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Abstract 

 

Analysis sensitivity indicates the sensitivity of analysis to observations, which is 

complementary to the sensitivity of the analysis to background. Following Cardinali et al. 

(2004), this paper discussed a method to calculate this quantity in Ensemble Kalman 

Filter without approximations. The calculation procedure and the geometrical 

interpretation showing that analysis sensitivity is proportional to analysis error and anti-

correlated with observation error are experimentally verified with the Lorenz-40 variable 

model. Cross-validation in its original formulation (Wahba, 1990) is computationally 

unfeasible even for a model with a moderate number of degrees of freedom, but is 

computed efficiently using analysis sensitivity in an EnKF. 

Idealized experiments based on a simplified-parameterization primitive equation 

global model show that information content (trace of analysis sensitivity of any subset of 

observations) agrees qualitatively with the actual observation impact calculated from 

much more expensive data denial experiments, not only for the same type of dynamical 

variable, but also for different types of dynamical variables. 
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1. Introduction 

Observations are the central information introduced into numerical weather 

prediction system through data assimilation; a process that combines observations with 

background forecasts based on their error statistics. With the increase of observation 

datasets assimilated in modern data assimilation systems, such as the assimilation of 

Advanced InfraRed Satellite (AIRS) and the Infrared Atmospheric Sounding 

Interferometer (IASI), it is important to examine questions such as how much 

information content a new observation dataset has, what is the spatial distribution of the 

impact of the new observations on the analysis, and what is the relative influence of 

background forecasts and observations on the analyses.  

The computation of analysis sensitivity (also called as self-sensitivity), a quantity 

introduced by Cardinali et al. (2004) can address these questions. The larger the analysis 

sensitivity is, the larger is the influence of observations, and the smaller the influence of 

background forecasts. Since analysis sensitivity is a function of the analysis error 

covariance that is not explicitly calculated in variational data assimilation schemes, 

Cardinali et al. (2004) proposed an approximate method to calculate this quantity within a 

4D-Var data assimilation framework. They showed that the trace of analysis sensitivity of 

a particular observation data type represented the information content of that type of 

observations, and the relative importance of different observation types determined by 

information content was in good qualitative agreement with the observation impact from 

other studies. In addition, information content has also been used in channel selection in 

multi-thousand channel satellite instruments, such as in IASI (Rabier et al., 2002).  
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Though the approximate method to calculate analysis sensitivity within 4D-Var is 

computationally possible, it introduces spurious values that are not within the theoretical 

value range (between 0 and 1). In contrast with variational data assimilation schemes, 

Ensemble Kalman filters (EnKF) (Evensen, 1994; Anderson, 2001; Bishop et al., 2001; 

Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002; Ott et al., 2004; Hunt et al., 

2007) generate ensemble analyses that can be used to calculate the analysis error 

covariance. Because of this characteristic, it would be more straightforward to calculate 

analysis sensitivity in EnKF than in variational data assimilation. In addition, the Cross 

Validation (CV) (Wahba, 1990) score can be exactly calculated in EnKF based on the 

analysis sensitivity, observation and analysis values without carrying out data denial 

experiments (section 4). In the variational formulation, because of the approximations 

made in calculating analysis sensitivities, cross-validation cannot be exactly computed. In 

this paper, we follow Cardinali et al. (2004), show how to calculate analysis sensitivity 

and the related diagnostics in EnKF, and further study the properties and possible 

applications of these diagnostics. This paper is organized as follows: section 2 describes 

how to calculate analysis sensitivity in EnKF. In section 3, with a geometrical 

interpretation method adapted from Desroziers et al. (2005), we show that analysis 

sensitivity is proportional to the analysis errors and anti-correlated with the observation 

errors. With the Lorenz-40 variable model (Lorenz and Emanuel, 1998), section 4 

verifies the self-sensitivity calculation procedure, and shows the squared analysis value 

change based on analysis sensitivity can differentiate abnormal observations from normal 

ones. In addition, the geometrical interpretation is experimentally tested in this section. In 

section 5, with a primitive equation model and a perfect model experimental setup (no 
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model error), we examine the effectiveness of the trace of self-sensitivity in assessing the 

observation impact obtained from data denial experiments. Section 6 contains a summary 

and conclusions. 

2. Calculation of analysis sensitivity in EnKF 

In this section, we first briefly derive the analysis sensitivity valid for all data 

assimilation schemes (equations (1), (2), (3), equivalent to equations (3.1), (3.4), and 

(3.5) in Cardinali et al., 2004) and then focus on how to calculate this quantity in EnKF. 

In data assimilation, the analysis state 
a
x  combines the background (an n-

dimensional vector 
b
x ) and the observations (a p-dimensional vector o

y ) based on a 

weighting matrix K , which can be expressed as: 

 b

n

oa
xKHIKyx )( !+=  (1) 

The (n ! p) gain matrix K = P
b
H

T
(HP

b
H

T
+ R)

!1 weighs the error covariance of the 

background P
b

 and of the observations R , and H(•)  is the linearized observation 

operator that transforms a perturbation from model space to observation space. From 

Equation (1), the analysis sensitivity with respect to observations is: 

 
TaTT

o

a

o
HHPRHK

y

y
S

1
ˆ

!
==

"

"
= , (2) 

and the sensitivity with respect to background is given by 

 
o

p

TT

pb

a
b

SIHKI
y

y
S !=!=

"

"
=
ˆ

 (3) 

where ŷa = Hxa = HKyo + (I p !HK)y
b is the projection of analysis (equation (1)) on 

observation space, and bb
Hxy =  is the projection of background on observation space. 
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P
a
= P

b
H

T
(HP

b
H

T
+ R)

!1  is the analysis error covariance. The matrix o
S  is called 

influence matrix, because the elements of this matrix reflect how much influence the 

observations have on the analysis state. The diagonal elements of the matrix o
S  are 

analysis self-sensitivities, and the off-diagonal elements are cross sensitivities. Similarly 

b

a

y

y

!

!ˆ
 reflects how much influence the background has on the analysis. As shown in 

Cardinali et al. (2004), the self-sensitivity of the analysis with respect to observation and 

the corresponding background at that observation location are complementary (i.e., they 

add up to one), and self-sensitivity has no unit and its theoretical value is between 0 and 1 

when the observation errors are not correlated (R is diagonal). 

EnKF generates ensemble analyses in every analysis cycle, and the analysis error 

covariance can be written as products of ensemble analysis perturbations, so in EnKF 

equation (2) can be written as:   

 
S
o
= R

!1
HP

a
H

T
=

1

n !1
R

!1
(HX

a
)(HX

a
)
T  (4) 

where HX
a
is the analysis ensemble perturbation matrix in the observation space whose 

th
i column is  

 
HX

ai
! h(x

ai
) "
1

n
h(x

ai
)

i=1

n

#  (5) 

x
ai

 is the th
i analysis ensemble member, n is the total number of ensemble analyses, and 

h(•)  is the observation operator, which can be linear or nonlinear. When the observation 

operator is linear, the right hand side and the left hand side of Equation (5) are exactly 

equal. Otherwise, the left hand side is a linear approximation of the right hand side. When 

the observation errors are not correlated, the self-sensitivity can be written as: 
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Sjj
o
=
!ŷ j

a

!y j
o
=

1

n "1
#
$%

&
'(
1

) j

2
(HX

ai
) j
T
(HX

ai
) j

i=1

n

*  (6) 

and the cross sensitivity, which represents the change of ŷ
j

a with respect to the variation 

of observation yl
o , can be written as:  

 
Sjl
o
=
!ŷ j

a

!yl
o
=

1

n "1
#
$%

&
'(
1

) j

2
[(HX

ai
) j
T
(HX

ai
)l ]

i=1

n

*  (7) 

where !
j

2 is the j th  observation error variance. Equation (5) indicates that the calculation 

of the self-sensitivity and cross sensitivity in EnKF only requires applying the 

observation operator on each analysis ensemble member, and then doing scalar 

calculation based on equations (6) and (7). In section 4, this calculation procedure will be 

verified with the Lorenz-40 variable model. The calculation of the self-sensitivity based 

on equation (6) requires no approximations when the observation errors are not 

correlated, so thatSjj
o  satisfies the theoretical value limits (between 0 and 1). In 4D-Var, 

by contrast, the calculation of analysis error covariance is based on a truncated 

eigenvector expansion with vectors obtained through the Lanczos algorithm, which can 

introduce spurious values larger than one (Cardinali et al., 2004). 

3. Geometric interpretation of self-sensitivity 

Equations (6) shows that the analysis sensitivity is proportional to the analysis 

error variance and inversely proportional to the observation error variance. Since in most 

cases, the analysis and observation error statistics used in data assimilation do represent 

the accuracy of analyses and observations respectively, equation (6) implicitly indicates 

that analysis sensitivity increases with the analysis errors and decreases with the 
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observation errors. In this section, we adapt the geometrical interpretation that Desroziers 

et al. (2005) used to explain the relationship among background error, observation error 

and analysis error to further show this relationship in the space of eigenvectors V of the 

matrix HK . 

Following the same notation as Desroziers et al. (2005), we rewrite equation 

ŷa = HKyo + (I p !HK)y
b  by subtracting h(xt ) , the true state in observation space, from 

both sides and obtain  

 ŷa ! h(xt ) = HK(yo ! h(xt )) + (I p !HK)(y
b
! h(xt ))  (8) 

In equation (8), ! ŷa = ŷa " h(xt ) , !yb = yb " h(xt )  and !yo = yo " h(xt )are analysis and 

background errors in observation space, and observation errors respectively. Then 

equation (8) can be written as,  

 b

p

oa
yHK(IyHKy !!! )ˆ "+=  (9) 

Following Desroziers et al. (2005), we give a geometrical interpretation in the space of 

eigenvectors V  of the matrix HK , so that HK = V!V
T

 where ! is a diagonal matrix 

composed of the eigenvalues of HK . The projections of a
ŷ! onto the eigenvector V  is 

given by VT
! ŷa = VTV"VT

!yo + VTV(I p # ")VT
!yb , which can be further written as 

 
 
! ˆ
!

ya = "!
!
yo + (I p # ")!

!
yb  (10) 

 
! ˆ
!

y
a , 

 
!
!
y
o  and 

 
!
!
y
b  are analysis, observation, and background error in the eigenvector 

space V  respectively, and are the projections of ! ŷa , !yo and !yb on the eigenvector V  

space. When these vectors are projected on a particular eigenvector V
i

with 

corresponding eigenvalue equal to !
i
, the above equation can be written as,  
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! ˆ
!

y
i

a
= "

i
!
!
y
i

o
+ (1# "

i
)!
!
y
i

b  (11) 

Therefore, in the eigenvector 
i
V  space, the analysis sensitivity with respect to the 

observation is !
i
, and with respect to the background is (1-!

i
). As shown in Cardinali et 

al. (2004), they are complementary with diagonal observation error covariance. 

Schematically, all the elements except !
i
 in equation (11) are shown in Figure 1.  

In the following, we will show how to represent !
i
as a function of the angle ! , and to 

interpret !
i
with the observation error 

 
!
!
y
o

i
 and the analysis error 

 
! ˆ
!

y
i

a . As shown in 

Figure 1, the observation error (
 
!
!
y
o

i
) and the background error (

 
!
!
y
b

i
) in the eigenvector 

i
V  space are perpendicular because the background error and observation error are 

assumed to be uncorrelated, which means that the inner product between 
 
!
!
y
o

i
and 

 
!
!
y
b

i
 is 

0. The analysis error (
 
! ˆ
!

y
i

a ) is also perpendicular to the line connecting the observation 

and the background, reflecting that the analysis is the linear combination of background 

and observations closer to the truth (Desroziers et al., 2005). With these two 

relationships, the projection of 
 
!
!
y
o

i
on

 
! ˆ
!

y
a

i
 is, 

 

 

! ˆ
!

y
i

a
"!
!
y
i

o
= #

i
!
!
y
i

o
"!
!
y
i

o
$

! ˆ
!

y
i

a
!
!
y
i

o
cos(90° %& ) = #

i
!
!
y
i

o
2  (12) 

Since
 
sin(! ) = " ˆ

!

y
i

a
/ "
!
y
i

o , and 
 
!
i
= " ˆ
!

y
i

a
"
!
y
i

o
cos(90° #$ ) / "

!
y
i

o
2

based on above 

equation, then !
i
= sin

2
(" )  and (1-!

i
) = cos2 (! ) . This indicates that the smaller the 

angle ! , the smaller the analysis sensitivity with respect to the observations and the 

larger the analysis sensitivity to the background. This geometrical representation is 
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consistent with equation (6) showing that analysis sensitivity per observation increases 

with the analysis error and decreases with the observation error.  

 

  
Figure 1 Geometrical representation of the vector elements in equation (11)  (see text). The 

analysis sensitivity with respect to the observations is sin
2
!  (adapted from Desroziers et al., 

2005). 

 

 

4. Validation of the self-sensitivity calculation method in EnKF and cross validation 

experiments with the Lorenz 40-variable model  

Cardinali et al. (2004) showed that the change in the analysis ŷ
i

a  obtained by 

leaving out the i
th

 observation could be calculated from the self-sensitivity S
ii

o , y
i

o and 

ŷ
i

a without calculating ŷ
i

a(! i ) (the estimate of ŷ
i

a obtained by leaving out the 

i
th

observation), and that the same was true for the calculation of Cross Validation (CV) 

score (Wahba, 1990, theorem 4.2.1), which is traditionally obtained from leaving out 

each observation in turn and is defined as (y
i

o
! ŷ

i

a(! i )
)
2

i=1

m

" , m is the total observations. 
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Therefore, to verify the self-sensitivity calculation method in EnKF (Equation (5)), we 

will compare y
i

o
! ŷ

i

a(! i )  and CV score based on the actual computation of ŷ
i

a(! i )  to those 

from self-sensitivity following equations (2.9) and (2.10) in Cardinali et al. (2004):  

 
ŷi
a
! ŷi

a(! i )
=

Sii
o

(1! Sii
o
)
(yi

o
! ŷi

a
)  (13) 

 

 
(yi

o
! ŷi

a(! i )
)
2

i=1

m

" =
(yi

o
! ŷi

a
)
2

(1! Sii
o
)
2

i=1

m

"  (14) 

With a correct estimation of the self-sensitivity, the left and the right hand sides of 

equations (13) and (14) should be equal. Deleting each observation in turn is 

computationally formidable in a realistic NWP data assimilation system, so we use the 

Lorenz-40 variable for this purpose. It is important to note that the left hand side of 

Equation (13) estimates the changes that each observation introduces on the analysis. We 

expect that the analysis change ŷ
i

a
! ŷ

i

a(! i ) with and without the i
th

 observation will be 

abnormally large in data sparse regions, or when the atmosphere is unusually sensitive to 

small perturbations (in the presence of a bifurcation), or when the observation errors are 

very large. By contrast, we expect the analysis changes to be small in data rich regions. In 

this section, we will use this characteristic to detect an observation that changes 

substantially the analysis in a uniform observation coverage scenario without carrying out 

the denial experiment.  

4.1 Lorenz-40 variable model and experimental setup 

The Lorenz 40-variable model is governed by the following equation: 

Page 12 of 30 Quarterly Journal of the Royal Meteorological Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 12 

 
Fxxxxx

dt

d
jjjjj +!!=

!!+ 121 )(  (15) 

The variables ( j
x , j=1…J) represent a “meteorological” variable on a “latitude circle” 

with periodic boundary conditions. As in Lorenz and Emanuel (1998), J is chosen to be 

40. The time step is 0.05, which corresponds to a 6-hour integration interval. F is the 

external forcing, which is 8 for the nature run, and 7.6 for the forecast, allowing for some 

model error in the system. Observations are simulated by adding to the nature run 

Gaussian random perturbations with standard deviation equal to 0.2.  

The data assimilation scheme we use is the Local Ensemble Transform Kalman 

Filter (LETKF), which is one type of EnKF specifically efficient for parallel computing 

(see Hunt et al. (2007) for a detailed description of this method). Since F has different 

values in the nature run and forecast, multiplicative covariance inflation (Anderson and 

Anderson, 1999) has been applied to account for the model error in addition to the 

sampling errors. The covariance inflation factor is fixed to be 1.3 in this study, which 

means that background error covariance P
b
 is multiplied by 1.3 during data assimilation. 

In verifying self-sensitivity calculation method, we use 40 ensemble members, and 

assume full observation coverage. The analysis sensitivity S
ii

o  is calculated after each 

analysis cycle based on equation (6). After full observation data assimilation, each 

observation is left out in turn to get ŷ
i

a(! i )  using the same background forecasts. To 

experimentally examine the relationship among analysis sensitivity per observation, 

observation coverage, and analysis accuracy, we carry out several uniform observation 

coverage scenarios, namely, 20, 25, 30, 35 and 40 observations. Analysis accuracy is 

measured by Root Mean Square (RMS) error, which is defined as the RMS difference 
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between analysis mean value and the nature run. In order to show that the square of the 

analysis value change based on the right hand of equation (13) could detect unusual 

observations, we assign to the observation at the 11
th

 point random errors 4 times larger 

than to the other observations as in Liu and Kalnay (2008). Since the observation error at 

the 11
th
 point is much larger than the other points, the square of the analysis value change 

would be larger than at the other points. For statistic significance of the results, we run 

each experiment for 1000 analysis cycles, and calculate a time average over the last 500 

analysis cycles.  

4.2 Results 

Comparison between ŷ
i

a
! ŷ

i

a(! i )
 and 

Sii
o

(1! Sii
o
)
(yi

o
! ŷi

a
)  at a single analysis time 

(top panel in Figure 2) shows that they have the same value at every grid point, 

confirming the validity of equation (13). This is also true for the comparison between the 

cross validation score based on deleting each observation in turn (plus signs in the bottom 

panel of Figure 2) and that from the self-sensitivity (open circles in the bottom panel of 

Figure 2). These comparisons prove that the calculation of the self-sensitivity based on 

equation (6) in EnKF is valid, and that a complete cross-validation that would be 

unfeasible with the standard approach, can be computed within the ensemble data 

assimilation cycle based on self-sensitivity. Further experiments with different 

observation coverage support this conclusion.  

Figure 3 shows that self-sensitivity increases with the analysis RMS error, which 

is consistent with the geometrical interpretation in section 3. Since analysis error is anti-

correlated with observation coverage, so is self-sensitivity (Figure 3). The analysis 
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sensitivity per observation becomes larger when the observation coverage becomes 

sparser. The analysis sensitivity per observation is about 0.16 when all the grid points are 

observed, which indicates that 16% of the information in the analysis comes from the 

observation at each location. Since the analysis sensitivity with respect to the background 

is complementary to the analysis sensitivity with respect to the observation (section 3), 

84% information of the analysis comes from the background forecast. When only half 

grid points have observations, the analysis self-sensitivity is about 0.32, which indicates 

that deletion of one observation in dense observation coverage will do less harm to the 

analysis system than deletion of one observation in a sparse case. This is consistent with 

field experiments (e.g., Kelly et al., 2007). 

The time-average of the squared analysis value change ( (ŷ
i

a
! ŷ

i

a(! i )
)
2 ) based on 

the right hand side of equation (13) shows the mean squared change at the 11
th
 point, 

which has 4 times larger random error than the other points, is abnormally large. This 

confirms that the squared analysis value change based on analysis sensitivity can be used 

to detect abnormal observations very efficiently at the analysis time, without performing 

data denial experiments. In a real NWP scenario, in which the observation coverage is not 

uniform, an abnormal behavior of the observations based on the change of the analysis 

value may come from the non-uniform observation coverage: the value should be larger 

in data sparse areas. However, since the calculation of the absolute analysis value change 

based on equation (13) is very simple and requires little computational time, it could be 

used as a sophisticated observation quality check.  
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Figure 2 Top panel: ŷ
i

a
! ŷ

i

a(! i )
(plus sign) and 

S
ii

o

(1! S
ii

o
)
r
i
(open circles) comparison at one 

analysis time as function of grid point.  Bottom panel: comparison of CV score calculated 

from (y
i

o
! ŷ

i

a(! i )
)
2

i=1

m

" (plus sign) and that from 
(yi

o
! ŷi

a
)
2

(1! Sii
o
)
2

i=1

m

" (open circles) in the first 60 

analysis cycles.  
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Figure 3 Scatter plot of the time averaged analysis sensitivity per observation (y-axis) and 

the analysis RMS error (x-axis) (from bottom to top, the points correspond to 40 

observations, 35 observations, 30 observation, 25 observation and 20 observations). 

 

 
Figure 4 Time average of the squared analysis value change (equation (13)) by leaving out 

each observation in turn. The observation error at the 11
th

 point is four times larger than 

the errors of the other observations.  

5. Consistency between information content and the observation impact obtained 

from data denial experiments 

Equation (13) indicates that the deletion of an observation with larger self-

sensitivity will result in larger change in the analysis value compared to the deletion of 
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other observations. Assuming that the correction to the analysis by that observation is to 

make analysis better, which is true statistically when error statistics used in data 

assimilation are correct, the deletion of that observation will result in a worse analysis 

than the deletion of other observations. Equation (13) is only valid when one observation 

is left out. However, in most NWP cases, we need to examine the impact of a subset of 

observations on analysis, which is usually done by data denial experiments. In this 

section, we will explore whether the trace of self-sensitivity of a subset of observations, 

which is referred to as information content, can qualitatively show the actual observation 

impact from data denial experiments.  

5.1 Experimental setup 

We use the Simplified Parameterizations primitivE Equation DYnamics 

(SPEEDY, Molteni, 2003) model, which is a global atmospheric model with 96x48 grid 

points in horizontal and 7 vertical levels. We follow a “perfect model” Observing System 

Simulation Experiments (OSSEs, e.g., Lord et al. 1997) setup, in which the simulated 

truth is generated with the same atmospheric model as the one used in data assimilation 

(identical twin experiment). Observations are simulated by adding Gaussian random 

noise to the truth. The observation error standard deviations assumed for winds and 

specific humidity is about 30% of their natural variability, shown in Figure 5. The 

specific humidity is only observed in the lowest five vertical levels, below 300hPa. Since 

temperature variability does not change much with vertical levels, we assume the 

observation error standard deviation is 0.8K in all vertical levels. The error standard 

deviation for surface pressure is 1.0hPa. In such an experimental setup, the observation 

error statistics is fairly accurate, and so is the analysis error statistics estimated in each 
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analysis cycle. We carry out 1.5-month data assimilation cycles using the LETKF data 

assimilation scheme. The results shown in this section are averaged over the last one-

month.  

 
 

Figure 5 The observation error standard deviation for zonal wind (Unit: m/s, left panel), 

meridional wind (Unit: m/s, middle panel) and specific humidity (Unit: g/kg, right panel). 

 

 

In the data denial experimental setup, the control experiment (called all-obs) has 

full observation coverage (Figure 6). In each observation location, circles and crosses, all 

the prognostic variables (u, v, T, q, ps) are observed in every vertical level. In the data 

denial experiments, the denied variable is only observed at the “rawinsonde” locations 

(closed circles in Figure 6). For instance, in the no-u sensitivity experiment, zonal wind 

observations are still observed at the rawinsonde locations but not at the locations marked 

with plus signs. We compare the information content of zonal wind observations over the 

locations with plus signs with the actual observation impact obtained as the analysis error 

difference between no-u and all-obs experiment. Again, the information content is the 

summation of self-sensitivity, which is calculated from equation (6) based on ensemble 

analyses of the control run. We also do a similar comparison for no-q sensitivity 

experiment. Ideally, the area with larger information content will correspond to the area 
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with larger error differences between the much more expensive sensitivity experiment 

and the control run. 

 

Figure 6 Full observation distribution (closed dots: rawinsonde observation network; plus 

signs:  dense observation network), every observation location is at the grid point. 

 

5.2 Results 

Figure 7 shows zonal mean zonal wind analysis RMS error difference (contours) 

between no-u and all-obs and the information content (shaded) of zonal wind 

observations. Here, the information content is the trace of zonal wind self-sensitivity at 

the locations with plus signs in each latitude circle (Figure 6), which reflects the 

information extracted from these zonal wind observations at that latitude. Quantitatively, 

the analysis RMS error difference (contour) between no-u and all-obs experiment is 

largest over the tropics, and is smallest over the mid-latitude Northern Hemisphere (NH). 

Qualitatively, the information content (shaded area) agrees with this RMS error 

difference, showing the largest values over the tropics and smallest values in the mid-

latitude NH. Interestingly, the zonal wind observations have relatively small impact over 

the mid-latitude Southern Hemisphere (SH), even though the rawinsonde coverage is 
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sparse over that region. This is because in the no-u experiment the mass fields, such as 

temperature and surface pressure, update the winds analysis in the mid-latitude SH 

through the error covariance between these variables. The information content basically 

reflects this feature, also showing relatively small values over that region. 

 Figure 8 shows time averaged zonal wind self-sensitivity (filled grid points) at 

observation locations with plus signs (Figure 6) and zonal wind RMS error difference 

between no-u and control run at the sixth model level. It shows that self-sensitivity has a 

larger value between 30ºS and 30ºN, and so does RMS error difference. However, we 

should not over interpret this result. For any two single points, the relative magnitude of 

self-sensitivity may not reflect the relative magnitude of RMS error difference between 

no-u and control run!due to sampling errors. Self-sensitivity can only qualitatively show 

the observation impact over some spatial domain. Since the summation of self-sensitivity 

and the sensitivity of the analysis with respect to the background at the same observation 

location are equal to 1, Figure 8 indicates that analysis state extracts most of the 

information from background forecasts, which is consistent with Cardinali et al. (2004). 

 

Page 21 of 30Quarterly Journal of the Royal Meteorological Society

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 21 

Figure 7 Zonal wind RMS error difference (contour, unit: m/s) between sensitivity 

experiment and control experiment, and zonal wind information content (shaded) over 

observation locations with plus sign. 

 

 

Figure 8 Time averaged zonal wind RMS error difference (contour; unit: m/s) between no-u 

and control experiment at the sixth model level and self-sensitivity (filled grid point) of 

zonal wind observations at locations with plus signs in Figure 6 at the sixth model level.   

 

The highly spatial temporal variability and nonlinear physical processes related 

with humidity make humidity observation impact study a very challenging problem (e.g., 

Langland and Baker, 2004). In spite of these challenges, the spatial distribution of 

specific humidity information content is consistent with the specific humidity RMS error 

difference between no-q and all-obs experiment (left panel in Figure 9). It is important to 

note that the information content of specific humidity observations qualitatively reflects 

not only the impact on the humidity analysis field, but also the impact on the other 

dynamical variables, such as zonal wind (right panel in Figure 9). This originates from 
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multivariate characteristics in all-obs experiment, in which specific humidity 

observations linearly affect winds through the covariance, and this effect is maximized in 

the tropical upper troposphere (right panel in Figure 9). This large impact of humidity 

observations on wind analyses over high tropical levels is consistent with the multivariate 

assimilation of AIRS humidity retrievals in a low resolution NCEP Global Forecast 

System (Liu, 2007).  

The horizontal distribution of specific humidity self-sensitivity (Figure 10) is also 

qualitatively consistent with the analysis RMS error difference between no-q and control 

run for both specific humidity and zonal wind. Interestingly, information content and 

self-sensitivity of specific humidity observations (Figure 9 and Figure 10) are larger than 

those of zonal wind observations (Figure 7 and Figure 8). This means specific humidity 

analyses extract more information from humidity observations than zonal wind analyses 

extract from zonal wind observations. However, this does not mean that assimilating 

specific humidity observations would reduce more error than assimilating zonal wind 

observations. This is because specific humidity and zonal wind have different dynamical 

roles in the forecast system. The large-scale interaction between zonal wind and the other 

dynamical variables during forecast may make zonal wind observations more important 

to reduce the overall analysis RMS error. Therefore, information content may not be 

applicable to examine the relative impact of observations belonging to different 

dynamical variable types on a data assimilation and forecasting system for which forecast 

sensitivity to observations may be a more appropriate measure (Langland and Baker, 

2004, Liu and Kalnay, 2008). Nevertheless, the qualitative consistency between 

information content and the actual observation impact from data denial experiments 
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suggests that we can examine the relative impact of the same dynamical variable type 

observations in different locations using information content without actually carrying 

out much more expensive data denial experiments. 

 

Figure 9 RMS error difference (contour) between no-q and all-obs experiment and specific 

humidity information content (shaded) (Left panel: specific humidity RMS error difference 

(Unit: 10
-1

g/kg); right panel: zonal wind RMS error difference (Unit: m/s)). 
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Figure 10 The time averaged RMS error difference (contour) between no-q and all-obs 

experiment and the self-sensitivity (filled grid point) of specific humidity observations at 

locations with plus signs (Figure 6) at the fourth model level (Top panel: specific humidity 

RMS error difference (Unit: 10
-1

g/kg); bottom panel: zonal wind RMS error difference 

(Unit: 10
-1

m/s)).  

6. Conclusions and discussion  

The influence matrix reflects the regression fit of the analysis to observations, and 

self-sensitivity (diagonal value of influence matrix) gives a measure of the analysis 

sensitivity to observations. Information content, defined as the trace of the self-

sensitivity, reflects the information extracted from a subset of observations during data 

assimilation. These measures show the analysis sensitivity to observations, and can 

further show the relative impact of the same type observations on the performance of the 

analysis system when the statistics used in the data assimilation reflects the true 

uncertainty of each factor. 
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 Following the work of Cardinali et al. (2004) within the ECMWF 4D-Var 

system, we showed how to calculate self-sensitivity and cross sensitivity (off-diagonal 

elements of influence matrix) in the EnKF framework. Based on ensemble analyses 

generated in each analysis cycle, the calculation of self-sensitivity and cross-sensitivity in 

EnKF only needs the application of the observation operator on each analysis ensemble 

member and performing scalar product calculations (equations (6) and (7) in section 2). 

By comparing cross-validation (CV) scores calculated from leaving out each observation 

in turn and that is based on self-sensitivity, we verified the self-sensitivity calculation and 

cross-validation method in EnKF with Lorenz-40 variable model. Unlike the self-

sensitivity calculation in 4D-Var (Cardinali et al., 2004), the self-sensitivity calculated in 

EnKF satisfies the theoretical value limits (between 0 and 1) when the observation errors 

are not correlated. In agreement with the geometrical interpretation, we showed 

experimentally that self-sensitivity is proportional to the analysis errors and anti-

correlated with the observation coverage when the error statistics used in the data 

assimilation are fairly accurate.  

The squared analysis value change based on analysis sensitivity can be used to 

detect observations that produce an unusually large impact on the analysis. This large 

impact could be due to large errors in the observations, to the observations being isolated, 

or to the atmosphere having a high regional sensitivity to perturbations leading to large 

forecast error growth. It would be unfeasible to carry out such computations in its 

original formulation even for a model with a moderate number of degrees of freedom. 

The computation of the squared analysis value change from leaving out each observation 

in turn becomes efficient when using analysis sensitivity in an EnKF but not in the 
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variational formulation because in EnKF no approximations are made in calculating the 

sensitivities. We showed that the ability to identify observations that produce unusually 

large changes in the analysis can be efficiently used to identify faulty observations during 

the analysis cycle, similar to the forecast sensitivity method of Langland and Baker 

(2004), Zhu and Gelaro (2008) and Liu and Kalnay (2008). 

In an idealized experimental setup, the comparison between information content 

and the actual observation impact given by data denial experiments shows qualitative 

agreement. This implies that the spatial distribution of information content can be utilized 

in examining the relative importance of the same dynamical variable type observations 

without actually carrying out much more expensive data denial experiments. However, 

information content may not reflect the relative importance of observations from different 

dynamical variable types since the relative importance of different dynamical variable 

type of observations is also related with the dynamical role they played in the forecast 

system. In the future, we will use self-sensitivity and information content to estimate the 

importance of the assimilated observations in a more realistic data assimilation system.  
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