In practice the bias forecast error covariance f
bbP is unknown, so that following 

Dee and da Silva (1998) we assume that

f
xx

f
bb PP α=  (12)

Substituting (12) into (11), we have

1])1[( −++= RHHPHPK Tf
xx

Tf
xxb αα (13)

whereα is a tunable parameter.

In the second step, the analysis for the state variables is obtained using the 

standard analysis procedure with the unbiased forecast state af bx −

 )]([)( afo
x

afa H bxyKbxx −−+−= (14)

1−+= )( Tf
xx

Tf
xxx RHHPHPK (15)

As for the bias forecast model, following Carton et al. (2000) we will use a 
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damped persistence,

a
i

f
i 1−= bb µ (16)

where i denotes time step, and µ <1 , a tunable parameter

The cost of the DdSM is about twice that of no bias estimation, since the 

updated equations are solved twice, first for the bias estimation and then for the state 

variables. However, this double cost problem can be avoided if α <<1 in which case 

(13) becomes

1][ −+≈ RHHPHPK Tf
xx

Tf
xxb α

xKα=    (17)

Reversing the order of the bias estimation step and that of the state analysis step, 

we obtain a simplified version of the DdSM (Radakovich et al. 2001).

)]([)( ffo
x

ffa H bxyKbxx −−+−= (18)    

)]([ ffo
x

fa H bxyKbb −−−= α (19)

In this approach the computation of (19) is almost cost free after the state 

analysis ax has been updated by (18), since )]([ ffo
x H bxyK −− is simply the 

analysis increment for the state variables.  

Above we give the general equations for the DdSM and its simplified version. In 

the application of the DdSM to an EnKF system, no additional ensemble members are 

required for the bias since the bias forecast error covariance f
bbP is obtained directly 

from the state forecast error covariance f
xxP . Therefore, the term fx in equation (10) 

and (19) is actually the ensemble mean of forecasts.
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3.4. Low-Dimensional Method (LDM)

We assume the NCEP/NCAR reanalysis (NNR) as a reference field to 

approximate the atmospheric truth, and conduct the reference forecast which is pure 

6-hour model forecast starting from the NNR without doing any data assimilation. 

The (apparent) 6-hour forecast error ex is then defined as the difference between the 

reference forecast and the NNR valid at the same time.

The low-dimensional scheme (Danforth et al. 2007) assumes that model error 

e
mx has three components, namely the bias, periodic errors dominated by errors in the 

diurnal cycle, and model errors that are state-dependent:

n

N

n
nl

L

l
l

e
m ttt febx ∑∑

==

++=
11

)()()( γβ (20)

in which t denotes the time step. The forecast bias b is obtained by averaging the 

forecast errors ex over a certain training time period >=< exb , and the leading 

EOFs le from the anomalous error field ><−= eee xxx ' are used to estimate 

diurnal or other periodic errors. The state-dependent model error component is given 

by the leading SVD modes (SVDs) nf of the covariance of the coupled model state 

anomalies ><−= fff xxx ' and corresponding error anomalies 'ex . L and N are the 

number of retained leading modes of EOFs and SVDs, respectively. The spatial fields

b , le and nf are time-independent and computed offline using the samples in the 

training period. We call this approach low-dimensional because the shape of the 

model errors is pre-estimated separately and only their amplitudes )(tlβ and )(tnγ

which have a much lower dimension (L and N) than the full model dimension, are 
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estimated online. 

During the training period, the time-series of lβ is calculated by projecting 

'ex onto the EOFs le . Since lβ is dominated by the bias in the diurnal cycle, the 

time-dependent )(tlβ can be estimated by averaging the lβ over the diurnal cycle in 

the training period. For example, we can use the samples in the training period to 

calculate the average of lβ for 0000UTC, 0600UTC, 1200UTC and 1800UTC

separately and time-interpolate them in the current time-step. For the calculation of 

the state-dependent component nn

N

n
t f)(

1
γ∑

=

using Singular Value Decomposition, 

the readers are referred to Danforth et al. (2007).

4. The LETKF performance in perfect model experiments

An AGCM model, the SPEEDY model (Molteni 2003) is used in this study. The 

SPEEDY model solves the primitive equation for prognostic variables of zonal wind 

( u ), meridional wind ( v ), temperature (T ), specific humidity ( q ), and surface 

pressure ( sp ) at the triangular truncation T30, corresponding to 96*48 grid points and 

7 sigma levels. First, we assume a perfect model where a nature run is generated by 

integrating the SPEEDY model from 0000 UTC 1 January, 1987, until 1800 UTC 15 

February, 1987. The observations are simulated by adding normally-distributed 

random noise to the nature run, and are available at each model grid point for sp and 

every second model grid point for qTvu ,,, , in both the zonal and meridional 

directions, i.e., 25% of the number of model grid points. The amplitudes of the 

observation errors are 1 m/s for vu, wind, 1 K for T , 10-4 kg/kg for q and 1 hPa 
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for sp . For each forecast-analysis cycle, the SPEEDY model is used to generate the 

6-hour forecast and the observations are assimilated by the LETKF with 30 ensemble 

members and a ∆ =0.05 multiplicative inflation parameter to deal with sample errors 

in the covariance. Figure 1 shows the time-series of Root-Mean-Square (RMS) 

analysis error (defined as analysis minus true state), averaged over the whole globe, 

for zonal wind (u ), geopotential height (Z), temperature (T ), specific humidity ( q ) at 

500hPa and surface pressure ( sp ). It is clear that after the initial spin-up period, the 

analysis RMSE for all the variables is much smaller than the observational error 

standard deviations. 

To investigate why the LETKF performs well, the background ensemble spread 

is compared with the background error. Carrying out perfect model experiments, the 

true background error with respect to the nature run can be calculated. In order for the 

LETKF to perform well, the ensemble spread should be representative of the true 

background error. Figure 2 shows the 500hPa height background ensemble mean error 

field (shaded) and the ensemble spread (contour) at 1200 UTC 3 February, 1987，an 

arbitrarily chosen time. These two fields, although noisy, agree generally with each 

other in location. Then we compare the background RMSE of the height field and the 

corresponding spread averaged over the whole globe (Figure 3). The spread is slightly 

smaller at low levels and slightly larger in the upper levels compared to the 

background RMSE, but still they are quite close. Figure 2 and 3 together demonstrate 

that the spread among 30 ensemble members has captured the true background error 

well in both structure and magnitude.  
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5. Accounting for and correcting model errors in the LETKF 

To assess the performance of the LETKF in the presence of model errors, we 

replace the nature run in the perfect model experiments by the NNR fields. Since the 

NNR assimilated real observations, we assume that the NNR fields are an 

approximate estimate of the unknown ‘true’ atmosphere. A quantitative validation of 

this assumption is beyond the scope of this research. Random noises with the same 

standard deviation used in the perfect model experiments are added to simulate ‘NNR 

observations’. The density of observations remains the same as that in the perfect 

model experiments.

5.1. Effects of model errors on the LETKF

Serving as a benchmark, the control run is carried out using the same 

configuration ( ∆ =0.05 and 30 ensemble members) as that in section 4 but replacing 

the observations generated from the nature run with the ‘NNR observations’. No 

additional method is applied to deal with model errors. After an initial spin-up period 

of 15 days, the analyses and forecasts are verified against the NNR.

The strong negative influence of the model errors on the performance of the 

LETKF is very clear in the control run (results not shown). In the presence of model

errors and without accounting for them, the 500 hPa height analysis RMSE increases

from 2.4 m (in the perfect model) to 50 m due to the model errors and their 

accumulated effects. An increase by more than an order of magnitude is also observed 

for other variables and regions. However, it should be noted that with a more 
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sophisticated and high-resolution numerical model, such as those currently used in 

operational centers, the negative impact of model errors would be much smaller.

The background ensemble spread of the height field is plotted in Figure 4 to 

investigate why the LETKF performs poorly in the presence of large model errors. It 

is interesting to find that the spread is very close to that obtained in the perfect model 

experiment, while ideally it should be as large as the actual forecast error, as it 

happens for a perfect model. This result indicates that when using the same model, the 

forecast ensembles are “blind” to model errors, and therefore the ensemble spread 

underestimates the actual forecast error, leading to excessive confidence in the 

forecasts, less weight given to the observations and, as a result, to the poor 

performance of the LETKF.

5.2. Accounting for and correcting model errors

Different methods described in section 3 are applied to the SPEEDY-LETKF 

system to account for model errors. As in the control run, experiments are 

implemented for the period 0000 UTC 1 January, 1987 to 1800 UTC 15 February, 

1987 and the verification statistics are computed for analyses and forecasts against the 

NNR fields after the initial spin-up period of 15 days. 

5.2.1. Multiplicative inflation versus additive inflation

Figure 5 shows the analysis RMSE of 200 hPa u , 500 hPa Z , 850 hPa q and 

925 hPa T fields, from multiplicative inflation (with an optimal parameter of 
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5.1=∆ ), additive inflation (with an optimal amplitude of r =1.5) and the control run . 

Both inflation schemes result in much better analyses than the control run for all the 

fields. As found in previous studies, e.g., Hamill and Whitaker (2005), Whitaker et al. 

(2008), additive inflation outperforms multiplicative inflation. 

5.2.2. Dee and da Silva method combined with additive inflation (DdSM+) 

The DdSM aims to estimate and correct model bias, but does not account for 

state-dependent and random errors. Since the performance of the additive inflation is

better than that of the multiplicative inflation, we combine the DdSM with additive 

inflation to account for random system noise. The additive noise is obtained in the 

same way as that in additive inflation scheme. We refer to the DdSM augmented with 

additive noise as DdSM+.

Recall that there are two variables ( µ andα ) to be tuned in the pure DdSM. If 

additive inflation is used to model the system-noise, the amplitude ( r ) of additive 

noise is another parameter that also needs to be tuned. To simplify the task of tuning 

these three parameters, first we fixα =0.5 (following the recommendation of Dee and 

da Silva 1998) and µ =1.0 (assuming a persistence model for bias prediction) and 

then tune the amplitude ( r ) of the additive noises. We start at 0000 UTC 1 January, 

1987 by assuming zero bias and run the SPEEDY-LETKF system for 45 days. 

However, no matter how small r is, the filter diverges, especially for temperature 

fields in the lower levels, and the bigger r , the faster the divergence. Using the same 

SPEEDY-LETKF system but with pure DdSM ( r =0), Miyoshi (2005) observed
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similar filter divergence for all choice of α when fixing µ =1.0. Thus, we let µ be 

less than 1 to reduce the impact of bias from the previous time step and find µ =0.9 is 

successful for a wide range of choices for r and gives better results than µ =0.8.

Fixing µ =0.9, the pairs of (α , r ) are tuned. The results are summarized in Table 1. It 

is clear that accounting for random system noise is essential in order for the LETKF 

to perform well. Without additive noise, the pure DdSM ( r =0) is not competitive with 

pure additive inflation (α =0) with an optimal amplitude of r =1.5. Using a small 

additive noise ( r =0.25), the DdSM+ outperforms the pure additive inflation scheme, 

but the optimal choice of α is large (α =0.75). When r is increased to 0.5, the 

value of the optimalα reduces to 0.5. These results can be better understood by the 

expression of f
xx

f
bb PP α= whereα is an explicit parameter and r is an implicit factor 

(through affecting f
xxP ) to determine the bias forecast error covariance f

bbP . When r is 

small, the system requires a big value of α to obtain an optimal f
bbP , while as 

r increases, the optimal value of α decreases because the forecast error covariance 

f
xxP for the state variables has already been increased. By increasing r from zero to 

0.5, a large improvement is found. Beyond r =0.5, there is little further improvement.

As shown in Table 1, we choose ( 9.0=µ , α =0.5, r =0.6) as the optimal setting of 

the parameters for the DdSM+ .

We take the same setting of the parameters ( 9.0=µ , α =0.5, r =0.6) and run 

the SPEEDY-LETKF system with the simplified DdSM+ (the simplified DdSM, 

Radakovich et al. 2001, augmented by additive noise). Although the choice α =0.5 

does not satisfy the condition α <<1 stated in section 3 for the simplified DdSM, 
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tuning r using a smaller value α =0.1, actually gives much worse results than with

α =0.5. This is possibly due to a suboptimal analysis increment when forcing α to be 

a small value in equation (19). Therefore, we keep the setting of ( 9.0=µ , α =0.5,

r =0.6) here. The resulting analysis is worse than that from the DdSM+ for all the 

variables but better than that from pure additive inflation in the 500 hPa height field. 

Comparable results are found in the other fields, except for specific humidity (Table 

2). 

5.2.3. LDM with additive inflation (LDM+)

Since experiments are carried out for January and February in 1987, the 5-year 

climatology of the same months for the years 1982-1986 is chosen as the training 

period, following Danforth et al. (2007). In this training period, the 6-hour SPEEDY 

forecasts initialized with the NNR fields are conducted and then the samples of

forecast error ex are obtained by taking the differences between the SPEEDY 6-hour 

forecasts and the NNR fields valid at the same time.

Three types of model errors in equation (20) with LDM are corrected but, as it 

was the case with the pure DdSM, the pure LDM without accounting for system noise 

is not able to beat pure additive inflation (Figure 6). To parameterize system-noise, 

randomly selected NNR 6-hour tendency fields are added to each background

ensemble member and their amplitude are tuned as what has been done in the DdSM+ 

scheme. As seen in Figure 6, the LDM, plus a small amount ( r =0.4) of additive noise 

(LDM+ hereafter) significantly outperforms the pure additive inflation scheme, 

suggesting the necessity to deal with both model bias and system-noise in the 
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presence of complicated model errors.  

5.2.4. Overall comparison

Finally all the methods with their optimal configurations are compared with 

each other. As before, the results are verified against the NNR fields. 

a. Analysis verification

Figure 7 illustrates that the LDM+ provides significantly better analyses than the 

other methods for all the variables and at all levels. The DdSM+ generally 

outperforms both inflation schemes. Its simplified version is worse than the original 

version but is comparable to the pure additive inflation (except for specific humidity) 

and better than the pure multiplicative inflation scheme, which produces the worst 

results of all five methods. However, it should be noted that all the methods have 

made major analysis improvements compared to the control run (gray dotted curve in

Figure 8). Correcting model biases is, in general, better than only accounting for their 

effects in the second moment of the ensemble, assuming we have a good method to 

estimate model biases. Though the estimated biases are not good enough for the 

simplified DdSM+ to outperform the pure additive inflation scheme, the DdSM+ 

generally beats pure additive inflation. Among all methods, the LDM+ is the best: it 

outperforms other methods in all the fields throughout all pressure levels, especially at 

lower levels. 

b. 48-hour forecast verification

So far we have focused on the comparisons in terms of the analysis accuracy. 

However, the goal of developing more accurate analyses is to improve the short-term 
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forecasts. Within an imperfect model, the short-term forecast errors come from both 

growing errors in the initial condition and model deficiencies. Although the model 

errors could be corrected within the forecast model, here we would like to see if the 

advantage of one method in the data assimilation process can be retained over a 

forecast period. Otherwise, there would be no benefit in improving the initial analysis 

on short-term forecasts. Figure 9 shows the global-averaged 48-hour forecast RMSE 

at all pressure levels. The advantage of DdSM+ over additive inflation becomes less 

obvious for most fields, but remains significant for geopotential height fields at all 

levels. The large advantage of the LDM+ over the other two methods also decreases 

due to the contamination of the model errors. Nevertheless, it is still quite obvious and 

significant, except for the zonal wind above 200 hPa and the humidity above 700hPa. 

Above we focused on the impact of initial analysis on the short-term forecast 

and did not attempt to correct the model errors during the forecast process. The LDM

can also be used to estimate and correct the short-term model errors in the forecast 

phase, as shown by Danforth et al. (2007) with the SPEEDY model. 

5.3. Sensitivity to observational network

Thus far, methods have been compared using a globally uniform observation 

network (the upper right panel in Figure 10), as if they were based only on satellite 

observations, resulting in uniform error fields (not shown). However, in reality there 

are more rawinsonde observations over land and fewer over the ocean. To investigate 

the sensitivity of each method to the choice of observational system, we apply a 
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rawinsonde-like network (the upper left panel in Figure 10) for qTvu ,,, ( sp is still 

available everywhere) to pure additive inflation, the DdSM+ and the LDM+. We 

re-tune the parameters and choose the optimal setting for each method. Figure 10

(lower left panel) shows the zonal and time-averaged latitudinal profiles of 

geopotential height analysis RMSE at 500 hPa for the three methods with 

rawinsonde-like observation network. For comparison, the results from experiments 

described in subsection 5.2 with a uniform observation network are shown in the 

lower right panel. Using uniform observations, the performance of each method is less 

latitude-dependent. With rawinsonde-like observations, though the DdSM+ is still 

better than pure additive inflation, both are far more sensitive to observation density 

than LDM+. In the Southern Hemisphere and the northern polar region where few

observations are available, the DdSM+ and pure additive inflation behave much 

worse than that of LDM+. Figure 10 demonstrate that the DdSM+ and pure additive 

inflation schemes are more sensitive to the choice of observation network, and 

perform poorly in regions with sparse observations, while the LDM+ is more robust. 

These results are not unexpected since the LDM+ bias correction is done in model 

space while the DdSM+ is performed in observation space. Large additive inflation is 

not helpful in regions where there are no observations. 

6. Summary and Discussion

In this study we addressed the issue of model errors with the ensemble Kalman 

filter. Though focusing on the LETKF, an efficient approach within the EnKF family, 
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the results are applicable to other EnKF systems. First, we performed data 

assimilation experiments using the LETKF with the SPEEDY model under a perfect 

model scenario. It is found that the LETKF works very well in this ideal case. Then 

we dropped the perfect model assumption by assimilating observations generated 

from the NCEP/NCAR reanalysis fields. Without any additional effort to handle 

model errors, the performance of the LETKF is seriously degraded. The background 

ensemble spread is similar to that in the perfect model and therefore much smaller 

than the true forecast error (that now includes model errors). The “blindness” of the 

LETKF to model error is likely due to the fact that each ensemble member is 

integrated with the same model. If forecasts from different systems are available, as in 

the super-ensemble of Krishnamurti et al. (2000), we would expect to be able to at 

least partially represent model errors. 

We investigated two simple ways to represent the effect of model errors and two 

sophisticated methods to estimate and remove model bias. Our results suggest that 

multiplicative inflation is worse than additive inflation. The pure bias removal 

methods (DdSM and LDM) remove model bias, but cannot handle system noise; as a 

result, they are not able to beat inflation schemes that account for the total model 

errors. Supplemented by additive noise in order to be able to represent the system 

noise, bias removal methods generally outperform the pure inflation schemes. Of all 

these methods, the low-dimensional method with additive inflation (LDM+) where 

the time-averaged model bias, diurnal bias and state-dependent errors are estimated 

from a large number of 6-hour forecast errors, gives the most accurate analyses and 
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48-hour forecasts. The advantage of the LDM+ over other methods is larger in data 

sparse regions than in data dense regions due to the fact that its bias correction is done 

in model space and thus less sensitive to the absence of abundant observations. We 

note that in training the LDM we have used a long reanalysis that has spread 

information from both satellite and rawinsonde observations throughout the 

atmosphere.

Although the DdSM combined with inflation (DdSM+) produces worse results 

than the LDM+, it is generally superior to both pure inflation schemes. The 

disadvantages of DdSM+ are the doubling of the computational cost and exclusive 

reliance on observations. When the observations are sparse, the impact of the bias 

correction is limited. In the worst case, where the observations themselves are biased, 

it is not at all obvious that this algorithm can work correctly. Our results of LDM

estimation may be too optimistic, since in our applications we assume the NNR field 

is an approximation of the unknown truth and use it to generate the samples of model 

errors during the training period. In reality, the NNR field could be biased and 

generating good samples of model errors is a challenge to the LDM+. It is not clear in 

the real world whether the model error samples generated from the NNR fields are 

good enough to represent the true model errors. In practice, we could use a more 

advanced reanalysis, like ERA-40 or JRA-25 to replace the NNR. We could also 

verify the analysis against a more advanced reanalysis, and thus simulate the fact that 

the truth is not available for the training. The EnKF analysis increments could also be 

used as model error samples. For the training of error samples, iterations are required 
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since at first the analyses are also biased, so that the analysis increments cannot 

sample model error well. We intend to explore this idea with the SPEEDY model to 

see whether the final model error samples after convergence are good enough to 

represent the true model errors.  
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Figure Captions

Figure 1. Time series of global-averaged analysis RMSE (solid curve) at 500 hPa for 

the period between 0000 UTC 1 January 1987 and 1800 UTC 15 February 1987 in a 

perfect model experiment. The observational error standard deviations are shown as 

dash lines wherever applicable. The five panels from the top to the bottom correspond 

to zonal wind, geopotential height, temperature, specific humidity and surface 

pressure, respectively.   

Figure 2. The background (6-hour forecast) error field (in meters, shaded) and the 

ensemble spread of 500 hPa height field (in meters, contour) at 1200 UTC 3 February, 

1987，an arbitrarily chosen time, in a perfect model experiment.

Figure 3. Background RMSE at all pressure levels (solid) and background ensemble 

spread (dashed) of height field, temporally averaged for one-month after the initial 

15-day spin-up period in a perfect model experiment.

Figure 4. Background ensemble spread in height field at all pressure levels temporally 

averaged over a month after the initial 15-day spin-up period in the cases of perfect 

model, assimilating observations generated from the SPEEDY nature run (dashed), 

and imperfect model assimilating observations generated from the NNR field (solid).

Figure 5. Time series of the global-averaged analysis RMSE in the cases of the 

control run (dashed curve), ∆ =1.5 multiplicative inflation (dotted curve) and r =1.5 
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additive inflation (solid curve) assimilating the NNR observations. The four panels 

from the top to the bottom correspond to 200 hPa u , 500 hPa Z , 850 hPa q and 

925 hPa T fields, respectively.

Figure 6. Time series of the global-averaged analysis RMSE of the 500 hPa Z and 

925 hPa T fields, in the cases of the LDM alone (dashed curve), r =1.5 additive 

inflation (dotted curve) and the LDM together with additive inflation with an 

amplitude r =0.4 (solid curve).

Figure 7. Global-averaged analysis RMSE at all pressure levels in the cases of the 

LDM+ (black dotted), the DdSM+ (black dashed), additive inflation (black solid), the 

simplified DdSM+ (gray dashed) and multiplicative inflation (gray solid). The four 

panels correspond to u-wind field, temperature field, height field and specific

humidity field, respectively. The averages are taken for a month after the initial 

half-month spin-up period. 

Figure 8. Same as the top-left panel in Figure 7, but also shows the result for the 

control run (gray dotted) and for the perfect model experiment (black dot-dashed). We 

note that in a more realistic operational model, the negative effect of model errors 

would not as large as in this control run and a significant amount of inflation leads to 

better results even in the absence of bias correction (e.g., Szunyogh et al. 2008).
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Figure 9. 48-hour forecast RMSE at all pressure levels in the cases of the LDM+ 

(dotted), the DdSM+ (dashed), and additive inflation (solid). The four panels 

correspond to u-wind field, temperature field, height field and specific humidity field, 

respectively. The averages are taken over all forecasts started every 6 hours between 

0000 UTC 1 February 1987 and 1800 UTC 15 February 1987.

Figure 10. Upper panels: Observation locations in rawinsonde-like (left) and uniform 

(right) observation network. Lower panels: Zonal and time-averaged latitudinal 

profiles of geopotential height analysis RMSE at 500 hPa for additive inflation 

(dotted), the DdSM+ (solid) and the LDM+ (dashed), in the case of rawinsonde-like 

(left) and uniform (right) observation networks.
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Table 1.  Analysis RMSE of 500 hPa height (m) using the DdSM+ with different 

choices of (α , r ) with a fixed µ =0.9. When r =0 ( i.e., pure DdSM), a small 

parameter ( ∆ =0.05) of multiplicative inflation is applied in order to prevent filter 

divergence. For the other choices of r , no multiplicative inflation is used. For 

comparison, the pure addition inflation application is also shown (α =0 and r =1.5).

 α 0.0 0.25 0.50 0.75 1.00

r =0 37.1 35.0 33.9

r =0.25 22.5 22.0 18.9 19.2

r =0.5 19.8 17.6 20.4 20.1

r =0.6 17.3

r =1.5 23.8
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Table 2.  Comparison of analysis RMSE between the applications of additive 

inflation, the DdSM+ and the simplified DdSM+. Results are shown for 200 hPa 

zonal wind (u ), 500 hPa height ( Z ), 850 hPa specific humidity ( q ) and 925 hPa 

temperature (T ) fields, temporally averaged for a month after the initial spin-up 

period.

Fields

(unit)

200 hPa

u (m/s)

500 hPa

 Z (m)  

850 hPa

q (g/kg)

925 hPa

T (K)

Additive inflation 1.88 23.82 0.48 1.43

Simplified DdSM+ 1.87 19.54 0.61 1.37

DdSM+ 1.76 17.32 0.47 1.30
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Figure 1. Time series of global-averaged analysis RMSE (solid curve) at 500 hPa for 

the period between 0000 UTC 1 January 1987 and 1800 UTC 15 February 1987 in a 

perfect model experiment. The observational error standard deviations are shown as 

dash lines wherever applicable. The five panels from the top to the bottom correspond 

to zonal wind, geopotential height, temperature, specific humidity and surface 

pressure, respectively.   
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Figure 2. The background (6-hour forecast) error field (in meters, shaded) and the 

ensemble spread of 500 hPa height field (in meters, contour) at 1200 UTC 3 February, 

1987，an arbitrarily chosen time, in a perfect model experiment.
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Figure 3. Background RMSE at all pressure levels (solid) and background ensemble 

spread (dashed) of height field, temporally averaged for one-month after the initial 

15-day spin-up period in a perfect model experiment.
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Figure 4. Background ensemble spread in height field at all pressure levels temporally 

averaged over a month after the initial 15-day spin-up period in the cases of perfect 

model, assimilating observations generated from the SPEEDY nature run (dashed), 

and imperfect model assimilating observations generated from the NNR field (solid).
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Figure 5. Time series of the global-averaged analysis RMSE in the cases of the 

control run (dashed curve), ∆ =1.5 multiplicative inflation (dotted curve) and r =1.5 

additive inflation (solid curve) assimilating the NNR observations. The four panels 

from the top to the bottom correspond to 200 hPa u , 500 hPa Z , 850 hPa q and 

925 hPa T fields, respectively.  
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Figure 6. Time series of the global-averaged analysis RMSE of the 500 hPa Z and 

925 hPa T fields, in the cases of the LDM alone (dashed curve), r =1.5 additive 

inflation (dotted curve) and the LDM together with additive inflation with an 

amplitude r =0.4 (solid curve).  



40

Figure 7. Global-averaged analysis RMSE at all pressure levels in the cases of the 

LDM+ (black dotted), the DdSM+ (black dashed), additive inflation (black solid), the 

simplified DdSM+ (gray dashed) and multiplicative inflation (gray solid). The four 

panels correspond to u-wind field, temperature field, height field and specific 

humidity field, respectively. The averages are taken for a month after the initial 

half-month spin-up period.  
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Figure 8. Same as the top-left panel in Figure 7, but also shows the result for the 

control run (gray dotted) and for the perfect model experiment (black dot-dashed). We 

note  that in a more realistic operational model, the negative effect of model errors 

would not as large as in this control run and a significant amount of inflation leads to 

better results even in the absence of bias correction (e.g., Szunyogh et al. 2008).
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Figure 9. 48-hour forecast RMSE at all pressure levels in the cases of the LDM+ 

(dotted), the DdSM+ (dashed), and additive inflation (solid). The four panels 

correspond to u-wind field, temperature field, height field and specific humidity field, 

respectively. The averages are taken over all forecasts started every 6 hours between 

0000 UTC 1 February 1987 and 1800 UTC 15 February 1987.
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Figure 10. Upper panels: Observation locations in rawinsonde-like (left) and uniform 

(right) observation network. Lower panels: Zonal and time-averaged latitudinal 

profiles of geopotential height analysis RMSE at 500 hPa for additive inflation 

(dotted), the DdSM+ (solid) and the LDM+ (dashed), in the case of rawinsonde-like 

(left) and uniform (right) observation networks.


