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ABSTRACT

The potential use of chaos synchronization techniques in data assimilation for numerical weather pre-
diction models is explored by coupling a Lorenz three-variable system that represents “truth” to another
that represents “the model.” By adding realistic “noise” to observations of the master system, an optimal
value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results
for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by
either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized
synchronization (with the parameter r of the slave system different from that of the master) could be easily
achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but
the slaves only provided partial information about regime changes in the master. A comparison with a
standard data assimilation technique, three-dimensional variational analysis (3DVAR), demonstrated that
this scheme is slightly more effective in producing an accurate analysis than the simpler synchronization
scheme. Higher growth rates of bred vectors from both the master and the slave anticipated the location and
size of error spikes in both 3DVAR and synchronization. With less frequent observations, synchronization
using time-interpolated observational increments was competitive with 3DVAR. Adaptive synchronization,
with a coupling parameter proportional to the bred vector growth rate, was successful in reducing episodes
of large error growth. These results suggest that a hybrid chaos synchronization–data assimilation approach
may provide an avenue to improve and extend the period for accurate weather prediction.

1. Introduction

Synchronization of loosely coupled oscillators is not
uncommon in nature. Examples include the synchro-
nized flashing of Asian fireflies, the emergence of
scores of cicadas within a few days of each other every
17 years, and the simultaneous firing of brain neurons
to create memories (Strogatz 2003). The nonperiodic
solutions of two nonlinear deterministic systems with
sensitive dependence on initial conditions can be made
to synchronize if the coupled system has negative con-
ditional Lyapunov exponents; that is, the average
growth of small perturbations in the distance between
the two coupled systems is negative (Pecora and Carroll
1990). Two systems with state vectors u and v are syn-
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chronized if the distance d " !u(t) # v(t)! → 0 as t → $
(Zhong et al. 2001). The synchronization of coupled
chaotic subsystems has been described in electronic cir-
cuits (Pecora et al. 1997), partial differential equations
(Kocarev et al. 1997), and, recently, atmospheric mod-
els (Duane and Tribbia 2001).

While these previous investigations have examined
synchronization in a pair of systems, each a part of
some objective reality, we propose here a different ap-
plication of synchronization. One system is taken to be
real, as before, but the other system is merely a model
of the first. According to Brown and Rulkov (1997): “In
practice one could imagine coupling the output from a
physical system to a model of the system using coupling
that is guaranteed to result in stable synchronization.”
Their suggestion motivates the present comparison of
synchronization with conventional methods of data as-
similation.

Data assimilation is the process of using all available
information, including short-range model forecasts and
observations, to estimate the current state of a system
as accurately as possible. A major application of data
assimilation has been to produce analyses of the state of
the atmosphere to initialize a numerical weather pre-
diction (NWP) model (e.g., Kalnay 2003). Like chaos
synchronization, data assimilation steers a prediction
model toward behaving like the atmosphere by periodi-
cally forcing it with atmospheric observations. In fact,
the nudging method suggested for data assimilation by
Hoke and Anthes (1976), which has been used for a
number of data assimilation studies (see, e.g., Stauffer
and Seaman 1990; Stauffer et al. 1994; Bao and Errico
1997), is very similar to schemes used for chaos syn-
chronization.

Indeed, the specific examples of synchronization
schemes described in this paper are all forms of nudg-
ing. However, these examples illustrate a more general
type of coupling of truth to model that extends nudging
in a natural way. Chaos synchronization and traditional
data assimilation differ in that the data assimilation ob-
jective is the minimization of the current analysis er-
rors, which depend on observational and forecast er-
rors, while chaos synchronization instead focuses on the
minimization of the future divergence of coupled sub-
systems. In data assimilation the error covariances of
the forecasts and of the observations of the “master”
system are used to weigh more heavily the more accu-
rate data. In contrast, typical chaos synchronization
studies modify the number of variables coupled and the
overall coupling scheme since certain variables are
more effective in promoting convergence than others
(Brown and Rulkov 1997). The data assimilation appli-
cation resembles a previously suggested application of

synchronization to the tracking of a target system by a
model system (So et al. 1994). No direct comparisons of
data assimilation and synchronization with the same
system have been reported so far.

While the synchronization approach and standard
data assimilation algorithms are not a priori equivalent
and are related in a complex way, there is much to be
learned from a simple empirical comparison. To exam-
ine whether unidirectional coupling techniques of chaos
synchronization can improve upon current data assimi-
lation schemes in producing accurate forecasts, we car-
ried out experiments with the Lorenz (1963) three-
variable model:

dx
dt

" !%y # x&

dy
dt

" rx # y # xz

dz
dt

" xy # bz. %1&

The Lorenz model provides a practical test case with
qualitatively realistic properties. Atmospheric behavior
involving barotropic and baroclinic instabilities is con-
sidered somewhat analogous to Lorenz model behavior
because of the exponential instability of the model’s
trajectories and its abrupt regime changes (e.g., Miller
et al. 1994). The standard parameter values for the
Lorenz attractor were used: ' " 10, b " 8/3, and r " 28
(Lorenz 1963), except in section 3 (generalized syn-
chronization). The model was integrated, as is custom-
ary, with a fourth-order Runge–Kutta numerical
scheme and a time step of 0.01. We used two sets of the
Lorenz equations starting with different initial condi-
tions: the first representing the real atmosphere (mas-
ter), from which we extracted noisy “observations,” and
the second representing the model (“slave”), which we
tried to synchronize to the master. In section 2, we
discuss our methodology and study the identical syn-
chronization of an identical slave model, comparing dif-
ferent coupling techniques including one, two, or three
dimensions, synchronization along bred vectors and
singular vectors, and different coupling strengths. In
section 3, we explore synchronization of nonidentical
systems, a phenomenon known as generalized synchro-
nization. In section 4, we describe two data assimilation
methods, three-dimensional variational analysis
(3DVAR) and extended Kalman filter (EKF), and
compare their effectiveness with the much simpler syn-
chronization approach and with an adaptive generaliza-
tion. Section 5 is a summary and discussion.
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2. Synchronization experiments with the Lorenz
model

In these experiments the master Lorenz model fol-
lowed Eq. (1), and the slave system was nudged toward
values obtained from the master run:

dxS

dt
" !%yS # xS& ! "xk%x # xS&

dyS

dt
" rxS # yS # xSzS ! "yk%y # yS&

dzS

dt
" xSyS # bzS ! "zk%z # zS&, %2&

where k is the coupling constant (i.e., k#1 is the time
scale of the coupling), the subscript S represents the
slave system, (x, y, z) are the “observations” (which
may have observational errors) obtained from the mas-
ter run [Eq. (1)] and is equal to one, if the observation
in the i direction was used, and zero otherwise. The two
systems were integrated in time, and an initial transient
period of 500 steps was discarded in every case. In
agreement with previous authors, we found synchroni-
zation between master and slave under a wide variety
of conditions. In particular, synchronization was often
found to occur when only one of the (i was nonzero.
This phenomenon has attracted attention because the
two chaotic systems are each effectively unpredictable,
yet coupling them through a single variable results in a
predictable relationship, despite the sensitive depen-
dence on the initial conditions of all three variables.
Formally, synchronization occurs because the condi-
tional Lyapunov exponents of the uncoupled slave sub-
systems (measuring the growth of small perturbations
in the distance between the two coupled systems) are
negative (Pecora and Carroll 1990; Lui et al. 1999).

a. Simple nudging

In the first type of experiments, we used simple nudg-
ing, also known as diffusive coupling in the synchroni-

zation literature (Pecora et al. 1997). We first used Eq.
(2) with different coupling constants and different com-
binations of master system variables assumed to be per-
fectly observed, as is customary in synchronization ex-
periments. One might measure the time required for
synchronization to determine the efficacy of different
observed variables or coupling strengths. However,
since the synchronization time depends on the initial
conditions, results are strongly subject to sampling and
not satisfactory for detailed comparisons. Since in a real
system the exact master observations are not available,
we opted instead for using observations of the master to
which we added random observational errors with zero
mean and standard deviation of )2. We then used
simple nudging, as in Eq. (2), to nudge the slave solu-
tion toward the observations with errors, with the goal
of minimizing the root-mean-square error between
slave and master. Since increasing the coupling strength
k also increases the amount of noise that is introduced,
the use of noise helps to determine the optimal value of
k. The optimal value of k is roughly the minimum value
that would achieve synchronization in the noise-free
case.

An example of identical synchronization with ran-
dom observation errors is shown in Fig. 1. The results
obtained are summarized in Fig. 2, showing the rms
difference between the master and the slave over the
last 500 steps of a 3500-step run, computed for all the
integer values of k between 1 and 100. Much larger
values eventually led to computational instability as
the Courant–Friedrichs–Lewy condition was violated
(k*t + 1). We found that, when the difference between
the master and the slave is less than the observational
error, the two systems synchronize perfectly when
coupled without observational errors, whereas larger
differences indicate that synchronization does not take
place or is delayed for a very long time in the error-free
case. As with all experiments described in this paper,
the integration time was chosen to be long enough so
that the results were statistically stationary. Experi-
ments were repeated with a few different sets of initial

FIG. 1. Example of synchronization with the three-variable Lorenz (1963) model. The
dotted line is the master and the solid line is the slave. All three variables are coupled and the
strength of the coupling is k " 1.
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conditions, but a principle of ergodicity effectively al-
lowed exploration of such variations simply by making
the run time long enough.

Figure 2 shows that the effectiveness in synchronizing
with simple nudging depends on the coupling strength
and the variables chosen for observation. In agreement
with Pecora and Carroll (1990), we found that observ-
ing z did not lead to synchronization, whereas observ-
ing x or y did, but we also found that synchronizing with
y observations is more efficient than with x (see Fig. 2).
The relative efficiency of synchronization depends on
the coupling strength. Nudging using all three observa-
tions (x, y, z) or two observations (x, y) is more effec-
tive at low values of k but, surprisingly, less effective
than observing only y for larger values of k. For k " 15
or larger, the error in nudging with y alone is smaller
than the errors using both y and z. Similarly, adding z
observations improves synchronization with x and y for
k , 8 but makes it worse for larger values of k. This
implies that, when using a low coupling strength, in-
cluding information from a less effective variable will
help to synchronize two systems. However, it will de-
grade the results with a strong coupling since additional
error is needlessly introduced. A heuristic explanation

for the greater effectiveness of some variables may be
that variables containing information about the current
regime of the Lorenz system (x and y, but not z) are
useful for synchronization.

The fact that synchronization takes place over a wide
range of coupling strengths k, from 1 to over 100 (much
larger values led to computational instability), helps ex-
plain why nudging is in practice effective even when
using nudging time scales shorter than those present in
the rest of the dynamics, violating a condition suggested
by Hoke and Anthes (1976). Overall, the optimal cou-
pling value was around k " 10 in the results presented
in Fig. 2, where noisy observations of the master were
used at every time step by the slave system. However,
when the observations were offered less frequently
(once every 8 steps or every 25 steps), the optimal value
increased to about k " 30–100 (not shown).

Although the minimal value required for identical
synchronization was k " 1, observing all three variables
x, y, z, it was larger for fewer observed variables, and no
identical synchronization was achieved with k " 0.5.
(By contrast, generalized synchronization of two differ-
ent systems did take place for this value, as discussed in
section 3.) The manner in which synchronization breaks

FIG. 2. Rms difference between the master and the slave with simple coupling every time step
with different sets of variables (see legend), averaged between 500 and 3000 steps, as a function
of the coupling strength k. All runs use the same series of observations with random errors of )2
standard deviation at every time step. Coupling with z observations (not shown) was unsuccessful
(the rms error is much larger than the observational error).
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down for small k is interesting. As k is lowered below
the synchronization threshold, the synchronized trajec-
tories are interrupted by increasingly frequent bursts of
desynchronization. This bursting behavior is an ex-
ample of the more general phenomenon of on–off in-
termittency, known to occur when the state space of a
system contains a dynamically invariant manifold (i.e.,
once the system is on the manifold it remains there)
that in turn contains an attractor. With on–off intermit-
tency, the system alternates chaotically, with unpredict-
able transition times, between two distinct phases: In
the on phase the trajectories hug the invariant manifold
very closely; in the off phase they burst away. In the
present case the invariant synchronization manifold is
the three-dimensional hyperplane in which the two sys-
tems are in the same state. This manifold is invariant
because exactly synchronized subsystems remain syn-
chronized. The attractor within the manifold is the or-
dinary Lorenz attractor, but defined in terms of the
identical states of both subsystems. If the attractor loses
stability against transverse (i.e., desynchronizing) per-

turbations as parameters such as coupling strength are
varied, but remains an attractor within the manifold, as
it does in the present case since it is still effective for
each Lorenz system, then bursting ensues (Platt et al.
1993; Ott and Sommerer 1994). In a situation where the
bursting depends on the presence of noise, the behavior
is known as bubbling (Ashwin et al. 1994). Bubbling
(see Fig. 3a) is also familiar in the data assimilation
context, as will be discussed in section 4. [Intermittency
in the absence of noise resembles Fig. 3a, but with rms
error vanishing almost completely except during the
bursting phase, Ott and Sommerer (1994).]

b. Nudging in dynamically chosen directions

The most general coupling of slave to master that
extends the nudging form in Eq. (2), and might be use-
ful for data assimilation/synchronization, could be writ-
ten as

dxS #dt " F %xS& ! C%x # xS&, %3&

FIG. 3. (a) Comparison of the rms error for a simple nudging system (synchronization) coupling all three
variables of the slave to the master every eight steps (in red), and a simple adaptive synchronization where the
coupling strength is multiplied by twice the bred vector growth over eight steps only when it is larger than 1 (see
section 4). The observational error is indicated with a black line. (b) Evolution of the x variable with the color
coding indicating the logarithmic growth rate per time step of the bred vectors of the slave system (blue: ,0; green:
between 0 and 0.02, red: +0.02). (c) The growth rate of bred vectors over eight steps.

2344 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63

Fig 3 live 4/C



where we have introduced vector notation, F describes
the dynamics of a single (master or slave) system, as
given for example by the right-hand side of Eq. (1), and
C is a matrix of coupling coefficients {e.g., for (2) C "
[(k(x 0 0), (0 k(y 0), (0 0 k(z)]}, which may vary in time.
Equation (3) can only be regarded as nudging if C is a
multiple of the identity or a multiple of some matrix
that projects onto a subspace; that is, C " cM for a
constant c and a matrix M such that M2 " M. For more
general matrices C (such as those used in 3DVAR or
EKF) the assimilation scheme defined by Eq. (3) is not
nudging but a nontrivial extension of the nudging
method.

We compared the efficacy of nudging in a single con-
stant direction, such as x or y, with nudging in one
evolving direction n given by either bred vectors or
singular vectors, two types of dynamical vectors used as
perturbations in ensemble numerical weather forecast-
ing (Toth and Kalnay 1993; Molteni and Palmer 1993).
Breeding is a nonlinear generalization of the method
used to obtain Lyapunov vectors. A nonlinear system
with an initial small perturbation is integrated in time m
time steps after which the difference between the per-
turbed and the unperturbed solution is rescaled to its
initial size, added to the unperturbed solution, and the
process is repeated. The resulting differences between
the perturbed and the original system are known as
bred vectors (BV), which converge to the leading local
Lyapunov vectors (LV) when the size of the initial per-
turbation is sufficiently small. In our experiments,
breeding is done with the slave system including the
forcing term, since the master is assumed to be un-
known. The leading singular vector (SV) is the eigen-
vector corresponding to the largest eigenvalue of ma-
trix MTM, where M is the linear tangent model corre-
sponding to the nonlinear model integrated for m time
steps, and MT is its transpose or adjoint model (see the
appendix). As with the BVs, the tangent linear model is
constructed based on the slave system, including the
linear coupling term, and likewise for the adjoint model
MT. Both bred vectors and singular vectors are used in
ensemble NWP to represent the fast-growing errors
present in the analysis. The leading SVs are the fastest-
growing perturbations when starting from white noise,
whereas the BVs (or leading LVs) are the fastest per-
turbations to which all other perturbations converge.
Leading SVs describe the directions in which future
error will grow most rapidly, while BVs describe the
most likely directions of present error, based on past
growth. SVs have been used at the European Centre for
Medium-Range Weather Forecasts (ECMWF) and
bred vectors at the National Centers for Environmental
Prediction (NCEP) to create initial perturbations for

ensemble forecasting (Molteni et al. 1996; Toth and
Kalnay 1997). Therefore, both of these types of pertur-
bations would seem to be plausible candidates as effec-
tive directions for synchronization (Junge and Parlitz
2001).

Coupling in any given direction n is given by Eq. (3)
with the matrix C " kn - n, where multiplication de-
notes the outer product (it is easily shown that M " n -
n satisfies M2 " M, so M is a projection matrix). That is,
nudging is performed as

dxS #dt " F %xS& ! k .%x # xS& · n/n, %4&

where the components of n may vary in time. Expand-
ing the vector n " (nx ny nz)

T the slave system is gov-
erned by

dxS

dt
" !%yS # xS& ! k.nx%x # xS& ! ny%y # yS&

! nz%z # zS&/nx

dyS

dt
" rxS # yS # xSzS ! k.nx%x # xS& ! ny%y # yS&

! nz%z # zS&/ny

dzS

dt
" xSyS # bzS ! k.nx%x # xS& ! ny%y # yS&

! nz%z # zS&/nz. %5&

The experiments in this section were performed with
the specific choices, n " BV/ ||BV || or n " SV/ ||SV || ,
where BV and SV are a bred vector and a singular
vector, respectively. We also tested the impact of de-
fining n as the horizontal projection (x, y) of the bred or
singular vector direction. In every case, n was renor-
malized to unit length.

In Fig. 4a, we compare the results of nudging in the
three variables with the BV, the leading SV, and with
simple nudging. For coupling strength lower that k "
22, simple nudging gives lower rms error than using
either BV or SV. Beyond this coupling strength, the SV
provides the best nudging direction to constrain the
slave solution toward the master system. However, we
also orthogonalized the bred vectors (Annan 2004) and
defined the nudging direction as the leading eigenvec-
tor of bbT, where b denotes the matrix containing a few
(three) unrescaled bred vectors in each column. The
orthogonalized BV were very successful in dynamically
selecting the most effective nudging direction. Since in-
cluding the z direction was found to be harmful in the
BV nudging, we repeated these experiments using only
the x and y components (see Fig. 4b). We found that
nudging with the BV x and y components only is better
than simple nudging with x and y, and for large k better

SEPTEMBER 2006 Y A N G E T A L . 2345



than the y component alone. Nudging with SV x and y
is better than with BVs for small values of k but worse
for higher values. Table 1 summarizes the rms error
obtained with the different methods and a different
number of components, averaged over coupling
strengths from k " 10 to k " 100. As indicated in Fig.
4, nudging with the leading vector from the three-
dimensional orthogonalized BV subspace results in the
lowest rms error, for arbitrarily chosen coupling
strength. Our results indicate that supplying informa-
tion in an unfavorable direction like the z component
can cause desynchronization. Using dynamic vectors in
the fast-growing directions indeed has an advantage
over simple nudging in achieving synchronization be-
cause simple nudging does not include adaptive infor-
mation on the dynamical evolution of the system. A

striking result of these experiments is that coupling with
a single fixed variable (y) is about as effective for syn-
chronization as any of the time-varying schemes that
were tested, except at very low coupling strengths. De-
spite the obvious idiosyncrasies of the Lorenz model,
this result implies that coupling a few key variables may
actually be more effective in achieving synchronization
than attempting to couple all variables. This could also
be applicable to data assimilation schemes.

As noted before we only used information from the
slave system to construct the BV and SV, the only ap-
proach feasible in practice since the master system is
never fully known. If we construct the BV and SV with
the master system (not shown), both the BV and SV
give lower rms errors for either two or three directions
when k is greater than 10.

3. Generalized synchronization

The above experiments involve identical synchroni-
zation (IS) in which two identical nonlinear chaotic sub-
systems with different initial conditions will synchro-
nize over time if they are coupled (Rulkov et al. 1995).
The slave system is identical to the master aside from a
coupling term and different initial conditions [Eqs. (1)
and (2)].

In the case of generalized synchronization (GS), the
two nonlinear chaotic systems are not identical (Boc-
caletti et al. 2002): GS is claimed to occur when there is
a map 0 from the driving (master) space D to the re-
sponse (slave) space R, which takes trajectories u(t) in
one space to trajectories v(t) in the other (Pyragas
1996). In terms of the geometry of the two subsystems,
the evolution collapses onto the hyperplane in the full
space. While GS has attracted a lot of attention since its
discovery by Rulkov et al. (1995), in practice it is quite
difficult to detect. Unlike IS, which gives an identical
copy of the master, with GS there is often not an ob-
vious visual relationship between the variables of the

FIG. 4. As in Fig. 2 but coupling along selected bred vector,
orthogonalized bred vector, or singular vector components [Eq.
(3)]: (a) nudging in the direction of the full vector (including x, y
and z directions) and (b) nudging on x and y directions. Since the
direction chosen is renormalized, coupling in a single direction
(e.g., y) from all the methods coincides with simple nudging.

TABLE 1. Comparison of errors obtained in the last 500 steps of
synchronization experiments in specific directions with simple
nudging [Eq. (2)] along dynamical directions given by bred vec-
tors, leading orthogonalized bred vectors, or singular vectors [Eq.
(4)], averaged from k " 10 to k " 100. Note that when nudging in
a single component, the bred vectors, orthogonalized bred vec-
tors, and singular vectors coincide with simple nudging.

Rms error y xy xyz

Simple nudging with noise 0.47 0.56 0.61
Orthogonalized leading bred vector (BVort) 0.47 0.44 0.41
Bred vector (BV) 0.47 0.48 0.69
Leading singular vector (SV) 0.47 0.51 0.53
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subsystems that can be gleaned from a simple plot like
Fig. 1. The problem is especially grave if the correspon-
dence 0 between master and slave is given by a function
that is nowhere differentiable or is multivalued (So et
al. 2002), and special tests are required. Some of these
tests call for intensive computational analysis, such as
estimating conditional Lyapunov exponents from ob-
served time series of both master and slave (Pyragas
1997). Another approach has been to use random sam-
pling such as the mutual false nearest neighbors test
(MFNN), based on the concept that points that are
close in the phase space of the slave system should
correspond to points that are close in the phase space of
the master system (Rulkov et al. 1995).

A particularly simple test, the auxiliary system test, is
used here to determine whether GS has been achieved
(Pyragas 1996). The test does not require calculation of
statistics; it only requires a second copy of the slave
system and gives a clear yes/no answer. Given a master
system u and a slave system v, a second slave system v 1
is created, identical to v and coupled in the same man-
ner to u, but started from different initial conditions.
Then u and v are considered to be generally synchro-
nized if the distance d " !v 1 # v! → 0 as t → $. The
identical synchronization of the two slave systems indi-
cates that there is a function 0 such that u " 0(v)
(Pyragas 1996). (Visual inspection is commonly taken
to be adequate to verify identical synchronization of the
slaves since degradation occurs via on–off intermit-
tency, giving bursts that are large and noticeable.) Un-
like other tests, this test should reveal generalized syn-
chronization even for intractable correspondence func-
tions.

In the GS experiments, the goal is to be able to dis-
cern whether specific information about the master can
be obtained from the slave. For GS, the parameters in
the slave equation differ from those that determine the
master’s dynamics. Specifically, the r parameter varied
from the master r " 28. Parameter values were chosen

arbitrarily, but so as to avoid bifurcations into different
dynamical regimes. For r " 27, 26, and 25 in the slave
Lorenz model, GS was achieved quickly, within 1000
time steps, even with a very low coupling strength k "
0.5 for which identical synchronization could not be
reached, whereas for r greater or equal to 28, it took
about 5000 steps to reach GS. The results were quali-
tatively similar for all r values tested. The GS experi-
ments were carried out without observational errors.

The results of the experiment with r " 28 for the
master and r " 25 for the slave are shown in Fig. 5. As
indicated above, for the Lorenz model generalized syn-
chronization is easier to attain than identical synchro-
nization: when the master and slave systems are differ-
ent, the two identical slave systems synchronize quickly
even at very low coupling strengths. Figure 5 is com-
puted with a coupling strength k " 0.5, smaller than the
minimum coupling strength required to synchronize a
slave and master with equal parameters. One possible
explanation is that for the Lorenz model a synchroni-
zation manifold not given by the identity function is
more stable than the manifold defined by the identity
function. Figure 6a shows the behavior of the master
and one of the slaves when it is uncoupled, showing
similar behavior as the master but slightly slower orbits.
Figure 6b is an expanded view of Fig. 5 for the last 5000
steps. When the slave is coupled (as in Fig. 6b) it ex-
hibits smaller amplitudes, a frequency locked to that of
the master, and much fewer regime changes, suggesting
a much more stable attractor. It should be pointed out
that the auxiliary system test indicated that GS took
place even when the master was replaced by its time
average or by randomly varied values, again suggesting
that the GS pushes the slaves toward a more stable
attractor. Even though having two identical slave sys-
tems does not allow direct communication between the
slaves, at each time step both are being forced away
from their normal attractor in the same direction, with
a forcing proportional to the distance of each slave

FIG. 5. Two identical slave systems (r " 25) in pink and blue started from different initial conditions coupled to the same master
(r " 28) in green. The slaves are coupled to the master through xyz nudging with coupling strength k " 0.5 for which identical
synchronization does not occur. The two slaves do not converge with the master but synchronize with each other, which indicates
generalized synchronization has been achieved.
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from the master. If the modified slave trajectory is more
stable, bursting behavior such as described in section 2
is absent and the common forcing thus induces GS.

That the two Lorenz slave models synchronize so
readily may cast doubt on the usefulness of the auxil-
iary system method and the concept of generalized syn-
chronization. Nevertheless, the auxiliary system
method does establish that GS exists in a formal sense
and even a highly intractable correspondence function
may be of some use. Indeed, a more careful examina-
tion of Fig. 6b shows that the slave is able to provide
some information to help identify the regime in which
the master is currently orbiting. The slave responds not
by changing regimes itself, but by modifying the size of
its orbit. For an uncoupled system, as long as the system
stays on one side of the attractor, the orbits always
“spin up,” getting farther away from the center of the
attractor until the regime changes and the system starts
at a lower orbit in the new regime (see Fig. 6a). By

contrast, Fig. 6b shows that, under generalized synchro-
nization, the slave spins up only if the master is in the
same regime as the slave, but spins down or remains
with a small amplitude when it is in the opposite re-
gime. This provides information about the master state,
but there are times in which the opposite is true (see
arrow on Fig. 6b). As a result, even though the slaves
are in perfect identical synchronization, the informa-
tion they provide about the master state via the above
rule is only approximately correct. This phenomenon of
a weak coupling transferring only partial information
has also been observed in synchronization of chaotic
electrical circuits, where the phase of the oscillation
may be transferred to a coupled slave circuit, but not
the amplitude (phase synchronization, Boccaletti et al.
(2002). A master and two slaves with identical param-
eters and a low coupling strength (k " 0.5) did not
achieve identical master–slave synchronization but the
two forced slaves did synchronize with each other. This

FIG. 6. The x variable vs time for 5000 time steps with masters and slaves using different parameters.
(a) Lorenz master with r " 28 (dotted line) and uncoupled slave Lorenz r " 25 (solid line) showing the
normal behavior of an uncoupled model with frequent regime changes and increasing amplitude until a
regime change. (b) As in (a) but with a coupled slave. After attaining generalized synchronization using
xyz nudging (a second slave run is identical to the first), the slave exhibits suppressed regime changes and
periods of decreased amplitude. The arrows point to locations where the spin up/spin down rule is
violated (see text). (c) Rössler coupled master (c " 9, dashed) and slaves (c " 8, full and dash–dot lines).
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occurs after a much longer integration time than for the
slaves and master with different parameters (5000 com-
pared to 2000 time steps), presumably because the two
slaves were not pushed away from their unstable attrac-
tor as strongly as in the case of different parameters. As
with the GS cases described above, changes in the
slaves did reveal some information on regime changes
in the master.

It should be noted that the failure of GS to provide a
complete description of the master state may be specific
to a model with multiple regimes, like the Lorenz
model, where the transition is extremely unstable. For
the Rössler (1976) system, given by

dx#dt " #y # z

dy#dt " x ! ay

dz#dt " b ! z%x # c& %6&

with a weaker form of nonlinearity that appears only in
the z equation, and which exhibits no readily distin-
guishable regimes in state space, generalized synchro-
nization behaves differently. Generalized synchroniza-
tion between coupled Rössler systems, formed from
Eq. (6) in the same manner as Eq. (2) is formed from
Eq. (1) with different values of the parameters a, b, and
c in the master and slave, is tested by checking for IS
between two slaves. Where GS is verified, for typical
parameter differences, the behavior of the slave system
is found to provide much more complete information
about the master than GS in the Lorenz system (see
Fig. 6c). The improvement is most likely due to the fact
the Rössler system has only one regime. Generalized
synchronization was also tested between two different
chaotic systems, a Lorenz master with two Rössler
slaves and a Rössler master with two Lorenz slaves.
Synchronization of the two slaves was achieved in each
experiment using the same low k " 0.5 as for the
Lorenz-only system experiments above. The results
were similar to those of the Lorenz system: the syn-
chronized slaves provided only very partial information
about the master.

We conclude this section by pointing out that atmo-
spheric models are imperfect representations of the real
atmosphere, so the desired relationship between reality
and model (good analyses and forecasts) is that of gen-
eralized synchronization. In practice, a method akin to
the auxiliary system test is already used: The agreement
between two operational data assimilation systems
(slaves) using the same atmospheric observations from
the master has been considered an indication of their
agreement with the real atmosphere. The results above
indicate that this conclusion could be overly optimistic:
the agreement between the models indicates some defi-

nite correspondence between model states and the state
of the atmosphere, but the relationship could be rather
complex.

4. Comparison of conventional data assimilation
and synchronization

Data assimilation aims to estimate the state of a sys-
tem by statistically combining a short-range forecast
(a.k.a. first guess or background) with observations in
the most accurate way. Observations and forecasts are
assigned relative weights based on their respective er-
ror covariances so that the linear combination of all
available data has the smallest possible total error co-
variance. As with synchronization, the ultimate goal of
data assimilation is to synchronize the forecast with the
actual atmospheric state, using a combination of previ-
ous forecasts and current observations.

In our experiments, we used both the 3DVAR
method (widely used in operational weather forecasting
centers) as well as EKF, which is too expensive to
implement operationally in real weather prediction sys-
tems without approximations. Both systems produce
analyses (estimates of the truth) by a weighted average
of a forecast and observations. 3DVAR is optimal, in
the sense of giving a result that is statistically as close to
truth as possible when using time-independent weights.
The EKF method is optimal in the same sense, but for
weights that are allowed to vary in time, and under the
assumption that a linear approximation to the dynami-
cal equations can be used to update the weights for the
next assimilation cycle. The EKF method is much more
computationally expensive than 3DVAR because it re-
estimates the forecast error covariance matrix B, used
to compute the weights, each time a new observation is
taken and assimilated. Although the 3DVAR method is
somewhat less accurate, it is commonly used because
using a single estimate of the B matrix for all times
significantly reduces computational costs (see the ap-
pendix).

Note that the various methods of data assimilation
are defined in terms of a somewhat different goal than
synchronization. EKF and 3DVAR are designed so as
to make the best possible estimate of current truth,
while synchronization is optimized so as to promote the
fastest possible convergence of model to truth in the
future. It has been shown that the two goals usually, but
not always, yield the same result for the optimal cou-
pling matrix C in Eq. (3) (Duane et al. 2006, manuscript
submitted to Nonlinear Processes Geophys.).

The extended Kalman filter method is based on as-
suming local linearity of the dynamics and must be
modified to produce satisfactory results in the fully
nonlinear case (Miller et al. 1994; Anderson 2001). We
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experimented with three methods to augment the back-
ground error covariance in the extended Kalman filter
method, which otherwise would underestimate the
forecast errors (see the appendix). In the first, small
random perturbations uniformly distributed between 0
and 2 were added to the diagonal of the analysis error
covariance during the data assimilation cycle. In the
second, the background covariance was multiplied by
an inflation factor (1 ! *), and in the third variation of
EKF we used both random perturbations and covari-
ance inflation, with 2, * small tunable parameters. As
indicated in the appendix, although in more complex
systems the background is usually kept constant during
the data assimilation integration within the linear and
adjoint models, we found that evolving the background
state at every Runge–Kutta sub–time step was essential
in order to get accurate results.

Table 2 shows the average rms error from the 500th
to 5000th cycle. Each cycle consists of eight time steps
and one new set of observations that, as in section 2,
have randomly distributed errors with mean equal to
zero and standard deviation )2. For 3DVAR, the B
matrix was first optimized to minimize the analysis er-
ror (see the appendix). Similarly, the value of k was
optimized for synchronization for each set of observa-

tions. Finally, for the case of x, y, and z observations, we
also performed adaptive synchronization where the
coupling coefficient was strengthened if there was bred
vector growth (see discussion of Fig. 3). So as to prop-
erly compare synchronization to the traditional data
assimilation methods, the coupling term in the synchro-
nization method [Eq. (2)] was only turned on at the
same rate as analyses were performed in the traditional
methods (i.e., every 8 time steps for Table 2 and 25 time
steps for Table 3).

Table 2 indicates that the rms errors in the EKF using
a multiplicative covariance inflation factor of 1.05 are
all larger than the observation error, showing that the
EKF cannot be stabilized at this (or even larger) level
of inflation. By contrast, the approach to variance in-
flation based on adding random noise effectively stabi-
lizes EKF, and the combination of the two approaches
is, in the case of x observations, even more effective in
avoiding EKF divergence. The best EKF always results
in lower rms error compared to 3DVAR and synchro-
nization when using the same number of observations
(except for z, for which all systems fail). The results
obtained from EKF and 3DVAR agree with those of
synchronization, in the sense that rms errors from the y
observations are the lowest when only one observation
is available and are also lower than the rms error when
observing both x and z. These results clearly indicate
the importance of using effective observations in the
optimal estimation of the true (nature) state. Indeed,
the simple nudging method for synchronization is com-
petitive with 3DVAR for the cases that include the y
variable among the observations, a remarkable result
given the simplicity of the nudging algorithm.

The leading (conditional) Lyapunov exponent of a
data assimilation system provides information about
the rate of convergence to the truth and can be easily
estimated by using breeding (Trevisan and Uboldi
2004). For the systems presented in Table 2 we found
that the more negative the exponent was, the smaller
the long-term average analysis error. One problem with
the 3DVAR method of data assimilation is the occa-
sional incidence of analysis error “catastrophes,” dur-

TABLE 3. Average rms analysis error from assimilation cycle 500 to 2000 observing every 25 time steps for different data assimilation
systems and for synchronization. The last row is the results of nudging every time step using the observations generated at each time
step by interpolating the initial and final innovations within each 25-step assimilation window.

Rms error x y z xy xz yz xyz

EKF: ! " 0.1, random inflation 2 4.15
(2 " 0.2)

1.64
(2 " 0.4)

8.93
(2 " 0.2)

1.11
(2 " 0.4)

2.05
(2 " 0.3)

0.74
(2 " 0.2)

0.63
(2 " 0.1)

3DVAR 3.27 1.80 7.32 1.58 1.79 1.15 1.02
Nudging (every 25 steps) 8.83 3.87 6.67 1.73 4.57 1.88 1.14
Nudging (interpolated) 2.25 1.68 7.90 1.36 3.23 1.33 1.27

TABLE 2. Average rms analysis error from assimilation cycle
500 to 5000. It compares the extended Kalman filter, 3DVAR,
and synchronization for observations (every eight steps) of differ-
ent types and numbers of variables with an observational rms
error of )2. The EKF results are with random perturbations (2),
covariance inflation (1 ! *) or both.

Rms error x y z xy xz yz xyz

EKF: ! " 0.05 6.12 3.75 8.88 6.45 8.37 6.63 6.10
EKF: 2 " 0.02 2.82 0.51 8.14 0.41 0.58 0.36 0.32
EKF: ! " 0.05,

2 " 0.02
1.05 0.52 7.00 0.42 0.56 0.37 0.33

3DVAR 1.40 0.85 8.28 0.71 1.11 0.76 0.64
Synchronization

(nudging)
2.24 0.94 5.43 0.83 1.66 0.89 0.79

Adaptive
synchronization

0.74
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ing which rms analysis error suddenly spikes to unac-
ceptable levels. These spikes tend to occur in conjunc-
tion with changes of regime on the Lorenz attractor.
Building on the work of Evans et al. (2004), we were
able to anticipate time periods more likely to contain
one of these catastrophes by estimating the local (in
time) Lyapunov exponents using the growth rates of
the bred vectors of the analysis (not shown). Similar
results were obtained with synchronization (see Fig. 3a,
red curve), showing that large error bursts in synchro-
nization with observational errors also occur when
there is a strong likelihood of regime change (see Fig.
3b). We plotted stars on the evolution of the x variable
for the master system (see Fig. 3b) with colors accord-
ing to the bred vector growth rate from the slave system
(conditional Lyapunov exponent), plotted on Fig. 3c.
The presence of red stars, indicating an exponential
growth rate greater than 0.04 (see Fig. 3b), is a good
predictor of a forthcoming regime change and large
synchronization errors (see Fig. 3a, red curve). Indeed,
the spiking behavior is an instance of the on–off syn-
chronization phenomenon described in section 2 as a
typical mode of degradation of synchronized chaos
(Baek et al. 2004). Such behavior is prone to occur near
the unstable fixed point at the center of the Lorenz at-
tractor, which is also associated with regime transitions.

These results suggest that large analysis errors may
be predictable, since catastrophes tend to occur along
with unstable situations, allowing us to selectively
modify or use an alternate method of data assimilation
at those times more likely to contain large spikes in the
rms error. For example, one could increase the forecast
error covariance matrix B in 3DVAR (or the coupling
k in synchronization) when such a situation is observed,
and return it to its normal values after the large growth
ends. EKF evidently does that naturally: the trace of
the background error covariance matrix B, which de-
termines the relative weight given to the forecast, also
increases substantially near regime changes (not
shown). We tested a simple adaptive synchronization
approach: we multiplied the coupling coefficient by
twice the growth of BV over eight steps, only if this
growth was larger than one (see Fig. 3a, blue curve).
Even without any tuning, this simple adaptive coupling
was quite successful in avoiding most (but not all) the
episodes of large error, not unlike the extended Kal-
man filter. The rms error of this adaptive synchroniza-
tion approach is shown in the last column of Table 2.

In the experiments discussed so far, we used more
frequent observations than Miller et al. (1994). We now
compare in Table 3 the results obtained with EKF,
3DVAR, and simple nudging when observations are
available every 25 time steps, as in Miller et al. (1994).

Not surprisingly, results are worse than in Table 2, with
observations every eight steps. The EKF diverges due
to the highly nonlinear behavior of the Lorenz system,
as shown by Miller et al. (1994). We found that it was
possible to overcome this problem by making the ran-
dom perturbations added for variance inflation adap-
tive, depending on the trace of the EKF forecast error
covariance (21 " 2 - trace(Pf)/3), where 2 is a con-
stant. We also noticed that the analysis error “catastro-
phes” observed for 3DVAR are also present in EKF
when the forecast error covariance Bb

EKF is occasionally
not well conditioned. Since the times at which ill con-
ditioning occurs (like the 3DVAR analysis error catas-
trophes) can be diagnosed by the BV growth rate, we
also used a hybrid scheme to improve the conditioning
of the forecast error covariance at these times. We es-
timated that, when the BV growth rate is larger then
0.06, the hybrid scheme is needed and is replaced the
EKF forecast error covariance with a linear combina-
tion with the 3DVAR (constant) background error co-
variance: B̃b

EKF " 0.6Bb
EKF ! 0.4Bb

3DVAR. Combining
the adaptive random perturbation and conditional hy-
brid scheme was the most effective way that we found
to reduce the rms error. Although these results are not
necessarily optimal, they point out possible adaptive
strategies to increase the accuracy of methods such as
the ensemble Kalman filter, which have difficulties out-
performing 3DVAR with real observations (Houteka-
mer et al. 2005).

We also note that with infrequent observations syn-
chronization (nudging) had much worse performance
than EKF and 3DVAR (see Table 3). To address this
problem we tested time interpolating the observations,
with somewhat positive results (not shown). In data
assimilation the analysis update is performed using “ob-
servational increments” or innovations, which have the
advantage of being relatively small, so that linear op-
erations such as interpolation can be done more accu-
rately on the increments rather than on the full values.
Based on this experience, we tested nudging interpo-
lating, not the observations but the observational incre-
ments defined as observations minus forecast. For each
25-step assimilation window, the initial and final inno-
vations were linearly interpolated in time. These inno-
vations were then added back to the forecasts to create
synthetic observations used for nudging every time step
within the assimilation window. Table 3 shows that with
this approach, synchronization becomes very competi-
tive with the standard (optimized) 3DVAR.

5. Summary and discussion
Our experiments with identical synchronization of

the Lorenz (1963) model with random observational
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errors and lower coupling strengths confirm the naïve
expectation that simple nudging with all three variables
leads to faster synchronization. However, the optimal
choice of coupled variables depends on overall coupling
strength. Nudging with y alone was more effective at
higher coupling strengths. Including variables that are
less effective for synchronization appears only to add
noise when the coupling is strong. One of the potential
advantages of synchronization over conventional data
assimilation is that it may be effective when only a small
number of variables are coupled with more frequent
observations. It could provide a framework for “tar-
geted observations” (e.g., Kalnay 2003, p. 243) in a situ-
ation in which the total number of variables or degrees
of freedom that can be observed is restricted.

Choosing an optimal coupling strength for a particu-
lar combination of coupled variables was facilitated by
the addition of random observational errors, which
helped to identify a required level of coupling beyond
which further coupling needlessly introduced more er-
ror. A wide range of coupling strengths (1 to 100) was
found to be effective in achieving synchronization with-
out compromising the model dynamics, even when the
coupling time scale was smaller that the dynamical time
scale of the uncoupled systems, confirming that such
schemes are a practical alternative to traditional meth-
ods (Hoke and Anthes 1976; Stauffer et al. 1994).

Suggesting an extension of the nudging method as an
alternative to more sophisticated data assimilation
schemes may seem odd. But extended nudging [Eq. (3)]
is simply the general form that includes 3DVAR and
extended Kalman filtering. Since it is already known
that extended Kalman filtering must be modified to
give satisfactory performance in all situations (see the
appendix; Miller et al. 1994), the kind of generalization
proposed here is not new. Rather, the synchronization
view provides a framework in which to define optimal
coefficients and subspaces for extended nudging. These
should be chosen so as to make the conditional
Lyapunov exponents as negative as possible (e.g., Tre-
visan and Uboldi 2004). Good results can usually be
achieved with suboptimal, but formally simpler, cou-
pling schemes.

We tested whether synchronization along varying di-
rections given by either singular or bred vectors ob-
tained from the slave system was superior to simple
nudging. Bred vectors did not lower the rms errors
compared to simple nudging except when using both x
and y observations, and singular vectors provided the
best results when coupling all three variables. The best
results for arbitrary coupling strength were obtained
when nudging in the direction of the leading orthogo-
nalized bred vector. Further experiments with a more

realistic system would be needed to clarify whether the
reduction in error could justify a similar use of singular
vectors and/or bred vectors for synchronization-based
data assimilation in NWP models. However, the fact
that synchronization with simple nudging occurs over a
large dynamic range of coupling strengths suggests that
the particular choice of coupling basis may not make a
large difference, so long as the basis vectors have sig-
nificant projections in important directions.

We found that generalized synchronization can be
attained when the slave system has parameters differ-
ent from the master system even at very low coupling
strengths for which identical synchronization does not
occur. While some information such as orbit frequency
and amplitude is lost, the slave’s constrained dynamics
provides some critical information on regime changes
in the master’s Lorenz attractor. For practical purposes,
tests such as the auxiliary system method are overly
inclusive, since the identical synchronization of the
Lorenz slaves occurs even with constant or random
forcing, and may reflect the fact that forcing the slaves
away from their normal chaotic attractors can push
them toward a more stable attractor. The task of un-
raveling the exact relationship between the master and
its generally synchronized slave is daunting, especially
when this relationship is nondifferentiable or multival-
ued. But, even without knowing the exact relationship,
the existence of generalized synchronization might be
used to provide a probabilistic description of the master
state for a given state of the slave system.

Our results confirmed the effectiveness of data as-
similation schemes, especially the extended Kalman fil-
ter. Although our synchronization tests did not perform
quite as well as 3DVAR data assimilation, the synchro-
nization algorithm is much simpler, so the fact that our
results are comparable (especially when time interpo-
lating observational increments) supports the use of ex-
tended nudging in conjunction with traditional data as-
similation schemes. The ability to use bred vector
growth rates to anticipate unstable points like regime
changes also offers a way to target these situations for
a short-term synchronization scheme substitution in the
operational 3DVAR data assimilation system. Further-
more, there is no need to restrict nudging to a fixed
direction in state space. It is possible that a judiciously
chosen dynamic coupling scheme in which the direction
and magnitude is allowed to vary may improve on ex-
isting data assimilation techniques. Indeed, conven-
tional data assimilation schemes are but one form of
synchronization in its most general sense.
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APPENDIX

Data Assimilation Schemes

The equations used for data assimilation are (e.g.,
Kalnay 2003, pp. 155 and 179)

xn
b " Mn#1%xn#1

a &,

Bn " MnAn#1Mn
T ! Qn. %A1&

The analysis is given by

xn
a " xn

b ! Kn%xn
o # Hxn

b&, %A2&

where the optimal weight matrix is given by

Kn " BnHT%R ! HBnHT&#1, %A3&

and the new analysis error covariance by

An " %I ! KnH&nBn. %A4&

Here n denotes the analysis step (in our case the
analysis is done every 8 or 25 model time steps), Mn#1is
the nonlinear model that provides the forecast or back-
ground xb

n at step n starting from the previous analysis
xa

n#1, Mn, MT
n is the corresponding linear tangent and

adjoint models, R is the observational error covariance
(assumed here to be constant and equal to twice the
identity matrix), Bn is the background error covariance,
Qn is the covariance of the errors introduced by the
model, and H is the observation operator that trans-
forms the forecast into a first guess of the observations.
For example, if we observe only the first two variables
x and y of the Lorenz model, then

xn
b " !

xn
b

yn
b

zn
b"

xn
o " #xn

o

yn
o$

R " 2#1 0

0 1$
H " #1 0 0

0 1 0$.

In 3DVAR, the background error covariance is esti-
mated once and for all; B " (xf # xt)(xf # xt)T is a time
average from data assimilation cycles 500 to 5000,
where xf is the forecast state and xt the true state. To
have the optimal B, we iterated this process until con-
verged. Except for the z-only observation, this required
less than 10 iterations.

In extended Kalman filtering the forecast error co-
variance is updated with the linear tangent model and
its adjoint. Because of nonlinearities, even with a per-
fect model (Qn " 0), the EKF analysis drifts away from
the real solution due to an underestimation of the true
forecast error covariance (e.g., Miller et al. 1994). We
have successfully tested two approaches to avoid this
filter divergence. The first one is multiplicative variance
inflation (Anderson 2001), in which the background er-
ror covariance is multiplied by (1 ! *). In the second
method, we enhance the analysis error covariance by
adding to the diagonal elements random perturbations
uniformly distributed between 0 and 1, multiplied by 2,
before performing the time integration (Corazza et al.
2003). Both of these methods (and especially their com-
bination) were able to avoid the extended Kalman filter
divergence, and optimal results were obtained observ-
ing x, y, and z with * " 0.05 and 2 " 0.02, values that
were used unless otherwise noted. In the results of
Table 2, the integration with the tangent linear model
was first made keeping the background state constant
for eight time steps, as frequently done for computa-
tional economy, but we found that the extended Kal-
man filter results can be substantially improved if in-
stead we use the evolving background state at every
Runge–Kutta time substep. When observing x, y, and z,
the analysis errors dropped from 0.49 to 0.33 (see Table
2). In the experiments where the background used in
the tangent linear model integration evolved every time
step, we found that the magnitude 2 of the random
noise needed to maintain filter stability was substan-
tially reduced, from 0.1 to 0.02.
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