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Abstract

On 7 December 1992, The National Meteorological Center
(NMC) started operational ensemble forecasting. The ensemble
forecast configuration implemented provides 14 independent fore-
casts every day verifying on days 1-10. In this paper we briefly
review existing methods for creating perturbations for ensemble
forecasting. We point out that a regular analysis cycle is a “breeding
ground” for fast-growing modes. Based on this observation, we
devise a simple and inexpensive method to generate growing
modes of the atmosphere.

The new method, “breeding of growing modes,” or BGM, con-
sists of one additional, perturbed short-range forecast, introduced
on top of the regular analysis in an analysis cycle. The difference
between the control and perturbed six-hour (first guess) forecast is
scaled back to the size of the initial perturbation and then reintro-
duced onto the new atmospheric analysis. Thus, the perturbation
evolves along with the time-dependent analysis fields, ensuring that
after a few days of cycling the perturbation field consists of a
superposition of fast-growing modes corresponding to the contem-
poraneous atmosphere, akin to local Lyapunov vectors.

Thebreeding cycle has been designed to model how the growing
errors are “bred” and maintained in a conventional analysis cycle
through the successive use of short-range forecasts. The bred
modes should thus offer a good estimate of possible growing error
fields in the analysis. Results from extensive experiments indicate
that ensembles of just two BGM forecasts achieve better results
than much larger random Monte Carlo or lagged average forecast
(LAF) ensembles. Therefore, the operational ensemble configura-
tion at NMC is based on the BGM method to generate efficient initial
perturbations.

The only two methods explicitly designed to generate perturba-
tions that contain fast-growing modes corresponding to the evolving
atmosphere are the BGM and the method of Lorenz, which is based
on the singular modes of the linear tangent model. This method has
been adopted operationally at The European Centre for Medium-
Range Forecasts (ECMWF) for ensemble forecasting. Both the
BGM and the ECMWF methods seem promising, but since ithas not
yetbeen possible to compare in detail their operational performance
we limit ourselves to pointing out some of their similarities and
differences.

1. Why operational ensemble
forecasting?
On 7 December 1992, the National Meteorological

Center replaced the single 10-day global medium-
range forecast (MRF), which was run daily at 0000
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UTC, by an ensemble of four 12-day forecasts, plus an
extension to 12 days of the aviation 3-day forecast run
at 1200 UTC (Tracton and Kalnay 1993). The opera-
tional configuration implemented at that time is such
that there are 14 forecasts, originating from analyses
within the most recent 48 hours, that verify over the
same 10-day period. It replaces the previous configu-
ration, where only one operational forecast and one
experimental forecast were available for the 6—10-day
forecast range. In order not to increase the total use of
the CRAY YMP supercomputer, which is already
saturated, a compromise had to be found, where the
resolution of the MRF was reduced beyond day 6 from
triangular truncation T126 (equivalent to a Gaussian
grid resolution of 105 Km), to T62 (equivalent to 210
Km). It was found, however, that the reduction of
resolution did not significantly affect the quality of the
forecasts as long as it was performed after the first five
days of the forecast (Tracton and Kalnay 1993).

The replacement of single operational forecasts by
an ensemble of operational forecasts reflects explic-
itly the recognition that the atmosphere is a chaotic
system. As pointed out by Lorenz (1963), even an
infinitesimally small perturbation (as would be pro-
duced, for example, by the “wings of a butterfly”)
introduced into the state of the atmosphere at a given
time will result in an increasingly large change in the
evolution of the atmosphere with time, so that after
about two or three weeks the trajectories of the per-
turbed and the original atmosphere would be com-
pletely different.

Lorenz’s discovery led to the emergence of a new
discipline, dynamical systems theory, and to the real-
ization that many apparently deterministic systems,
like the atmosphere and its numerical models, are also
chaotic: arbitrarily small initial perturbations evolve
into large differences with time. As far as real physical
systems are concerned, their state can never be
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measured exactly: for example, we know that our
analyses of the atmosphere contain errors whose
magnitude can only be estimated. The analysis errors
are due to errors in measurements and in the first
guess, lack of complete data coverage, and approxi-
mations in our analysis techniques. Even with a per-
fect model of the atmosphere, the skill of our forecasts
would degrade to zero within a few weeks. However,
if we are willing to run an ensemble of forecasts from
slightly perturbed initial conditions, then averaging the
ensemble can filter out some of the unpredictable
components of the forecast, and the spread among
the forecasts should provide some guidance on the
reliability of the forecasts.

Whether these objectives can be fulfilled by en-
semble forecasting depends on two conditions. First,
the model that we are using should be realistic. In this
paper we will assume that our numerical model is
essentially perfect. This is not a serious approxima-
tion. As Reynolds et al. (1993) showed, the forecast
error in the extratropics is dominated by the error
originating from the unstable growth of initial errors,
and not by model deficiencies. The second condition
is that our ensemble at the initial time should represent
the uncertainty in our analysis. in other words, we
need to perturb the control analysis with perturbation
fields that are representative of the errors present in
the control analysis. And it is not only the magnitude of
the error that is of importance but also the possible
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Fia. 1. Schematic of the 6-hour analysis cycle. indicated on the
vertical axis are differences between the true state of the atmo-
sphere (or its observational measurements, burdened with random
errors) and the analysis or forecasts of it. Note that the difference
between a forecast and the true state of the atmosphere (or the
observations) increases with time, due to the growing type of errors
in the initial analysis.
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shape of the error field, which varies from day to
day.

Since an estimate of the analysis error is so crucial
to the success of ensemble forecasting, we devote
section 2 to a discussion of the characteristics of
analysis cycle errors. We will see how fast-growing
and well-organized errors, which are not random, are
introduced and maintained in a conventional analysis
cycle. In section 3 we give a brief overview of the
methods that have been used so far to create en-
semble perturbations, and will discuss to what extent
they represent analysis errors. In section 4 we briefly
discuss a method that has been designed to model the
behavior of the growing errors in the analysis cycle. In
this method, fast-growing perturbations are obtained
in a “breeding cycle” of growing modes (Toth and
Kalnay 1991a). Section 5 gives an overview of the
results of ensemble forecasts based on the bred
growing modes (BGM) method. A discussion of the
results and of other applications for which the breed-
ing method can also be used is given in section 6. A
companion paper (Tracton and Kalnay 1993) includes
further details of the new NMC ensemble operational
configuration, including a discussion of applications.

2. Optimal ensemble perturbations:
Growing errors in the analysis

As Epstein (1969) and Leith (1974) showed in their
pioneering works, the ensemble mean should give a
better forecast than the control forecast as long as the
ensemble represents the uncertainty present in our
control analysis. This is because the ensemble pro-
vides a special, nonlinear filtering that removes some
of the growing errors. The question then is what kind
of errors we have in our analyses. To answer this
question we will take a quick look at how an atmo-
spheric analysis is made.

in a typical 6-hour operational analysis cycle, a
global model starts from initial conditions given by a
previously completed atmospheric analysis and is
integrated for a short (6 hour) forecast. The 6-hour
forecast serves as a “first guess” for the next analysis,
which is the statistical combination of the first guess
with observations collected in a +/— 3-hour window
centered at the time of validity of the forecast. This
cycle is run four times a day, every day (Fig. 1). When
analysis schemes were introduced into meteorology,
climatology or persistence were also used as a first
guess in the analysis (e.g., Gandin 1963) rather than
a short-range forecast. The use of a model forecast as
a first guess in the analysis cycle (also denoted four-
dimensional data assimilation because of the time
dimension introduced by the model) has resulted in
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major improvements in operational forecast skill in the
last 10-15 years (e.g., Kalnay et al. 1990). The analy-
ses (initial conditions) have much smaller overall
errors and are far superior to those that could be
obtained by using persistence or climatology as a first
guess. Thisis because the model acts as a transporter
of information from data-rich to data-poor regions, and
therefore provides a good estimate of the actual state
of the atmosphere even for those regions or param-
etersforwhich there are no observations (e.g., Charney
et al. 1969).

The total error in the analysis has therefore been
decreased by the introduction of a model first guess.
However, the ratio of fast-growing errors to the total
error must have increased. We know that the analysis
is only a close approximation of the true state of the

~atmosphere. The errors in the analysis (analysis mi-
nus truth) are not known but they must contain both
fast-growing, high-energy perturbations, such as
baroclinically unstable modes, and slow-growing or
nongrowing, low-energy perturbations, such as grav-
ity waves. The random, nongrowing part of the error
comes mainly from observational errors. Regarding
the growing errors, they originate mainly from the
forecasts. When a 6-hour forecast is run from an
analysis that has both types of errors, the fast-grow-
ing, high-energy perturbations will grow faster, attain
relatively large amplitudes, and dominate the error at
the end of the forecast.

The use of the new data collected in the +/~ 3-hour
window will only reduce the size of the error (Fig. 1)
but in general will not completely remove the fast-
growing errors, which remain present and evolve and
amplify again in consecutive analyses. Hence, a high
ratio of fast-growing errors in the analysis is intro-
duced and maintained through the successive use of
short-range forecasts in the analysis cycle. For this
reason, there is a “natural selection of fast-growing
errors” in the analysis, and the error growth in the
short-range forecasts is generally high. Note that the
growing errors in short-range forecasts and hence in
the analysis are associated with baroclinically un-
stable zones, highly dependent on the “flow of the
day.” ‘

We argued above thatthere are random, nongrowing
components and also well-organized, fast-growing
components in the analysis error field. What are the
implications for ensemble forecasting? First, one has
to note that the growing type of errors are much more
important than the nongrowing errors in determining
the skill of any specific forecast. The nongrowing
errors will project onto growing directions only at a
later time, while the growing errors will amplify and
dominate the total error field right from the beginning
of the forecast. There is a second, more practical
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Fie. 2. Schematic illustrating the basic components of ensemble
forecasting. Note that the control forecast, starting from a regular
analysis, diverges from truth right from the beginning. If the en-
semble perturbation is such that the perturbed forecast initially
converges to the control, as is the case with a random perturbation
indicated here, the goal of ensemble forecasting, that is, including
the true evolution in a cloud of ensemble, cannot be achieved.

reason that also suggests that we should ignore the
effect of random errors in the analysis. Stochastic,
random errors have such a high number of degrees of
freedom (dimension) that even if we wanted, we could
not sample them properly with our limited number of
perturbations. The conclusion is that we must perturb
the initial condition along the growing type of errors
present in the analysis.

At first sight, perturbing the control analysis with a
fast-growing field wouid seem to go against the goal of
improving numerical weather forecasts. To explain
why this is necessary we will consider Fig. 2, which
shows schematically all the components of an en-
semble forecast: a control analysis and a numerical
forecast initiating from it; a perturbation upon this
analysis and the corresponding perturbed forecast;
and finally the verification, that is, the true evolution of
the atmosphere. The first thing to point out about the
figure is that the analysis differs from the truth (which
is never known exactly). Second, the control forecast
departs from truth right from the beginning, and at a
fast rate. The observed growth rate of the errors is on
the order of 1.4—1.6 per day for the 6—72-hour forecast
range (Zhao 1993; Reynolds et al. 1993), faster than
the typical baroclinic growth. Suchinitial divergence is
an empirical evidence of the existence of fast-growing
errors in the analysis. The third point about the figure
is that if we introduce a random perturbation upon the
control analysis, then the two forecasts (control and
perturbed) will initially converge. This is because
arbitrary random perturbations in the grid domain
project mainly on inertia-gravity waves and these
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perturbations are generally decaying (e.g., Lacarra
and Talagrand 1988). Even if random perturbations
are designed to be well balanced, they will grow very
slowly or may even decay initially because it is very
unlikely that a random perturbation would project onto
the few very unstable modes in the high dimensional
phase space of the atmosphere.

To rephrase the goal of ensemble forecasting, one
can say that the true evolution of the atmosphere
should be a plausible member of an ensemble (in
other words, we must introduce perturbations similar
to the actual error in the analysis). It is clear from the
schematic Fig. 2 that this goal cannot be achieved with
arbitrary, random perturbations. Randomly perturbed
forecasts cannot capture the initial, fast divergence
" between the true atmospheric evolution and the con-
trol forecast. After a time of 2—-3 days, the perturbed
forecast will depart from the control, but by that time
the real atmosphere has diverged considerably from
both forecasts and we will never again have a chance
to “catch up” with it.

In summary, ensemble perturbations must repre-
sent the growing errors in the analysis. If we accom-
plish this, we can also achieve one of the major goals
of ensemble forecasting (Leith 1974), thatis, toreduce
the nonlinear error growth in the ensemble mean
forecast. However, we have no a priori knowledge of
the errors in the analysis. Consequently, we must
estimate the growing errors in the analysis and then
use these estimates as ensemble perturbations. But
there is a caveat here. The growing type of perturba-
tions should be related to actual errors in the analysis.
This is because if we introduce a fast-growing pertur-
bation on the analysis in a direction in which the
analysis was perfect (had no initial error), then the
average of the perturbations would give an inferior
ensemble mean forecast, compared to the perfect
control forecast, at least during the first days of inte-
gration. Similarly, random perturbations that project
onto growing modes only at a later time may hurt the
ensemble to the extent that these later growing modes
are not connected to the initial uncertainty in the
analysis.

3. Generation of ensemble
perturbations: An overview

Ensemble forecasting has been longusedin weather
forecasting. In the 1950s analog forecasts were used
to make extended- and long-range weather outiooks
(see, e.g., Craddock et al. 1962). Here, of course, the
size of the perturbations was not under control but
rather depended on what nature had to offer during the
archival period. Later, Lorenz (1965) and Epstein
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(1969) introduced the idea of ensemble forecasting in
the context of numerical weather prediction. Leith
(1974) further experimented with the idea of ensemble
forecasting with random perturbations (Monte Carlo
forecasting) ina perfect model environment. He showed
that if the perturbations correctly describe the uncer-
tainty in the analysis, ensemble forecasting, even with
just a few members, has the potential of being quite
useful. The major question, as we saw earlier, is how
to generate ensemble perturbations that reflect the
real initial uncertainty. Below, we will discuss different
perturbation methods and, in particular, how they
relate to the growing errors in the analysis.

The simplest way to generate perturbations is to
use random (Monte Carlo) perturbations. These fields
of perturbations can be generated in different ways.
Random numbers, for example, can be added to
gridpoint values (Tribbia and Baumhefner 1988),
spherical coefficients, or empirical orthogonal func-
tions (Schubert and Suarez 1989) of the control analy-
sis. In recent years it has become apparent that using
random perturbations is not the best way of making
ensemble forecasts. This is because random pertur-
bations (even if they are balanced and representative
of the statistical variability of the atmosphere) require
a few hours or even days before they organize into
dynamically unstable modes that grow on the large-
scale “flow of the day” as fast as forecast errors are
observed to grow (Fig. 2).

Another method, lagged average forecasting (LAF)
was suggested by Hoffman and Kalnay (1983). This
scheme, which like the Monte Carlo method has also
been widely used, takes advantage of operational
forecasts launched before “today” as members of an
ensemble. LAF perturbations are basically realistic
short-term forecast errors, that is, difference fields
between a forecast and an analysis (see schematic
Fig. 3). As we argued in the previous section, the
analysis contains both the growing and nongrowing
type of errors when compared to “truth.” By the end of
a short-range forecast, the proportion of growing er-
rors will, by definition, be enhanced in the difference
between the forecast and our new estimate of truth,
the subsequent analysis. This is the reason why LAF
perturbations grow faster than Monte Carlo perturba-
tions of the same magnitude. However, LAF ensemble
forecasting has the disadvantage that earlier or “older”
forecasts have much larger “perturbations” and hence
are considerably less skillful than later or “younger”
forecasts. This problem can be partly alleviated by
either using different weights for different members of
the ensemble (Hoffman and Kalnay 1983) or by scal-
ing back the larger errors to a reasonable size (SLAF,'
Ebisuzaki and Kalnay 1991).

To further increase the growing component in the
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perturbations, Kalnay and Toth (1991a) used the
difference between short-range forecasts (SRFD),
started at earlier times but verifying at the initial time of
the ensemble (Fig. 3). Here, growing errors further
dominate the difference between the forecasts, and,
unlike LAF or SLAF, no new random errors are intro-
duced by the latest analysis. Experiments performed
by Toth and Kalnay (1991b) showed that there was a
clear increase in the growth rate of perturbations from
random perturbations to SLAF and from SLAF to
SRFD, which was accompanied by an increase in the
quality of the ensemble, measured by the skill of the
mean of the ensemble forecasts. The faster the initial
error growth, the better the perturbation. This is be-
cause, as we showed inthe previous section, there are
fast-growing errors in the analysis. Thus, unless we
perturb along fast-growing modes, we have no chance
of capturing a trajectory close to the true evolution of
the atmosphere.

Lorenz (1965) showed that, in a linear sense, the
fastest-growing perturbations for a given period of
model integration can be obtained as the eigenmodes
of the product A*A with the largest eigenvalues. Here
A(t,,t) is the linear model propagator between a time
L,and t,, A" is its adjoint, and the eigenmodes of A*A
are the singular modes of A optimized for the interval
(t,—t,). Lorenz used the singular modes to determine
the flow-dependent predictability in a simple model.
Lacarra and Talagrand (1988), Farrell (1989), and
Borges and Hartmann (1992) applied them to study
atmospheric instability and short-range forecast er-
rors. More recently, Molteni and Palmer (1992) and
Mureau et al. (1992) used Lorenz’s method to gener-
ate perturbations for ensemble forecasting at the
European Centre for Medium-Range Weather Fore-
casts (ECMWF). The optimization time period chosen
at ECMWEF is the first 36 hours of the forecast period.
Following this procedure they select initial perturba-
tions that grow fastest, in alinear sense, during the first
period of the forecast. ’

At NMC we have developed a new method that
attempts to create realistic perturbations that couid
represent the errors actually present in the analysis

'Inscaledlagged average forecasting (SLAF), proposed recently by
Ebisuzaki and Kalnay (1991), the LAF perturbations are divided by
an“age” factor, resultingin similarly sized realistic perturbations. For
example, a 12-hour forecast error perturbation could be divided by
2 and used as if it were a 8-hour forecast error. They also suggested
that the perturbations could be both added and subtracted from the
control (i.e., latest) analysis. In this way, it is possible to create a 17-
member ensemble from just the latest 2 days of a 6-hour analysis
cycle. Unlike MCF or LAF, this scheme resulted in average forecasts
that verified as well or better than the control forecast (the forecast
launched from the latest analysis) even after only 12 hours into the
forecast.
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Fia. 3. Schematic of the creation of LAF SRFD perturbations.
Note that the LAF perturbation includes not only the short-range
forecast errors but also the random errors of the latest analysis,
whereas the SRFD perturbation is not affected by the random errors
of the latest analysis. This results in a significant reduction of the
random errors and therefore in a higher growth rate for the SRFD
perturbations.

cycle. The method, described in the next section, is
denoted “breeding of growingmodes” orBGM and has
been designed to mimic how fast-growing errors are,
inadvertently, “bred” in the analysis cycle.

4. The breeding of fast-growing
perturbations

This simple method (Toth and Kalnay 1991a) con-
sists of the following steps: (a) add a small arbitrary
perturbation to the atmospheric analysis, (b) integrate
the model for 6 hours from both the unperturbed
(control) and the perturbed initial condition, (c) sub-
tract the 6-hour control (analysis cycle) forecast from
the perturbed forecast, and (d) scale down the differ-
encefield so thatithas the same size (inan rms sense)
as the initial perturbation. This perturbation is now
added to the following 6-hour analysis, as in {(a), and
the process is repeated forward in time (Fig. 4). By
construction, this method selects (*breeds”) the modes
that grow fastest during the cycle, similar to that which
occurs in the analysis cycle itself (Fig. 1). Three or 4
days after starting a breeding cycle, the growth rate of
the perturbations reaches a saturation value of around
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Fia. 4. Schematic of the 6-hour breeding cycle. Note that the
breeding cycle depends on the analysis cycle but does not affect it.
A smalt arbitrary perturbation is introduced on the control analysis
initially. After a 6-h integration, the difference between the control
and perturbed forecasts is scaled back to the size of the initial
perturbation and this difference field is now added onto the new
analysis. After 3—4 days of cycling, the perturbation is dominated by
growing modes due to the “natural selection” of fast-growing pertur-
bations.

1.5 per day, which is comparable to the actual short-
range forecast error growth. From this point on, the
growth rate does not depend on the initial perturba-
tion. We found that the results are not very sensitive to
the length of the integration in each cycle, at least for
periods between 6 hours and 2 or 3 days.
Experiments performed with the simple three-vari-
able Lorenz (1963) model show that the breeding
method results in growing perturbations very similarto
those obtained as eigenmodes of A*A (singular modes
of A) whenever perturbations are growing fast. The
growth rates obtained by both methods are almost
identical. This is because the propagator A(t,,1) is in
effect applied once during the interval ¢ to ¢, and, by
definition, itis the singular modes (not the eigenmodes)
of A that grow fastest during a single application of A.
This agrees well with the original conclusions of
Lorenz’'s (1965) study, in which he used a linear
tangent version of his 28-variable model to study the
evolution of random perturbations carried upon a time-
dependent basic flow over a period of 64 days. He
concluded that after a few days there will be a strong
tendency for a randomly chosen perturbation to as-
sume a shape similar to the fastest-growing singular
mode(s). Note that the breeding cycle is like applying
a nonlinear perturbation model along a time-evolving
flow. The only difference from Lorenz’s experimentsis
that since we use a nonlinear model, we have to scale

2322

down our perturbation regularly. Lorenz’s arguments
suggest that the perturbations in a breeding cycle are
in effect linear combinations of the fastest-growing
singular modes of the atmosphere. The modes are
combined with random weights, which depend on how
the initial perturbations project on the fastest modes
and are proportional, in a probabilistic sense, to the
growth rate of the singular modes.

A comparison of Figs. 1 and 4 suggests that the
breeding cycle simulates the behavior of growing
modes in the analysis. In both cases, growing errors
get scaled down in each cycle. In the analysis cycle,
observations are used to reduce the growing errors. In
the breeding cycle, since the perturbations are run
upon the analysis fields, this can be done by simple
rescaling. Thus, the effect of stochastic errors coming
from random observational errors in the analysis is
eliminated from the breeding cycle. This argument
suggests that with the breeding method we can gen-
erate fast-growing perturbations that are plausible
growing analysis errors, which is the most important
condition for effective ensemble forecasting. In fact,
we can generate many such perturbations by running
multiple breeding cycles, each started with a different
initial perturbation. If we follow Lorenz’s arguments
above, the regional growing modes in each cycle are
combinations of the fastest singular modes but with
different random weights that depend on how the
various initial perturbations prolect on the various
singular modes.

We have subjectively inspected the bred perturba-
tions from independent breeding cycles started with
different initial perturbations and found that at any
given time, different cycles share roughly half of the
well-defined regional modes, although their signs can
be either positive or negative. This subjective estima-
tion agrees well with the results obtained by
Houtekamer and Derome (1993). In their multiple
breeding experiments with a quasigeostrophic model,
they found that after 20 days of breeding, 48% of the
variance in the different perturbations can be ex-
pressed by the first empirical orthogonal function. In
the areas where the independent breeding modes
differ, the growth rate of the leading singular modes
must be comparable.

Lorenz (1965) also noted that there are cases when
the fastest-growing singular mode has a growth rate
much larger than that of the second one. He went
further to assert that “even though the initial error field
may be completely unknown, the general configura-
tion ofthe error field after eight days can be reasonably
well estimated, although the sign will of course be in
doubt.” And indeed we find many cases, especially
those associated with fast-developing tropical or ex-
tratropical cyclones, in which the bred growing modes
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reproduce remarkably well the actual errors of the
operational forecast at various (12—144 h) lead times.
This is another indication that the breeding modes
offer a good representation of possible analysis er-
rors.

This discussion suggests that a good estimation of
the growing modes in the analysis cycle could be used
not only to improve ensemble forecasting, but also to
improve the analysis itself. In the analysis schemes
currently operational [optimal interpolation, e.g., Lorenc
(1982), or statistical spectral interpolation, Parrish and
Derber (1992)] it is assumed that the errors in the first
guess are geostrophically balanced but are estimated
from the time average of many short-range forecast
errors and therefore are random. As we saw in section
2, however, the errors in the first guess are notrandom
but are dominated by instabilities associated with the
“flow of the day.” Therefore these nonrandom, grow-
ing modes are an important component of the analysis
error that is “ready to grow.” Information on these
growing modes (their shape and size) could be used
toimprove the operational analysis. The forecast error
covariance “of the day” could be estimated from mul-
tiple breeding cycles (D. Parrish 1992, personal com-
munication).

It is worth noting that multiple breeding modes for
ensemble forecasting can be generated virtually free
of any cost. If we run medium- or extended-range
forecasts, each ensemble member can maintain its
own independent breeding cycle. The breeding per-
turbations can be defined as the difference between a
member of the ensemble and the control forecast at 1-
day lead time (see Fig. 5). This difference is then used
as the initial perturbation for the next-day ensemble
member, etc. In this configuration, efficient perturba-
tions are generated without any extra computational
cost (beyond running the forecasts themselves).

We close this section by pointing out some differ-
ences between the two methods that explicitly attempt
to create fast-growing ensemble perturbations, that is,
the BGM method and the Lorenz method as imple-
mented at ECMWF (Palmer et al. 1992; Molteni and
Palmer 1992; Mureau et al. 1992; Buizza 1992). As
mentioned in section 3, at ECMWF, three times a
week the largest singular modes of a T21, 19-level
model are determined for the first 36-hour period of the
forecast, in a linear framework. The largest 20 or so
singular modes are then combined to serve as final
perturbations.

We have suggested that, in agreement with Lorenz
(1965), it seems reasonable to assume that the BGM
method results in perturbations that also project strongly

onto a subset of fast-growing singular modes. What'

are the differences then between the two methods?
The ECMWF method computes the growing modes
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explicitly for a 36-hour optimization time period start-
ing at the analysis time, while the BGM method esti-
mates the modes that were growing fastest during the
interval leading to the initial time. Therefore, the
ECMWF method may be optimal in estimating the
maximum range of possible forecast errors, while the
breeding method may give a better estimate of the
actual errorsintheinitial analysis. The ECMWF method
finds individual modes and then combines them to
produce perturbation fields, while the BGM method
results in complete fields that are a superposition of
regional modes. The ECMWF method uses a re-
duced-resolution linear tangent version of the model,
with limited physics, whereas the BGM method uses
the nonlinear model at its full resolution with complete
physics to compute the perturbations. Therefore, non-
linear saturation of very rapidly growing but low-
energy modes (e.g., convection, see Fig. 6) can take
place in the breeding cycle (as it does in the analysis
cycle) but not in the Lorenz method. Moreover, since
the modes obtained by breeding are already bal-
anced, there is no need to introduce nonlinear normal-
mode initialization in the BGM method, which has a
significant effectin the linear adjoint algorithm (Buizza
1992). Another difference is that the BGM method is
essentially cost free, while the Lorenz method re-
quires significant computational resources. Finally,
there is no forced time continuity in the ECMWF

SELF-BREEDING OF SINGLE FORECASTS
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Fic. 5. Schematic showing how an ensemble of perturbed
extended-range forecasts can maintain their own breeding cycle.
For each ensemble member, an arbitrary perturbation is introduced
onto the initial control analysis. The difference between the per-
turbed and control forecasts at 1-day lead time serves as a new
perturbation on the following day. After 3—4 days, the perturbations
are dominated by fast-growing modes, just as in the breeding cycle.
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Fia. 6. Schematic of the time evolution of the rms amplitude of
high-energy baroclinic modes and low-energy convective modes.
Note that although initially growing much faster than the baroclinic
modes, convective modes saturate at a substantially lower level.
These modes are therefore insignificant for the analysis/ensemble
perturbation problem since the errors in the control analysis (dashed
line) are much larger than the convective saturation level.

ensemble forecasts in the sense that the selection of
today’s ensemble members is unrelated to that of
yesterday’s, so that the order, and even the structure,
of the modes may be quite different. The breeding
method, on the other hand, is constrained to maintain-
ing considerable consistency in the ensemble fore-
casts from one day to the next (which may or may not
be an advantage).

At this point in time, both centers have had limited
operational experience with the two methods, both of
which are promising. A detailed comparison of their
performance should come in future studies, when
enough data and experience has been accumulated
atboth centers. In the next section we will compare the
skill of bred ensembles to that of ensembles gener-
ated by other methods.

5. Results obtained with BGM ensemble
forecasts

In this section we will evaluate experimental and
operational ensemble forecasts with bred perturba-
tions. These ensemble forecasts will also be com-
pared to ensembles generated by other methods. As
further discussed in Tracton and Kalnay (1993), en-
semble forecasting has three major objectives: (a)
improve the skill, by reducing the nonlinear error
growth and averaging out unpredictable components,
(b) predict the skill, by relating it to the agreement
among ensemble forecast members, and (c) provide
an objective basis for casting forecasts in a probabilis-
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tic form. The latter two objectives, whichinvolve higher
moments, are hard to verify without large numbers of
forecasts. However, the impact of ensemble predic-
tion on forecast skill can be easily verified and can be
used to discriminate among different methods for
generating perturbations.

Since we have some evidence that the growing
modes obtained by the breeding method are a good
representation of the “errors of the day” present in the
analysis cycle, we have followed a minimalistic en-
semble forecast approach: we generated two-mem-
ber ensembles using the bred modes as perturba-
tions. The ensemble contains two initial perturbations,
obtained by adding to and subtracting from the analy-
sis our growing mode estimate for the same day.

Five-day forecasts were run with the perturbed
analyses, and the skill of the mean of the two per-
turbed forecasts was compared with the skill of the
control forecast and also with the skill of “benchmark”
ensembles of much larger size generated by other
methods (random MCF and SLAF). The size of the
initial perturbation was kept constant throughout these
experiments at a level of 10% of the climatological
variance. All the experiments described below were
performed with the T62/18-level version of the NMC
global model (Kanamitsu et al. 1991).

The results of experiments performed over several
months show, first, that the 5-day forecast skill of the
mean of the twin ensemble based on the bred growing
modes is higher than the skill of the control in about
80% of the forecasts for both the Northern and the
Southern hemispheres. Experiments completed for
February and March 1992 show that the average
improvements in the anomaly correlation for the 500-
hPa streamfunction filed were 2% and 3% for the
Northern and Southern hemispheres, respectively.
Moreover, the ensemble mean verifies equally or
better than the control, even for the short range (1-3
days lead time).

These early results have been confirmed by those
obtained since the operational implementation of en-
semble forecasting on 7 December 1992. Table 1
shows that the forecasts started at high (T126) and
lower resolution (T62) have comparable skill in the 6—
10-day range. The skill of the mean of the twin BGM
lower-resolution forecasts is more than three percent-
age points higher in anomaly correlations than either
of the control forecasts. |t is important to note that
running twin BGM forecasts requires twice as many
computational resources as running a single lower-
resolution forecast, while doubling the horizonta! reso-
lution requires 8—10times more computational time. In
this sense, running twin forecasts is a very cost-
effective way of enhancing the skill. Moreover, the
BGM forecast has substantially more skill than the
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Fia. 7. (a) Analysis corresponding to the initial conditions of 15 February 1992. (b) Bred growing modes for 15 February 1992. Shown
are the streamfunction values at sigma layer 9 (around the 500-hPa height level; displayed values are in 10" m?>s™).

three-member LAF forecasts, which include “older”
forecasts with higher error levels.?

Second, the skill of the twin ensemble is compa-
rable to or even better than the skill of much larger

2Note that the scaled LAF method (SLAF) would not suffer from this
handicap but would require additional model integrations.
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ensembles using previous methodologies to obtain
perturbations. In Table 2, we show the anomaly corre-
lation for a set of control 5-day forecasts and for the
mean of the different ensemble forecasts. Both the
SLAF and random ensembles contain eight pairs,
each of which is generated by adding and subtracting
a different perturbation, whereas a single pair is used
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TasLe 1. Comparison of the average 6-10-day 500-hPa
geopotential height forecast skill (Northern Hemisphere extratropics)
obtained using subsets of the operational ensemble forecasts. The
verification period is 13 December 1992 through 14 March 1993.
The letters AC represents percentage anomaly correlation; HR
represents forecasts with the high-resolution T126 analysis and
forecast model for the first 6 days, after which the integration is
extended to 12 days at T62 resolution. The letters LR represent
forecasts with the lower-resolution T62 analysis and forecast model
throughout the 12 days of integration. CTL represents control
forecasts started from unperturbed 0000 UTC analysis. BGM repre-
sents the mean of the twin forecasts started from control analyses
perturbed with positive and negative bred growing modes from the
breeding cycle. LAF are three-member lagged average forecasts
obtained from the latest three 0000 UTC analyses, using uniform
weights. The last entry is the average of all the four forecasts
performed using the latest 0000 UTC analyses.

Forecast type Number of forecasts AC

CTL(LR) 1

CTL(HR)+CTL(LR)
+2BGM(LR) 4

60.4

with the BGM. In SLAF, the perturbations are short-
range forecast errors (Ebisuzaki and Kalnay 1991),
while the random perturbations are combinations of
randomly chosen earlier analysis fields (Kalnay and
Toth 1991b). The scores, computed and averaged for
six independent cases (3 individual days for both the
Northern and Southern hemisphere extratropics), show
that with only two members the BGM forecasts achieve
the same improvement over the control as the SLAF
method with 16 forecasts and, in turn, that the SLAF is
considerably better than what could be achieved with
random perturbations. This latter result is not unex-
pected, since the SLAF perturbations, like LAF pertur-
bations, are based on short-term forecast errors and,
as discussed in section 3, are more likely to contain
realistic growing “errors of the day” than random
Monte Carlo perturbations.

In order to have a clearer estimate of the difference
between a single pair of BGM and a random en-
semble, we performed another set of forecasts for 26
February 1992. We ran two independent breeding
cycles, started weeks earlier from different random
initial perturbations. As indicated before, such inde-
pendent breeding cycles after a few days end up
sharing about half of the growing modes and have
different modes elsewhere. We ran 5-day forecasts
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TaeLe 2. Verification of the mean of different ensemble forecasts
generated by various methods. The anomaly correlation values of 5-
day, 500-hPa streamfunction forecasts are averaged for 8, 17, and
22 January 1992 and over the Northern and Southern hemisphere
extratropics.

Ensemble type Control BGM twin SLAF MCF

Anomaly correlation

65.7 67.3 67.3 66.5

using both breeding cycles and averaged the score of
each twin pair. For comparison, we ran 18 twin pairs
of random perturbations and averaged the score of
each individual pair. We also computed the score for
the mean of all 36 random Monte Carlo (MC)forecasts.

As Table 3 shows, a single bred growing mode twin
forecast achieves as much improvement over the
control forecast as the 18-times larger ensemble of 36
random MC forecasts. Moreover, the average im-
provement from single random MC twin forecasts is
only about one-fourth of that obtained with BGM twins.

To illustrate the typical shapes of a field of growing
modes in the BGM scheme and the result of twin
ensemble forecasting, we show in Figs. 7-9 an ex-
ample of a successful BGM forecast. The initial condi-
tions for this case, 0000 UTC 15 February 1992, and
the bred growing modes obtained forthe same day are
shownin Figs. 7a and 7b, respectively. The results are
presented interms of the streamfunction at the midlevel
of the atmosphere, which is similar to the 500-hPa
geopotential field in the extratropics but resolves the
tropical circulation better.

Note that the growing modes are associated with
specific features of the atmospheric circulation on that
day. For example, a dipole pattern of modes near the

TasLE 3. Same as Table 2, except that the bred growing mode
BGM twin includes the average of the scores of two pairs of
independent bred growing mode twin ensembles, while MCF twin
gives the average of the scores of 18 randomly perturbed twin
forecasts. The MCF gives the score of the mean forecast obtained
using all 36 members of the MC ensemble. All results are for 26
February 1992, with the NH and SH scores combined.

Ensemble type Control BGM twin MCF twin MCF

72.0

Anomaly correlation 745 72.8 74.4
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Caspian Sea in Fig. 7b is asso-
ciated with a traveling low in Fig.
7ain the same area, or the train
of short waves off the west coast
of North America is accompa-
nied by a cutoff low.

Figure 8a shows the verifica-
tion analysis corresponding to
0000 UTC 20 February 1992,
Fig. 8b the 5-day control (single)
forecast, and Fig. 8c the mean of
the BGM twin ensemble. Sev-
eral streamlines have been high-
lighted in areas where the con-
trol and the BGM twin average
forecasts differ substantially in
boththe Northern and the South-
ern hemispheres. In most areas
of disagreement (but not in all)
the twin BGM average forecast
is closer to the analysis than the
control forecast. This subjective
statementis substantiated by the
objective scores (anomaly cor-
relation), indicated in Table 4. It
should be noted that the im-
provedforecast verificationis not
a result of general smoothing of
small-scale features, as is the
case at longer lead times and
especially when a large number
of ensemble members are aver-
aged (orwhenforecasts aretime
averaged).

Finally, we note that when we
verified over a large number of
cases, eachmember of the BGM
ensembles against the corre-
sponding analysis, we found that
in 67% of the forecasts at least
one member of the twin growing
mode ensemble pair was better
than the control 5-day forecast,
whereas this ratiowas only 17%
for random Monte Carlo pertur-
bations over the Northern Hemi-
sphere. To further illustrate this
point, we showin Fig. 9 the nega-
tively and positively perturbed 5-
day forecasts forthe above case

Fic. 8. (a) Verifying analysis for 20 February 1992. (b) Five-day control forecast. (c) Five-day
mean forecast from the BGM twin forecasts. For further details, see Fig. 7.

of 20 February 1992. The corresponding skill scores  an indication that our growing mode estimates do
are listed in Table 4. The high ratio of ensemble projectonto the actual error field of the control analysis
members that are superior to the control forecastmay and thus provide good initial perturbations. It also
be considered surprising but actually could be ex- suggests again that it should be possible to take
pected fromthe results of Lorenz (1965). Thisisagain  advantage of the BGM cycle to improve the analysis.
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TasLE 4. Anomaly correlation values for 5-day, 500-hPa streamfunction forecasts verified on 20
February 1992, overthe Northern and Southern hemisphere extratropics separately. Nextto the score
for the control forecast are the scores for the two individual forecasts perturbed by adding and
subtracting the BGM modes and also for the mean of the two perturbed forecasts (BGM twin).

Forecast Control

BGM negative
perturbation

BGM positive
perturbation

Mean of negative
and positive

Correlation SH

6. Discussion

are maintained or “bred” in
a conventional analysis
cycle (cf. Figs. 1 and 4).
Consequently, the bred
perturbations should offer
a good representation of
possible growing errors in
the analysis. In fact, we
argued that other, random
or nongrowing perturba-
tions should notbe included
in ensemble perturbations.

The BGM perturbations
have been used in the en-

semble forecasting scheme that became operational

at NMC on 7 December 1992. The details of the

In this paper we have briefly reviewed and com-
pared different ensemble forecasting techniques. As
Epstein (1969) and Leith (1974) showed, ensemble
forecasting can be successful if the perturbations
sample the initial uncertainty in the analysis. We have
argued that, in addition to ran-
dom errors that are traditionally

ensemble configuration, along with possible applica-
tions, are presented in Tracton and Kalnay (1993).
Both experimental and operational results show that
even small ensembles generated by the breeding
method can yield considerable improvement upon the

(a)

assumed to be present in the
analysis, there is a substantial
component of growing errors.
The growing errors are con-
nectedtoinstabilities of the vary-
ing flow and they get enhanced
and maintained through the suc-
cessive use of short-range fore-
casts as first guesses (Fig. 1). It
follows then that ensemble per-
turbations mustsample the grow-
ing errors in the analysis.

For this purpose we have de-

veloped a simple method, de-
noted breeding of growingmodes
(BGM). This method can be con-

sidered equivalent to running a
nonlinear perturbation model
with regular rescaling of the per-
turbation size to keep the pertur-
bation amplitude limited. This
effectis achieved by running the
full nonlinear model from both
the controland a perturbed analy-
sis in a “breeding cycle” that fol-
lows the trajectory of the atmo-
spherethroughits analyzedfields
(Fig. 4). The breeding method
itself is a model of how the grow-

ing errors, which are highly de-
pendent on the details of the
varying large-scale circulation,
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Fic. 9. (a) Five-day forecast from the BGM positive perturbation. (b) Five-day forecast from
the BGM negative perturbation. For further details, see Fig. 7
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control forecast. To achieve comparable gains one
would have to use much larger ensembles of the less
effective random Monte Carlo or lagged average
forecast techniques.

Considering the large amount of similarity between
long-maintained perturbation fields carried along a
time-dependent flow and the singular modes of a
linear systemin Lorenz’s (1965) experiments, it seems
likely that the growing perturbations in the breeding
cycle are superpositions of regional growing modes,
each of which is a combination of the fastest-growing
singular modes of the full nonlinear system.®

At ECMWF, where ensemble forecasting is also
operational, Lorenz’s linear adjoint algorithm is used
to compute directly the singular modes of a linear
model and then use them as ensemble perturbations.
Since a comparative verification of the two operational
systems is not yetavailable, we can indicate only a few
differences between the two methods. First, the
ECMWF method explicitly determines the fastest-
growing modes for the short-range forecast period
while the breeding method estimates the fastest-
growing modes during the data assimilation period.
Consequently, the breeding method may have a bet-
ter chance at estimating analysis errors while the
ECMWEF approach may be better at detecting the
possibility of extreme forecast failures. Second, at
ECMWF a T21 horizontal resolution linear tangent
model and its adjoint, with limited physical para-
meterizations, is used to compute the growing modes,
while at NMC the full-resolution nonlinear model is
used for the same purpose. A third difference is that
while the breeding method is basically cost free (be-
cause medium- or extended-range ensemble fore-
casts can maintain their own breeding cycles), the
method used at ECMWF requires additional computa-
tional resources.

It was suggested that the problem of ensemble
forecasting is closely related to that of atmospheric
analysis, and research in one area could be beneficial
to the other. Preliminary analysis experiments with
Lorenz’s three-variable model and also with the full
NMC global system indicate that there are at least two
possible ways to use the bred modes to improve the
analysis. First, the growing modes can be used to
compute the forecast error covariance, a task that is
normally very difficult because it depends on the
availability of sparse rawinsonde observations, bur-
dened with random errors, to estimate very short-
range forecast errors. Since the growing modes are
complete three-dimensional fields that describe the

3A. Trevisan and J. Ahlquist (1993, personal communication) have
pointed out that, by construction, the bred growing modes are akin
to local Lyapunov vectors.
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shape of the fastest-growing errors that appear in the
short-range forecasts, their outer product can be com-
puted without difficulty, and should provide an efficient
and accurate parameterization for improving the fore-
cast error covariance used at the next data time (D.
Parrish 1992, personal communication). Second, it
may be possible to improve the analysis by locally
modifying the first guess toward the observations
along the direction of the growing modes.

In addition to analysis and ensemble forecasting,
the BGM method could also be useful for other appli-
cations such as forecast of the skill and stability
studies of the observed or modeled atmosphere. The
most unstable, fastest-growing modes can be esti-
mated by breeding, either for a sequence of analyses,
representing the evolution of the atmosphere, or for a
long model run. The growth rate, statistical and dy-
namical properties, and structure of the most unstable
perturbations can be derived from these fields. For
example, an examination of the zonally averaged
vertical cross section of the growing modes clearly
shows that they are able to penetrate the winter
stratosphere but not the summer stratosphere, as
might be expected from the Charney-Drazin theory.
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