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ENSO is a slow instability, weather noise is fast...How to
create coupled slow perturbations for ENSO ensemble
forecasting and data assimilation?

Breeding is a nonlinear approach and allows for
saturation of fast noise (unlike linear Singular Vectors)

Breeding in the Cane-Zebiak model

Breeding in the NASA coupled GCM; comparison with the
NCEP coupled GCM

Breeding in the operational NASA NSIPP data
assimilation/forecasting system

Bred vectors and forecast errors (analysis increments).
Preliminary ensemble forecasting results



ENSO has a doubling time of about one month,
Baroclinic waves about 2 days,

Cumulus convection about 10 minutes,
Brownian motion...

Linear approaches (like Singular Vectors and
Lyapunov Vectors) can only handle the fastest
instability.

Nonlinear model integrations (like Bred

Vectors, EnKF) allow fast instabilities to
saturate, they can filter fast instabilities !!
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Nonlinear saturation allows filtering unwanted fast, small
amplitude, growing instabilities like convection
(Toth & Kalnay, 1993, Pena & Kalnay, 2003, NPG)
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In the case of coupled ocean-atmosphere modes, we cannot
take advantage of the small amplitude of the “weather noise”!
Must use the fact that the coupled ocean modes are slower...

Atmospheric
perturbation
amplitude

bJ

Weather “noise’

ENSO signal

time

1 month

Need a long rescaling interval, like 2 weeks or one month



In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

BV Growth

TN Bred Vector Growth:
red, high growth;
green, low growth;
blue, decay

20

Y Axis -20

With just a single breeding cycle, we can estimate the stability
of the attractor (Evans et al, 2004)



We found two rules for a forecaster
living in the Lorenz attractor:

Growth, numstqo 2000, bst = 8 => 500 steps in 2ach aigph, thiesh = .054

.& ;5&3&

Bred Vector Growth:
red, high growth;

green, low growth;
blue, decay

14 1.45 15 1.55 16
time x 10"

Regime change:The presence of red stars (fast BV growth) indicates that the
next orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red
stars: the next regime will be long lasting.




Breeding in a coupled system

Breeding: finite—amplitude, finite-time
instabilities of the system (~Lyapunov
vectors)

In a coupled system there are fast and
slow modes, and a linear Lyapunov
approach (like Singular Vectors) will only
capture fast modes.

Can we do breeding of the slow modes?




We coupled slow and a fast Lorenz (1963)
3-variable models (Pena and Kalnay, 2004)

Fast equations Slow equations
dx 1 dx
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“Tropical-extratropical” (triply-coupled) system: the ENSO
tropical atmosphere 1s weakly coupled to a fast “extratropical
atmosphere” with weather noise
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WEATHER - ENSO - breeding with different time intervals
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In coupled fast/slow models, we can do
breeding to isolate the slow modes

We have to choose a slow variable and a
long interval for the rescaling

This is true for nonlinear approaches (e.qg.,
EnKF) but not for linear approaches (e.qg.,
SVs, LVs)

We apply this to ENSO coupled instabilities:
Cane-Zebiak model (Cai et al, 2003)
NASA full coupled GCM (Yang et al, 2005)
NASA operational system with real observations



Initial and Final Singular Vector with a SST norm and an
optimization time of 3-6 months
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Rescaling done every 1-3 months
(insensitive to interval and to norm)

Bred Vector growth rate is strongest before
and after ENSO events.

Bred Vectors can be applied to improve the
forecast skill and reduce the impact of the
“spring-barrier”.

The results show the potential impact for
ensemble forecast and data assimilation



Monthly Amplification Factor of Bred Vector
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“Spring Barrier”: The “dip” in the error growth chart indicates a large error growth for
the forecast that begins in the spring and passes through the summer. Removing the
projection of the composite BV from the initial conditions (one d.o.f.) wipes it out.



NASA Seasonal-to Interannual
Prediction (NSIPP) coupled GCM

Developed by Suarez (1996)
Resolution: 2°x 2.5°x34 levels

Components
Developed by Schopf and Loughe (1995)
Resolution: 1/3°x 5/8°x 27 layers
Mosaic LSM
Full coupled

AGCM and OGCM coupled
Current prediction skill (El Nino hindcasts) is up

to




The differences between the control
forecast and perturbed runs

Size of perturbation (e.g., Nino-3 SST)
Rescaling period: one month

Low computational cost

Easy to apply to Coupled GCMs
Captures coupled instabilities



Example of instantaneous background SST
(color) and bred vector SST (contours)
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Instabilities associated with the equatorial waves in
the NSIPP coupled model are naturally captured by
the breeding method!



NASA vs. NCEP Coupled GCMs
(regressed with Nino-3 SST)

NASA background NCEP backaround

822 \\Q 20N E% )\
0.4

SST =

120E 150E 180 150W 120W 90w

. =1
<> 0.01
)
— d U1

y r v r 203
150E 180 150W 120W 90w

zonal

EQ T . .:"}_"
current a

P
108+

o -]
208 — T r T T r T r
120E 150E 180 150W 120W 20w 150E 180 150W 120W 90W

These two coupled models have slightly different ENSOs...




NASA Bred Vector vs. NCEP Bred Vector
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Bred vectors obtained with an 8-year NCEP run are
extremely similar to the NASA’s 20-year run!!!



NASA BV vs. NCEP BV

Northern Hemisphere

NASA geopotential height at 500mb
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Even the PNA atmospheric teleconnections are similar!!



Nonlinear methods, like breeding and EnKF, can take advantage
of the saturation of fast weather noise. Linear systems cannot.

Coupled Lorenz model experiments show that for slow modes
the rescaling in breeding has to be done using slow variables
and long rescaling intervals

Cane-Zebiak breeding experiments show that the BV growth
depends on season and ENSO phase, and that they can be used
for data assimilation and ensemble forecasting

“Perfect model” experiments with the NASA coupled GCM show a
robust dominant coupled ocean/atmosphere bred vector.

The NASA and the NCEP coupled models show similar but not
identical ENSO evolutions

The dominant BVs in these two systems are also very similar.
They show similar extratropical teleconnections in the PNA
region

Results generally agree with those obtained with the C-Z model



The operational system assimilates ocean
observations (analysis).

The ocean analysis increments (analysis minus
forecast) measure the growing forecast errors

Bred Vectors are designed to estimate the
growing forecast errors.

If BVs are similar to analysis increments
(without knowing about the new observations)
then they have potential for use in ensemble
forecasting and data assimilation:

BVs provide information on the coupled
“errors of the month”




Breeding experiments

— Rescaling parameters
BVa: BV SST in Nino3 region (rescaling size=0.1°C,
standard run)
BVb: BV thermocline (Z20) in tropical Pacific (size=2m)

BVc: BV SST in Nifio3 region as in (1). Breed in
tropical region only and damp perturbations
beyond 30°N/S

— The structures of the bred vectors from the 3
experiments are very similar. So, we show
results from BVa.



Vertical cross-section at Equator for
Bred Vector and Analysis Increment

Bred vector (contour):
rescaled difference between control forecast and
perturbed runs

Analysis increment (color shading):
Difference between analysis and one-month foreacst
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Vertical cross-section at Equator for
BV (contour) and analysis increment (color)
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Before 97° El Niio,
An.Inc. is located in
W. Pacific and near
coast region

During development,
An.Inc. shifts to lower
levels of C. Pacific.

At mature stage,
An.Inc. shifts further
east and it 1s smallest
near the coast.

After the event,
An.Inc. is located
mostly in E. Pacific.



Nino3 index

BV1 srowth rate
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1995 1996 1997 1998
RMS of (SSTf—SSTa) in Nino3 region

Variations of temperature analysis increment in
eastern Pacific are strongly related to BV growth rate



Analysis increment (color) vs. Bred vector (contour)

T Analysis increment vs. Bred vector in model coordinate (08/1997)
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« Bred vector captures large dynamic errors, located mostly near the
thermocline.

« Good agreement between BV and An.Inc. on model levels suggests
their potential application in DA background error covariance.



For standard breeding experiment
- We binned results (68 months) based on the BV growth rate, and compared
An. Inc. pattern correlations and Nino3 index.

Mean of
05k ceieien. N|n03 IndeX ................................ 32

[}

Mean SSTA (°C)

Mean Spacial Correlation

mean of pattern
correlation

Growth Rate

* During an event (large Nino3 index), the growth rate
Is smallest.

* For large growth rate, the BV has large projection
on analysis increments (pattern correlation).



[SSTa-SST1] vs. BY SST (contour) in tropical Pacific
(cases when pattern correlation is large)
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For large BV growth, agreement of BV with analysis increment
(forecast error) 1s very good



The equatorial temperature structure
Climate variability vs. Error structure

« Observations:

— EOF analysis for temperature anomalies
from NSIPP ocean reanalysis

 Dominant error structure in
equatorial subsurface
— EOF analysis for analysis increment and

bred vector

« Period (Feb1993-Nov1998, 69 months)
« Time means are removed



Climate variability in subsurface

*First two EOF modes relate to ENSO evolution

Temperature anomalies first appear in W. Pacific, and

propagate eastward along the thermocline and amplify in the E.
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The equatorial temperature error
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Analysis increments and BV have very similar subsurface thermal structure



Correlations between analysis increment and

bred vectors

Total correlation between first three EOF modes

An.Inc EOF, | An.Inc EOF, | An.Inc EOF,
BV, 0.80 0.84 0.62
BV, 0.84 0.75 0.49
BV 0.80 0.64 0.50

» The first three EOF modes of analysis increment strongly project

on the first two BV’s EOF space.

« BV’s EOF modes are similar, suggesting BV subsurface structure
is insensitive to the chosen rescaling parameter.




Local analysis increment projection
on ensemble perturbations

 Ensemble perturbations
— Three dynamic perturbations (BVa, BVb, and BVc)

— Three operational perturbations

 Differences between two analysis state, one is a randomly
chosen analysis with 15 days of initialization time, and the
other one is 3 days after the first one.

* Project local analysis increment on local space
spanned by 3 ensemble perturbations (as in
Patil et al, 2000).

— Local domain (11x11 grid points)



SST analysis increment
projection on bred vectors
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*Generally, the projection amount on bred vector is higher than
operational perturbations, especially during 1997-1998 EI Nino event

*Operational perturbations know the observations and therefore still
contain oceanic memory.
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SST analysis increment projection on BV
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Ensemble forecasting experiments

» Operational perturbations:
— Operational ensemble forecasts (one control and 5 perturbed runs)

— QOcean has analysis initial conditions but atmosphere starts from AMIP
runs

 Dynamic (BV) perturbations :

— One pair of bred vector are generated by adding and subtracting to the
initial fields

— QOcean BVs centered at ocean analysis and Atmos BVs centered at
AMIP restarts

— QOcean BVs centered at ocean analysis and Atmos BVs centered at
(BV*+BV™)/2

— We used constant amplitude for the perturbations



Nino3 index (SST clim drift removed from forecasts)
*Dynamic perturbation ( one pair of BV*,BV")
*Operational perturbation

*Control forecast (no perturbatlon)

Forecast start from DEC

Nino3 index (°C)
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« Ocean BVs centered at ocean analysis and Atmos BVs centered at AMIP
restarts

 Ocean BVs centered at ocean analysis and Atmos BVs centered at
(BV++BV-)/2

« Control forecast

Forecast start from SEP i Forecast start from DEC

Nino3 index (°C)
Nino3 index (°C)

JAN
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1888 1998

1898 1887

Forecast start from MAR

Nino3 index (°C)
Nino3 index (°C)




Hovmoller diagram of forecasted thermocline

(Starting from December 1996)
Z20 anomaly (anaIyS|s) 220 anomaly (control)

Hindcast month
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The size of ensemble perturbation
needs to be adjusted with BV growth
rate

Increased the size of the perturbation by a factor of 5 for the
case with large growth rate
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RMS error

increasing the size
helps to reduce the
error in the later month
forecasts
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Hovmoller diagram of forecasted thermocline
(Starting from September 1996)

_Z20 anomaly (analysis) ... £20 anomaly (CNT)
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This is a much more complex system (real ocean data,
model errors, AMIP atmosphere). Nevertheless, results are
encouraging:

BV growth rate is sensitive to ENSO and is large before and
after the event (like in the Cane-Zebiak model)

The analysis increment in NSIPP CGCM is dominated by

dynamical errors whose shape can be captured by bred
vectors

BV captures the eastward movement of the Analysis Incr.
along the equatorial Pacific during El Nifo evolution

BV is clearly related to analysis increment for both SST and
subsurface temperature, particularly when the BV growth
rate is large

Both the analysis increments and BVs in the subsurface are
dominated by structures related to seasonal-to-
interannual variability.

Preliminary results using BV for ensemble forecasting are
encouraging, but system needs tuning of amplitude.



Bred vectors will be tested as initial coupled
perturbations for ensemble ENSO forecasting in
the NASA NSIPP operational system.

Considering their ability to detect the month to
month background error variability, bred vectors
will also be tested to improve oceanic data

assimilation.
Similar studies are now being done at NCEP
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