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Abstract 

The impact of different surface vegetations on long-term surface temperature 

change is estimated by subtracting reanalysis trends in monthly surface temperature 

anomalies from observation trends over the last four decades. This is done using 

two reanalyses, namely, ECMWF-40 (ERA40) and NCEP-NCAR I (NNR), and 

two observation datasets, namely, Climatic Research Unit (CRU) and Global 

Historical Climate Network (GHCN). The basis of the observation minus 

reanalysis (OMR) approach is that the NNR reanalysis surface fields, and to a 

lesser extent the ERA40, are insensitive to surface processes associated with 

different vegetation types and their changes because the NNR does not use 

surface observations over land, whereas ERA40 only uses surface temperature 

observations indirectly, in order to initialize soil temperature and moisture. As a 

result, the OMR trends can provide an estimate of surface effects on the observed 

temperature trends missing in the reanalyses. 

The OMR trends obtained from observation minus NNR show a strong and 

coherent sensitivity to the independently estimated surface vegetation from 

Normalized Difference Vegetation Index (NDVI). The correlation between the 

OMR trend and the NDVI indicates that the OMR trend decreases with surface 

vegetation, with a correlation < -0.5, indicating that there is a stronger surface 

response to global warming in arid regions, whereas the OMR response is reduced 

in highly vegetated areas. The OMR trend averaged over the desert areas (0 < 

NDVI < 0.1) shows a much larger increase of temperature (~0.4°C/decade) than 

over tropical forest areas (NDVI > 0.4) where the OMR trend is nearly zero. 
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Areas of intermediate vegetation (0.1 < NDVI < 0.4), which are mostly found 

over mid-latitudes, reveal moderate OMR trends (0.1~0.3°C/decade). 

The OMR trends are also very sensitive to the seasonal vegetation change. 

While the OMR trends have little seasonal dependence over deserts and tropical 

forests, whose vegetation state remains rather constant throughout the year, the 

OMR trends over the mid-latitudes, in particular Europe and North America, 

exhibit strong seasonal variation in response to the NDVI fluctuations associated 

with deciduous vegetation. The OMR trend rises up to 0.2~0.3°C/decade in winter 

and early spring when the vegetation cover is low, and is only 0.1°C/decade in 

summer and early fall with high vegetation. However, the Asian inlands (Russia, 

northern China with Tibet, and Mongolia) do not show this strong OMR variation 

despite of their mid-latitude location, due to the relatively permanent aridity of 

these regions. 
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1. Introduction 

Global mean surface temperature time series derived from in-situ observations 

reveal the inter-decadal global warming over the last several decades (IPCC 2001). 

Many studies reported that this upward trend is significantly a result of primary 

human impacts such as greenhouse gases (IPCC 2001) and land use (Pielke et al. 

2002). The anthropogenic land use impact on surface warming may become more 

important as the surface vegetation changes in the form of urbanization, 

agricultural activity, and deforestation.  

The impact of surface temperature changes forced by different regional 

vegetation types is not well documented. Only urban impact has been assessed by 

comparing observations in cities with those in rural areas (Easterling et al. 1996; 

Hansen et al. 2001). But this approach is only applicable to urban effects, and 

the estimated signals vary with the criteria in classifying urban and rural areas. 

The present study is motivated by the difficulty in separating the surface 

temperature change signals due to global and regional forcings in the observed 

data. The basis of this study is the fact that the surface temperature change 

response to land vegetation types is not present in the NCEP/NCAR reanalysis 

(NNR) surface data, and is only partially present in the ECMWF 40-year 

reanalysis (ERA40), while the station data include not only local surface forcings 

but the large-scale atmospheric warming signal resulting from greenhouse effects, 

natural decadal variability, and volcanoes (Pielke et al. 2002; Kalnay and Cai 

2003; Zhou et al. 2004; Frauenfeld et al. 2005; Lim et al. 2005; Kalnay et al. 

2006). Impact of the vegetation cover can extend to some extent into the free 
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atmosphere and thus may influence the atmospheric and surface reanalysis (Kabat 

et al. 2004), but NNR is substantially insensitive to surface processes associated 

with different vegetation types because it does not use surface observations over 

land in the assimilation (Kistler et al. 2001; Kalnay and Cai 2003). Instead, NNR 

surface temperature fields are estimated from the upper air information combined 

with model parameterizations of surface processes (Lim et al. 2005) so that the 

NNR provide a dynamically complete dataset of atmospheric variables. ERA40 is 

somewhat more sensitive to local surface processes than NNR because the surface 

temperature observations are used in the initialization of soil temperature and 

moisture (Simmons et al. 2004).  

Evaluation of reanalyzed tropical temperature time series archived from 

ERA40 (Palmer et al. 1990; Betts et al. 2003; Simmons et al. 2004) and NNR 

(Kalnay et al. 1996; Kistler et al. 2001) indicate that the climatic trend derived 

from reanalysis data capture the upward surface temperature trends but that the 

trend is not identical to that of observed data (Chelliah and Ropelewski 2000; 

Hegerl and Wallace 2002; Kalnay and Cai 2003; Simmons et al. 2004; Lim et al. 

2005; Pepin et al. 2005; Kalnay et al. 2006). Specifically, Simmons et al. (2004) 

and Lim et al. (2005) reported that the hemispheric average in two reanalyses 

(ERA40 and NNR) have a smaller warming trend than that of observations. They 

suggest that this smaller trend arises from the fact that the reanalysis data do not 

adequately reproduce the long-term surface climatic trend driven by the impact of 

independent land-cover types. 

These characteristics of the reanalysis provide us with the possibility of 
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detecting surface temperature change signals due to regional land vegetation types 

by taking the difference between observed and reanalysis temperature time series 

(Observation minus Reanalysis (OMR)). The present study, therefore, has as 

objectives 1) to find the relationship between OMR trend and the regional land 

vegetation types in terms of surface vegetation index and 2) to estimate the 

temperature change signal as a function of surface vegetation indexes. 

It has been argued that errors such as reanalysis inhomogeneity in time, 

model systematic errors, including the lack of trends in the greenhouse gases, and 

observation biases could contaminate the true surface temperature change signal 

(Trenberth 2004; Vose et al. 2004; Cai and Kalnay 2004). Cai and Kalnay (2005) 

showed analytically that a reanalysis made with a model without anthropogenic 

forcing could capture the observed trends if they are present in the observations 

assimilated. Our OMR analysis tries to minimize the impact of those errors by 1) 

averaging for the relatively homogeneous reanalysis period, 2) computing the trend 

of the anomalies with respect to the annual cycle, and 3) choosing the most 

reliable observation data currently available.  

There have been several studies using OMR trends for estimating of the 

regional surface warming signal driven by different land vegetation types. Kalnay 

and Cai (2003) assessed the decadal surface warming trend associated with 

regional land uses over the eastern U.S. by subtracting reanalysis trend from 

observed one. Kalnay et al. (2006) found regions of OMR warming and cooling, 

in good agreement with the regional trends obtained by Hansen et al. (2001) 

when using nightlights to identify rural and urban stations. Zhou et al. (2004), 
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Frauenfeld (2005), and Lim et al. (2005), using the same method, estimated 

reasonable values for surface warming trends caused by Chinese urbanization, 

Tibetan Plateau land uses, and the Northern Hemispheric land vegetation types, 

respectively. All these authors except Lim et al. (2005) concentrated on regional 

geographical areas, and are not sufficient to draw an overall conclusion for the 

globe. 

In summary, the advantage of the OMR approach is that the removal of the 

reanalysis estimates from the surface observations makes possible to isolate the 

near-surface warming signals associated with the regional surface vegetation types 

from the warming signals resulting from large-scale atmospheric forcings (e.g., 

greenhouse gases and volcanoes). As a result, it is expected that the OMR trends 

can give an estimate of the surface temperature change signal arising from the 

different types of regional surface vegetation. In the present study, we will 

attempt to find the relationship between OMR surface warming patterns and land 

vegetation types in terms of surface vegetation status using Normalized Difference 

Vegetation Index (NDVI) (Sellers 1985; James and Kalluri 1994) made from 

satellite-derived greenness values.  

Section 2 introduces the observation and the reanalysis temperature data, and 

the vegetation index data used in this study. Surface temperature time series of 

observation, reanalysis, and the OMR averaged over major land masses are shown 

in section 3. Section 4 delineates the geographical distribution of the surface 

vegetation index, the relationship between OMR trends and the surface vegetation 

index, and estimates the surface temperature change signal associated with NDVI. 
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The variation of the OMR in response to the seasonal NDVI change is described 

in section 5, followed by summary and discussions given in section 6. 

 

2. Data  

For this study we use monthly surface temperature from two reanalyses (NNR 

and ERA40), and from two gridded data sets based on surface observations 

(Global Historical Climatology Network (GHCN), http://www.ncdc.noaa.gov, 

Peterson and Vose 1997, and Climatic Research Unit (CRU), 

http://www.cru.uea.ac.uk, Jones and Moberg 2003), all covering the period 1960-

1999. We downloaded observational (GHCN and CRU) data available on a 5°×5° 

grid. For consistency, the reanalyses data have also been linearly interpolated to 

the same 5°×5° GHCN and CRU grid. 

Since the station coverage declined during the 1990s in the CRU 

measurements, CRU anomalies were calculated with respect to normals for 1961-

1990. For consistency, anomalies of other data have been calculated with respect 

to their own climatic normals for 1961-1990. 

Like the reanalyses, surface observational datasets may also have some 

limitations, because the observations themselves have some biases. The quality of 

surface measurement variables tends to depend on the coverage of surface 

observation network, homogeneity, and the accuracy of surface measurements. In 

the present study, we use the CRU and GHCN surface temperatures as observed 

datasets. CRU and GHCN data values are similar, since they draw from over 

90% common data, and differ mostly in their processing. Jones and Moberg 
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(2003) indicate that the gridded (5°×5°) database available on the CRU web site 

(http://www.cru.uea.ac.uk) comprises 5159 station records, which are more densely 

distributed over mid-latitudes. The data are also corrected by newly homogenized 

series with adjustment of the variance of individual grid-box series to remove the 

effects of changing station numbers through time. As to GHCN (Peterson and 

Vose 1997), the quality of surface temperature values are enhanced by including a 

century-scale dataset with monthly surface observations from ~7000 stations from 

around the world, which make it possible to improve regional-scale analyses, 

particularly in previously data-sparse areas. Rigorous and objective homogeneity 

adjustments are performed to decrease the effect of nonclimatic factors on the 

time series. Therefore, these two observation datasets are accepted as a reliable 

basis for investigating and assessing surface temperature change signal associated 

with different vegetation types from the OMR time series. However, we note that 

both CRU and GHCN have fewer station data per grid point in the tropics than 

in mid-latitudes, which could reduce the reliability of the gridded observation data 

in the tropical region.  

Normalized Difference Vegetation Index (NDVI) data (Sellers 1985; James 

and Kalluri 1994), downloaded from http://daac.gsfc.nasa.gov/, are used to find if 

there is a relationship between the distribution of the surface vegetation and its 

seasonal changes, and the decadal OMR trends. The NDVI a satellite-derived 

surface greenness values (Bounoua et al. 2000), is produced using the 

measurements from the Advanced Very High Resolution Radiometer (AVHRR) on 

board the NOAA polar orbiting meteorological satellites. The dataset contains the 



 10 

global monthly composites of the NDVI at 1 degree resolution covering the 

period from 1981 to 1994. The reflectance measured from channel 1 (visible: 

0.58-0.68 µm) and channel 2 (near infrared: 0.725-1.0 µm) are used to calculate 

the index. The NDVI value is defined as the ratio of the difference to the total 

reflectance: (channel 2 – channel 1)/(channel 2 + channel 1). Green leaves 

commonly have larger reflectances in the near infrared than in the visible range. 

Clouds, water, and snow have larger reflectances in the visible than in the near 

infrared, so that negative values of the vegetation index may correspond to snow 

or ice cover, whereas the difference in reflectance is almost zero for bare soils 

such as deserts. As a result, NDVI values can range from -1.0 to 1.0 but typical 

ranges are from 0.1 up to 0.7, with higher values associated with greater density 

and greenness of plant canopies. We have also made comparisons with another 

NDVI data set derived from GIMMS (Global Inventory Modeling and Mapping 

Studies) (Tucker et al. 2005) and the results remained similar. 

 

3. Regional surface temperature time series of observation and reanalysis 

Surface temperature anomalies averaged over major land regions in the Northern 

Hemisphere (NH) derived from the two reanalyses and two observations are plotted in 

Fig. 1. Anomalies are further adjusted to have zero mean over the last 10 years (1993-

2002) since the biases of reanalyses are smallest for the most recent years (Simmons et al. 

2004). The key features in Fig. 1 are: 

(i) The two surface observation datasets (CRU and GHCN) in each panel on the left 

are nearly indistinguishable (Figs. 1a-d), showing a gradual upward trend of surface 
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temperature over Asia, Europe, North and South America, and Africa region. The two 

reanalyses are also in remarkable agreement with the observations in terms of capturing 

the inter-annual variability and the long-term trends. 

(ii) Nevertheless, it is evident that the reanalyses exhibit a smaller warming trend 

than observations, as reported in Kalnay and Cai (2003) and Lim et al. (2005). This 

feature is found in all regions (Figs. 1a-d). Because of this, the OMR time series (Figs. 

1e-h) obtained by subtracting reanalyses from observations show a positive trend in every 

region.  

(iii) The right panel indicates that overall, the OMR time series with ERA40 yields a 

smaller warming trend than that derived from the NNR (Figs. 1e-h). This is to be 

expected because ERA40 uses to some extent the surface observation in their assimilation 

system, while the NNR does not use the surface information. Land surface temperature 

and soil moisture in the ERA40 are estimated by assimilating the Climatic Research Unit 

(CRU) surface observations (Jones and Moberg 2003) in an off-line mode. Therefore, a 

portion of the surface warming trend associated with regional characteristics above the 

surface (land cover types) may be reflected in the ERA40, resulting in a smaller OMR 

trend than that derived from NNR (Simmons et al. 2004; Lim et al. 2005) (Figs. 1e-h), 

although ERA40 could also contain bias passed from the in-situ surface measurements. 

From Figure 1 we conclude that both reanalyses could serve as a dataset for surface 

temperature trend analysis because they do not use the surface temperature observations 

directly, but for the purpose of assessing the surface temperature trend associated with 

surface vegetation characteristics, the NNR has the advantage of not using surface 

observations to initialize the soil temperature and moisture.  
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4. The OMR trends associated with surface vegetation 

4.1. Geographical surface vegetation field and its annual range 

Figure 2 represents the geographical distribution of the NDVI for the a) all 

12 months, b) June-July-August (JJA), c) December-January-February (DJF), and 

d) the seasonal difference (JJA-DJF). The maps depict the pattern of global 

greenness, along with their annual ranges. The well-known desert areas such as 

Sahara, Middle East, western China, and Mongolia are classified into the least 

vegetated region (Figs. 2a-c). These areas show little seasonal vegetation change 

(Fig. 2d). Arctic areas are also characterized by small NDVI in summer and 

negative NDVI (frozen water) in winter. On the other hand, tropical evergreen 

forest regions including the equatorial Africa, southeast Asia and the Maritime 

Continent, central America, and Amazon areas show a large vegetation index with 

little seasonal change (Figs. 2a-c). Note that there are several grids over India and 

Indochina peninsula where the wintertime NDVI is greater than that in summer. 

This is because seasonal vegetation growth is a few months out of phase with 

monsoon precipitation over those regions. Monthly NDVI fields (not shown here) 

reveal that the leaf area index in the Indian region has its minima in the pre-

monsoon season (April, May) and begins to increase slowly with the onset of the 

Indian summer monsoon. The summer monsoon gets to central India only by mid-

June, and the period prior to that is very stressful for vegetation given the 

scorching heat and dryness of the pre-monsoon period. Rainfall in June/July is a 

relief, and vegetation begins to come back, reaching the largest NDVI values in 
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the post-monsoon season. The main crop cycle, wheat, called “rabi crops” begins 

with planting in fall and is nurtured by the milder winter monsoon rainfall; 

harvesting occurs in spring. Therefore, although initially surprising, the slightly 

higher NDVI in winter than in summer observed over India is representative of 

the actual vegetation characteristics. We have found that the same spatial NDVI 

features are reproduced in the other NDVI dataset derived from GIMMS 

(http://gimms.gsfc.nasa.gov/) group (Tucker et al. 2005).  

Mid-latitude regions which generally comprise cropland, mixed (broad-leaf and 

needle-leaf) forests, shrub land, grass, and needle-leaf tree forests, have a much 

more conspicuous seasonal change (Figs. 2b-d). In those regions the large 

vegetation index in JJA period drops drastically during DJF period. While the 

seasonal vegetation change is strong in the European countries and North 

American region, the mid-latitude central Asia (Russia, northern China, and 

Mongolia) shows a relatively weak seasonal NDVI change due to the annually 

consistent aridity (e.g., Gobi desert) over the region (Fig. 2d). 

 

4.2. Relationship between the OMR trend and the vegetation index 

We now relate the surface temperature change signals estimated by OMR to 

the different surface vegetation indexes. To this end, the decadal OMR trend at 

each grid is scatter-plotted as a function of annual mean NDVI (Bounoua et al. 

2000). This sort of approach is also found in Hanamean et al. (2003) in relating 

NDVI to 850-700mb layer mean temperature change derived from the NNR for 

the Colorado area. 
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As in Kalnay and Cai (2003), the OMR trend per decade at each grid point 

is obtained by taking the average of two decadal mean differences, that is, 90’s – 

80’s and 70’s – 60’s, to avoid the small jumps in the reanalysis associated with 

the major addition of satellite observations in 1979. The decadal observation, 

reanalysis, and OMR trends are scatter-plotted with the NDVI values for the 

20°S-50°N latitudinal band and all longitudes, an area where most of land mass is 

found (Hurrell and Trenberth 1998). NH high-latitudes including the arctic zone 

are not included in this analysis due to its different climate response mechanism 

to surface vegetation (Robock 1983; Wang and Key 2005) compared with mid- 

and low-latitude regions. Analysis of high-latitude regions is not within the scope 

of this study and will be investigated later.  

As shown in Fig. 3a, decadal trends in GHCN observations show no 

significant relationship with the NDVI (r=-0.07), presumably because they reflect 

all climate change signals. However, the trend in NNR reanalysis (Fig. 3d) is 

significantly proportional to the vegetation index (r=0.56), indicating that it is 

missing the relationship demonstrated in modeling experiments (Xue and Shukla 

1993; Dai et al. 2004; Hales et al. 2004) showing stronger surface warming in 

arid areas with low vegetation. This lack of reproduction of the surface 

temperature change signal associated with the impact of vegetation types is also 

present to a lesser extent in ERA40 reanalysis (r=0.17), as shown in Fig. 3b. 

Partial inclusion of surface information in ERA40 makes the correlation with 

NDVI less positive than NNR. The outliers in the scatter plots, i.e., large negative 

ERA40 trends and large NDVI, were all in the tropics, within 20o latitude (Fig. 
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3b), whereas none of such an outliers were found for NNR (Fig. 3d).  

Due to these characteristics of reanalysis data, the decadal OMR trend 

obtained from GHCN – ERA40 and GHCN – NNR, respectively, is negatively 

correlated with the surface vegetation index (r=-0.32, r=-0.67), demonstrating that 

the strong (weak) surface warming response to the surface aridity (greenness) is 

adequately represented by OMR, especially for “observation minus NNR”. As 

shown in Figs. 3c and 3e, the inverse proportionality of decadal OMR trend to 

vegetation index is clearer for GHCN – NNR than GHCN – ERA40 because the 

former better extracts the surface temperature change signal associated with 

vegetation types. 

Figure 4 is same as Fig. 3 but with the CRU instead of the GHCN 

observations. The key features in Fig. 4 are identical to those delineated in Fig. 3. 

While CRU observation trends are not correlated with the NDVI (r=0.11), the 

OMR trends have strong negative correlation with surface greenness, especially for 

CRU – NNR (r=-0.58). 

 

4.3. Surface temperature change as a function of vegetation index 

Decadal OMR trends with respect to the surface vegetation index are assessed. 

Figure 5 depicts the annual mean OMR trends as a function of NDVI values with 

0.1 intervals. The OMR trend values at each grid point are averaged for the same 

surface vegetation index values. Trend values are represented by closed circles, 

along with the error range at 95% significance level by cross marks. The number 

of stations used for calculation of these trends is given in Table 1. 
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The two independent reanalyses appear to have a very similar dependence of 

the OMR trends with respect to surface vegetation as well as their statistical 

significance levels. The key features in the OMR trends for the 20°S~50°N 

latitudes ((i)~(iv)) are: 

(i) The OMR trend decreases with the surface vegetation index. The 

quantitative estimate from the NNR reanalysis reveals that for vegetation index 

greater than 0.4 there is near zero additional near surface contribution to 

temperature change (Figs. 5a, b). Error ranges at 95% significance level support 

the statistical confidence of this assessment. The highest vegetation index area 

generally comprises the broadleaf forest over tropical forest regions. As discussed 

in modeling works by Shukla et al. (1990), Xue and Shukla (1993), and 

Giambelluca et al. (1997), this area is characterized by the strong transpiration 

and evaporative cooling feedback from the leaves, resulting in the suppression of 

surface warming. 

(ii) The OMR trends over the moderate surface vegetation index (0.2~0.4) 

area are in the range of 0.1~0.2°C/decade (CRU-NNR, and GHCN-NNR) (Figs. 5a, 

b). These areas are mainly composed of mid-latitudinal crop and grass land, 

deciduous broadleaf or needleaf trees, and shrubs. Because they are less green 

than the tropical forest areas, the cooling feedbacks from leaves are weaker than 

those in tropical forest areas. This contributes to the moderation of surface 

warming over these areas. 

(iii) Areas of less than 0.1 greenness with sparse vegetation show the largest 

warming associated with surface effects, ~0.3°C/decade (CRU-NNR, and GHCN-
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NNR) (Figs. 5a, b). Areas where soil moisture is very limited and the land 

surface is characterized by bare soil, the evaporation negative feedback would be 

negligible, explaining a larger regional surface warming response under the same 

amount of radiative forcings, as discussed in Shukla et al. (1990), Bounoua et al. 

(2000), Hoffmann and Jackson (2000), Dai et al. (2004), Hales et al. (2004), 

Diffenbaugh (2005), and Saito et al. (2006). 

(iv) The OMR trends for the ERA40 reanalysis (Figs. 5c,d) are similar but 

less pronounced than the trends for the NNR due to the partial inclusion of the 

surface processes associated with land vegetation types in the ERA40 which are 

not included in the NNR. 

 

5. Surface temperature trend response to the seasonal vegetation change   

5.1. Monthly variation of correlation between OMR trend and vegetation 

As shown in Fig. 2, the vegetation index has a seasonal variation, especially 

for mid-latitudes. The spatial correlations between the NDVI and the OMR trend 

for each month is now calculated to understand the seasonal variation of OMR 

trends associated with seasonal vegetation changes. Since the NDVI shows 

seasonal changes at fixed location, we expect that the OMR trend would also 

exhibit a temporal variation in response to the seasonal vegetation change. Month-

to-month variation of correlations between the NDVI and the OMR trend 

identifies that they range from -0.6 to -0.35 (Fig. 6 (lines with cross mark)). The 

observed negative correlations indicate that the OMR trend satisfies the negative 

relationship with the NDVI throughout the year, i.e., there is an increase 
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(decrease) in OMR trend with decreasing (increasing) vegetation. Seasonal 

difference in the OMR trend also indicates that the trend is more negatively 

correlated with NDVI when the overall vegetation is low (in the winter) than 

when it is high (the summer). On the other hand, the observed decadal trends 

(GHCN and CRU) show weak correlations with NDVI seasonal variations (less 

than 0.2), indicating little significant relationship with surface vegetation types 

throughout the year, because, as observed before, the observed trends are 

dominated by combined atmospheric and surface warming effects, not only by 

vegetation effects (Fig. 6, lines with open circles). 

 

5.2. Variation of the OMR trend with the seasonal vegetation change  

Based on the understanding that the OMR trend varies with the temporal 

vegetation change, the seasonal variation of the OMR trends is estimated for 

several major regions over the NH. Five different regions are chosen here to 

investigate the response of the OMR trends for the NNR to the variation of the 

surface vegetation. In Figure 7 we consider two extremes with low amplitude in 

the NDVI seasonal cycle. First, desert areas (Sahel and Middle-East) are selected 

as areas of little vegetation, limited soil moisture, and little seasonal vegetation 

change. Second, low-latitude broadleaf forests (equatorial Africa, Amazon, 

Indochina peninsula and Maritime Continent) are chosen as representative of high 

vegetation, abundant soil moisture, and ever-greenness. In Figure 8, by contrast, 

we select areas of strong seasonal vegetation change between summer and winter 

in mid-latitudes, e.g., Europe and USA, and the arid mid-latitude central Asia.  
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The seasonal variation of the OMR trend for NNR clearly shows that strong 

surface warming (~0.4°C/decade) beyond what would be expected from 

atmospheric warming is observed over the desert area throughout the year (see red 

solid lines in Fig. 7a) as the NDVI remains close to zero (black solid line). 

Limited soil-moisture and little evaporative cooling feedback all year round appear 

to drive the consistent strong warming over this area (Dai et al. 2004; Hales et al. 

2004). 

In contrast, tropical evergreen forest area in Fig. 7b shows little surface 

warming throughout the year (red solid line) due to the ever-greenness (black 

solid line). Surface cooling by evaporation, transpiration, and soil moisture 

associated with surface greenness and tropical humid climate remains effective 

throughout the year, yielding little surface warming in every month (Xue and 

Shukla 1993). 

In mid-latitudes such as Europe (Fig. 8a) and USA (Fig. 8b), OMR trends 

exhibit a strong annual cycle as the NDVI has strong seasonal changes (black 

solid line), with high vegetation in the summer and low vegetation in the winter. 

The corresponding OMR trend fluctuates seasonally almost out of phase with the 

seasonal NDVI oscillation. Therefore, we can conclude that the surface warming 

response to the regional vegetation status over the mid-latitude tends to be strong 

in winter and early spring (0.2~0.3°C/decade) when the vegetation is low but 

weak in summer and early fall (0.1°C/decade) with high vegetation. 

The OMR trend over the mid-latitude central Asia (Russia, northern China, 

and Mongolia) does not show a strong seasonal variation, as shown in Fig. 8c. 
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As seen in the NDVI (black line), this area is characterized by being arid 

throughout the year. Therefore, the OMR trend remains high with little seasonal 

change despite being in a mid-latitude geographical location. 

We clearly demonstrated how sensitively the OMR trend for NNR responds to 

the seasonal vegetation change. However, the variation of OMR trend for ERA40 

does not show any significant relationship with the seasonal vegetation change in 

Fig. 7 and 8 (see blue solid line). As discussed before, the partial inclusion of 

surface temperature information in the ERA40 makes the OMR temperature 

change signal associated with seasonal vegetation change weaker. 

 

6. Summary and discussions 

Anomalies in monthly surface temperature time series derived from two 

reanalyses (NNR and ERA40) and two observational datasets (GHCN and CRU) 

are analyzed by OMR approach (observation minus reanalysis) to 1) investigate 

the relationship between the OMR trend and land vegetation types and 2) assess 

the surface temperature change signal by the impact of independent land 

vegetation types from the OMR. The rationale for the OMR approach is that 

while reanalyses contain the large-scale temperature change signals that could be 

forced by greenhouse gases, volcanoes, and natural decadal variability, the NNR 

and (to a lesser extent) the ERA40 are insensitive to regional surface processes 

associated with different land vegetation types because little surface data or 

information were used in the data assimilation process. Pronounced features 

identified from analysis are:  
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1) The long-term trends for both observations and reanalyses averaged over 

several areas show a gradual warming, with greater upward trend in observations 

over the last 4 decades. This is caused by the poor reproduction of surface 

temperature change signal associated with impacts of regional vegetation types in 

the reanalyses data. As a result, the difference time series between observation 

and reanalyses (observation minus reanalysis, OMR) grows with time. 

2) The positive OMR trend is larger for NNR than for ERA40 due to the 

different data assimilations used in the two reanalyses. The NNR used no surface 

observations over land, whereas ERA40 used surface temperature observations to 

initialize soil temperature and moisture. This makes the NNR reanalysis more 

insensitive to surface processes than the ERA40. As a result of this lack of 

surface information in the NNR, more surface temperature change signal resulting 

from the impact of different land vegetation types are captured in the OMR time 

series using NNR than ERA40 (Kalnay and Cai 2003; Zhou et al. 2004; 

Fraunfeld et al. 2005; Lim et al. 2005). This fact gives an indication that the 

OMR time series for NNR would provide useful information to assess the multi-

decadal surface temperature change signal with regard to different land vegetation 

types. Nevertheless, the general dependence of OMR on vegetation type is clearly 

similar between the two reanalyses. 

3) For a clearer demonstration of the relationship, the decadal OMR trends at 

each grid were correlated with NDVI. The results prove that the decadal OMR 

trend is inversely proportional to NDVI with statistical significance (correlation < 

-0.5). The OMR trend for the NNR yields a more negative correlation with NDVI 
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(corr. = -0.58 (CRU – NNR) and -0.67 (GHCN – NNR)) than the OMR trend 

for the ERA40 does (corr. = -0.26 (CRU – ERA40) and corr.=-0.32 (GHCN – 

ERA40)). This suggests that the decadal trend of the “observation – NNR” 

substantially account for the impact on surface warming effects associated with 

different land vegetation types, absent in the NNR.  

This feature is robust with respect to seasonal changes in the NDVI. 

Correlations range from -0.6 to -0.35 throughout the year, indicating that for the 

NNR the decadal OMR trend varies with seasonal NDVI change at fixed locations 

to maintain the negative correlation. 

4) The surface temperature change signal inferred from the OMR trend is 

also assessed as a function of surface vegetation index. It shows that the trend is 

very sensitive to the different surface greenness. The strongest warming trend due 

to surface processes is found over the desert areas (Sahara, Middle East, western 

China (Tibet) and Mongolia) (~0.3-0.4°C/decade) whereas tropical forest areas 

(equatorial Africa, southeast Asia, Maritime Continent, and Amazon), are 

associated with negligible warming or slight cooling (~0°C/decade). These results 

are consistent with Dai et al. (2004), Hales et al. (2004), and Diffenbaugh (2005), 

who argue that there is stronger (weaker) warming in barren (vegetated) areas due 

to the response of surface albedo, soil moisture, and evaporative cooling feedback 

to solar radiative forcing. Several mid-latitude areas where the vegetation density 

lies in between desert and tropical forest show a moderate decadal warming 

(~0.2°C/decade). 

5) The OMR trend patterns are strongly dependent on seasonal vegetation 
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change for mid-latitudes areas such as Europe and North America, where the 

strong seasonal vegetation takes place show weak warming trend (~0.1°C/decade) 

in summer and early fall whereas strong warming (0.2~0.3°C/decade) in winter 

and early spring. This is in agreement with the studies of Shukla et al. (1990) 

and Xue and Shukla (1993) who have shown that vegetation changes by 

forestation (deforestation) suppresses (enhances) the surface warming effect.  

In contrast, tropical forest areas and desert areas (Sahara and Middle East) 

tend to show a constant OMR trend throughout the year, as their regions exert 

little vegetation change with season. Despite of the geographical mid-latitude 

location, the OMR trend in the central Asia region remains high without any 

noticeable seasonal change due to the stationary aridity throughout the year. 

The findings obtained in this study support our argument that the surface 

temperature change signal associated with different land vegetation types are 

reasonably well captured by the OMR approach. The analysis demonstrates that 

lower long-term trends in the reanalysis surface temperature than observations are 

attributable to the absence in surface data in the data assimilation procedure. As a 

result, the OMR approach facilitates isolating the impact of vegetation types on 

long-term surface temperature trend by removing large-scale global warming signal 

as recorded in the reanalysis from the surface observation. 

These findings could be affected by other errors that might arise from the 

reanalysis inhomogeneity in time, from model systematic errors and observation 

biases. Our OMR analysis tried to minimize the impact of those errors by 1) 

averaging the trends for relatively homogeneous reanalysis periods, 2) calculating 
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the trends for the anomalies with respect to a 30-year annual cycle, and 3) 

choosing the most reliable observation data currently being used. The clear 

relationship between the OMR trend and NDVI suggests that the effect of these 

errors is relatively small compared to the temperature change signal that we tried 

to isolate. 

It should be also noted that the NDVI is applied under the assumption that 

the global distribution of the surface vegetation for each calendar month is 

approximately constant. The real NDVI time series for each calendar month 

exhibit some interannual variation (not shown), but the amplitude of the changes 

is small, especially on a decadal scale. We believe that this assumption is 

reasonable since there have been no large interannual NDVI changes (e.g., a 

switch between forest and desertic bare soil) on a 5°×5° horizontal grid scale that 

would be needed to have a noticeable effect on the OMR trend values. 
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Table caption 

 

Table 1. The number of grid points used for calculation of OMR trends in Fig. 5. 

 
NDVI 

< 0.1 

0.1 ≤ 

NDVI 

< 0.2 

0.2 ≤ 

NDVI 

< 0.3 

0.3 ≤ 

NDVI 

< 0.4 

0.4 ≤ 

NDVI 

< 0.5 

0.5 ≤ 

NDVI 

GHCN-NNR 52 35 35 67 88 74 

CRU-NNR 57 35 37 70 95 82 

GHCN-ERA40 52 35 35 67 88 74 

CRU-ERA40 57 35 37 70 95 82 
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Figure Captions 

Figure 1. Time-series (ten year running mean) of the surface temperature 

anomalies (°C) averaged over the a) East Asia, b) Europe & West Asia, c) 

North & South America, and d) Africa area. Anomaly values are obtained 

by removing the 30-yr mean from 1961 to 1990 and they are further 

adjusted to have zero mean over the last 10 years (1993-2002). Right 

panels are same as figures in the left panel but for their OMR (CRU – 

ERA40, CRU – NNR, GHCN – ERA40, and GHCN – NNR) time series. 

Figure 2. Surface vegetation map derived from NDVI. Vegetation index are averaged 

over a) 1981 – 1994, b) summer (JJA), and c) winter (DJF). The seasonal NDVI 

difference (JJA-DJF) is shown in (d). 

Figure 3. Scatter diagram between the NDVI and the decadal surface temperature trend of 

a) GHCN, b) ERA40, c) GHCN – ERA40, d) NNR, and e) GHCN – NNR over 

(0°-360°E)×(20°S-50°N) region. Data have been spatially smoothed to remove 

the extreme outliers. Abscissa denotes the NDVI whereas the ordinate the decadal 

trend. Here r is the correlation coefficient of all the data points. 

Figure 4. Same as Fig. 3 but for a) CRU, c) CRU – ERA40, and e) CRU – NNR. 

Figure 5. Assessment of annual mean OMR trend (°C/decade) (lines with filled circles) 

as a function of annual mean NDVI. The top panels denote the OMR trend for 

NNR reanalysis whereas the bottom panels for ERA40 reanalysis. Lines with 

cross mark represent the error range at 95% significance level. Abscissa and 

ordinate represent the NDVI and the OMR trend, respectively.  

Figure 6. Month-to-month variation of the correlation between NDVI and the decadal 
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OMR trend over (0°-360°E)×(20°S-50°N) region. The trend values have been 

temporally smoothed by 5-month running mean to remove the extreme outliers. 

Lines with open circle denote the CRU (long-dash) and the GHCN (solid) 

whereas cross the CRU – NNR (long-dash) and GHCN – NNR (solid). Abscissa 

and ordinate denote the time in months and the correlation coefficient, 

respectively. 

Figure 7. Seasonal variation of the OMR trend in response to the seasonal vegetation 

change over a) Desertic area (Sahara & Middle East) and b) Tropical evergreen 

forest (Equatorial Africa and Asia, and Amazon). Red lines with closed circle and 

closed square, respectively, denote the seasonal variation of OMR trend of 

“GHCN – NNR” and “CRU – NNR”. Blue lines are plotted by switching NNR to 

ERA40 reanalysis. Seasonal NDVI change is denoted by black solid line. 

Abscissa denotes the time in months whereas the ordinate the decadal trend in 

°C/decade (for red and blue lines) and the NDVI value (for black line). 

Figure 8. Same as Fig. 7 but for the mid-latitude land-mass, a) Europe, b) USA, and c) 

central Asia with aridity covering Russia, northern China, and Mongolia. 
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Figure 1. Time-series (ten year running mean) of the surface temperature anomalies (°C) 
averaged over the a) East Asia, b) Europe & West Asia, c) North & South America, and 
d) Africa area. Anomaly values are obtained by removing the 30-yr mean from 1961 to 
1990 and they are further adjusted to have zero mean over the last 10 years (1993-2002). 
Right panels are same as figures in the left panel but for their OMR (CRU – ERA40, 
CRU – NNR, GHCN – ERA40, and GHCN – NNR) time series. 
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Figure 2. Surface vegetation map derived from NDVI. Vegetation index are averaged 
over a) 1981 – 1994, b) summer (JJA), and c) winter (DJF). The seasonal NDVI 
difference (JJA-DJF) is shown in (d). 
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Figure 3. Scatter diagram between the NDVI and the decadal surface temperature trend 
of a) GHCN, b) ERA40, c) GHCN – ERA40, d) NNR, and e) GHCN – NNR over (0°-
360°E)×(20°S-50°N) region. Data have been spatially smoothed to remove the extreme 
outliers. Abscissa denotes the NDVI whereas the ordinate the decadal trend. Here r is the 
correlation coefficient of all the data points. 
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Figure 4. Same as Fig. 3 but for a) CRU, c) CRU – ERA40, and e) CRU – NNR. 
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Figure 5. Assessment of annual mean OMR trend (°C/decade) (lines with filled circles) 
as a function of annual mean NDVI. The top panels denote the OMR trend for NNR 
reanalysis whereas the bottom panels for ERA40 reanalysis. Lines with cross mark 
represent the error range at 95% significance level. Abscissa and ordinate represent the 
NDVI and the OMR trend, respectively.  
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Figure 6. Month-to-month variation of the correlation between NDVI and the decadal 
OMR trend over (0°-360°E)×(20°S-50°N) region. The trend values have been temporally 
smoothed by 5-month running mean to remove the extreme outliers. Lines with open 
circle denote the CRU (long-dash) and the GHCN (solid) whereas cross the CRU – NNR 
(long-dash) and GHCN – NNR (solid). Abscissa and ordinate denote the time in months 
and the correlation coefficient, respectively. 
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Figure 7. Seasonal variation of the OMR trend in response to the seasonal vegetation 
change over a) Desertic area (Sahara & Middle East) and b) Tropical evergreen forest 
(Equatorial Africa and Asia, and Amazon). Red lines with closed circle and closed square, 
respectively, denote the seasonal variation of OMR trend of “GHCN – NNR” and “CRU 
– NNR”. Blue lines are plotted by switching NNR to ERA40 reanalysis. Seasonal NDVI 
change is denoted by black solid line. Abscissa denotes the time in months whereas the 
ordinate the decadal trend in °C/decade (for red and blue lines) and the NDVI value (for 
black line). 
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Figure 8. Same as Fig. 7 but for the mid-latitude land-mass, a) Europe, b) USA, and c) 
central Asia with aridity covering Russia, northern China, and Mongolia. 


