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ABSTRACT

The breeding method has been used to generate perturbations for ensemble forecasting at the National Centers
for Environmental Prediction (formerly known as the National Meteorological Center) since December 1992.
At that time a single breeding cycle with a pair of bred forecasts was implemented. In March 1994, the ensemble
was expanded to seven independent breeding cycles on the Cray C90 supercomputer, and the forecasts were
extended to 16 days. This provides 17 independent global forecasts valid for two weeks every day.

For efficient ensemble forecasting, the initial perturbations to the control analysis should adequately sample
the space of possible analysis errors. It is shown that the analysis cycle is like a breeding cycle: it acts as a
nonlinear perturbation model upon the evolution of the real atmosphere. The perturbation (i.e., the analysis
error), carried forward in the first-guess forecasts, is ‘‘scaled down’’ at regular intervals by the use of observations.
Because of this, growing errors associated with the evolving state of the atmosphere develop within the analysis
cycle and dominate subsequent forecast error growth.

The breeding method simulates the development of growing errors in the analysis cycle. A difference field
between two nonlinear forecasts is carried forward (and scaled down at regular intervals) upon the evolving
atmospheric analysis fields. By construction, the bred vectors are superpositions of the leading local (time-
dependent) Lyapunov vectors (LLVs) of the atmosphere. An important property is that all random perturbations
assume the structure of the leading LLVs after a transient period, which for large-scale atmospheric processes
is about 3 days. When several independent breeding cycles are performed, the phases and amplitudes of individual
(and regional) leading LLVs are random, which ensures quasi-orthogonality among the global bred vectors from
independent breeding cycles.

Experimental runs with a 10-member ensemble (five independent breeding cycles) show that the ensemble
mean is superior to an optimally smoothed control and to randomly generated ensemble forecasts, and compares
favorably with the medium-range double horizontal resolution control. Moreover, a potentially useful relationship
between ensemble spread and forecast error is also found both in the spatial and time domain. The improvement
in skill of 0.04–0.11 in pattern anomaly correlation for forecasts at and beyond 7 days, together with the potential
for estimation of the skill, indicate that this system is a useful operational forecast tool.

The two methods used so far to produce operational ensemble forecasts—that is, breeding and the adjoint (or
‘‘optimal perturbations’’) technique applied at the European Centre for Medium-Range Weather Forecasts—have
several significant differences, but they both attempt to estimate the subspace of fast growing perturbations. The
bred vectors provide estimates of fastest sustainable growth and thus represent probable growing analysis errors.
The optimal perturbations, on the other hand, estimate vectors with fastest transient growth in the future. A
practical difference between the two methods for ensemble forecasting is that breeding is simpler and less
expensive than the adjoint technique.

1. Introduction

It has long been accepted that running an ensemble
of numerical forecasts from slightly perturbed initial
conditions can have a beneficial impact on the skill of
the forecast by means of ensemble averaging (e.g., Leith
1974). Beyond providing a better estimate of the first
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moment of possible future states, the ensemble members
also offer the possibility of estimating higher moments
such as the forecast spread, which can be used as an
indicator of expected skill, and, ultimately, the full prob-
ability distribution. Theoretically, the probability of fu-
ture states can also be computed through the Liouville
equations (e.g., Ehrendorfer 1994) if the initial proba-
bility distribution is assumed to be known. However,
computational and other problems make the use of these
equations unfeasible for numerical weather prediction
in the foreseeable future. The only current practical so-
lution to estimating forecast probabilities is through en-
semble forecasting.

One of the crucial aspects of an ensemble strategy is
the generation of initial perturbations. These perturba-
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tions should realistically represent the span of possible
errors in our control analysis. But since the number of
ensemble forecast members is strongly limited by com-
putational costs, it is important that this limited number
of perturbations optimally sample the initial error prob-
ability distribution. As Ehrendorfer and Tribbia (1997)
showed for short-range forecasts, among all possible
error patterns, the most important to sample are the
fastest growing directions.

At the European Centre for Medium-Range Weather
Forecasts (ECMWF), a combination of total energy-
based singular vectors are used to sample analysis un-
certainty for initial ensemble perturbations (Palmer et
al. 1992; Molteni et al. 1996). At the National Centers
for Environmental Prediction (NCEP, formerly known
as the National Meteorological Center), the bred vectors,
which represent a nonlinear extension of the Lyapunov
vectors (the fastest growing perturbations on the attrac-
tor) are used for the same purpose (Toth and Kalnay
1993). In yet another approach, Houtekamer et al.
(1996) use multiple analysis cycles (with perturbed ob-
servational data and different model formulations) for
generating initial ensemble perturbations.

The breeding method has been used for generating
initial perturbations at NCEP for operational ensemble
forecasts since 7 December 1992. At that time a system
with a single breeding cycle was introduced, and a com-
bination of bred perturbations and control forecasts pro-
vided 5 global predictions (14 if lagged forecasts were
also considered) valid to 10 days every day (Tracton
and Kalnay 1993; Toth and Kalnay 1993). A further
hypothesis was that multiple breeding cycles, that differ
due to nonlinear interactions in the perturbations, can
provide initial perturbations for larger ensembles as
well. The results presented in the following sections
were obtained in the process of investigating optimal
strategies for the breeding method. Based on these ex-
perimental results, in March 1994 the operational NCEP
ensemble was expanded to 7 independent breeding cy-
cles on the new Cray C90 supercomputer, and the fore-
casts were extended to 16 days. This configuration now
provides 17 independent global forecasts valid for more
than two weeks every day.

The purpose of this paper is to document the research
work that led to the above implementation, using results
from off-line experiments. In particular, the major issues
considered are the following: 1) the use of multiple
breeding cycles to generate initial conditions for a large
set of ensemble forecasts (as compared to using only
one breeding cycle); 2) the introduction of regionally
dependent rescaling in the breeding cycle to reflect the
geographically varying uncertainty in the analysis; and
3) the impact of changing the perturbation size on the
performance of the ensemble forecasts.

In sections 2 and 3 we discuss basic questions related
to ensemble forecasting. In sections 4 and 5 the char-
acteristics and several technical aspects of the breeding
method used at NCEP for generating initial ensemble

perturbations are presented. Section 6 is devoted to ex-
perimental results. A short review about the operational
implementation, further discussions, and conclusions
are found in sections 7 and 8.

2. Ensemble forecasting and nonlinear filtering

Leith (1974) showed that averaging the ensemble
forecasts yields a mean forecast superior to the control
forecast, as long as the ensemble perturbations are rep-
resentative of the initial probability distribution of the
basic flow around the control analysis. Earlier studies
(e.g., Houtekamer and Derome 1994; Toth and Kalnay
1993) using models of different sophistication con-
firmed Leith’s results. In this section we illustrate why
this is the case by means of a very simple error growth
example. Though the model used below cannot describe
the details of error growth arising in the atmosphere due
to chaos, it can still offer some insight into the effect
of ensemble averaging in an expected sense.

As an example, consider a traveling extratropical low.
At the initial time, we assume that the center of the low
is analyzed with a small error E0. We assume that the
error will grow exponentially at first, and that later non-
linear effects will lead to error saturation. We can there-
fore use Lorenz’s (1982) simple error growth model:

dy
5 ay(1 2 y), (1)

dt

where y(t) is the algebraic forecast error measured at
the center of the system at time t and a is the linear
growth rate. We can create a simple ensemble by adding
and subtracting a perturbation P from the control anal-
ysis. These perturbed analyses will have an error of E0

1 P and E0 2 P, respectively. If the perturbation size
is smaller than 2E0, one of these perturbed analyses will
be closer to the true atmospheric solution than the con-
trol analysis, though we do not know a priori which one
it is. If the perturbed initial conditions are plugged into
the error Eq. (1), it is easy to see that the average of
the two perturbed forecasts has a smaller error than the
control at any forecast time t:

1
y (t) . [y (t) 1 y (t)], (2)con pos neg2

where ypos(t) and yneg(t) are the errors for the two per-
turbed forecasts. In Fig. 1 we show an example of the
effect of ensemble averaging in this simple model.

We can generalize the above simple example by as-
suming that we measure the error y(t) over the whole
domain of a synoptic system. In this case, the initial
error is a vector E0 of magnitude E0, whose direction
represents a particular spatial distribution pattern. Let
us assume that the error growth with time is still given
by (1). If the initial perturbation is chosen along the
initial error pattern, that is, if P0 is parallel to E0, then
Eq. (2) is still valid. Ensemble averaging again provides
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FIG. 1. Example indicating the gain from esemble averaging in a
one-dimensional example using Lorenz’s error growth equation. The
solid curve is the error of the control forecast, the dashed curves are
the error of the perturbed forecasts, and the dotted curve is the error
of the ensemble mean. Here, E(0) is the initial error of the control
forecast and P is the amplitude of the twin perturbations.

a nonlinear filter that removes part of the growing error.
As we will see later, much of this improvement is a
characteristic of ensemble averaging and cannot be re-
produced by simple spatial filtering.

On the other hand, if P0 is a growing perturbation
orthogonal to E0, ensemble averaging will result in a
worse forecast than the control, which has no error along
P0. The ensemble average will diverge from the control
forecast due to the different nonlinear evolution of the
1P0 and 2P0 perturbations, whose growth is also rep-
resented by Eqs. (1) and (2), and therefore it will have
a larger total error than the control. This example, al-
though admittedly very simplistic, suggests that if pos-
sible, one should try to use realistic analysis errors as
initial ensemble perturbations, with an amplitude that
corresponds with the magnitude of the estimated anal-
ysis error. In this ideal case, only the sign (and exact
amplitude) of the analysis error would be unknown.
Introducing growing perturbations that are not present
in the analysis as errors may lessen the positive impact
ensemble averaging can offer otherwise. In practice, of
course, the analysis error pattern is not known. However,
as we will see later, the important, growing part of the
analysis error can be estimated through dynamical
means with a small number of vectors.1

1 The fact that in the atmosphere all perturbations (and errors in a
perfect model environment) tend to turn toward the leading Lyapunov
vectors within a couple of days (Lorenz 1965; Szunyogh et al. 1997)
ensures that even suboptimal ensemble perturbations, that do not
appreciably project onto the actual error field, will have a positive
impact beyond a few days lead time.

Ideally one would want to use a large ensemble to
represent all possible states of the atmosphere, given
the control analysis. In this case the ensemble mean
would provide at all lead times the best possible estimate
for the future state of the atmosphere. In practice, how-
ever, only a small number of ensemble forecasts can be
run. For a limited ensemble Leith (1974) showed that
hedging the forecasts toward climatology can give an
additional improvement in some measures of forecast
skill. In this paper (except in section 6d where the effect
of spatial smoothing is studied) we restrict our attention
to the impact of ensemble averaging.

3. Errors in the analysis

It is clear that with the initial ensemble perturbations
we must represent accurately the probability distribution
of the state of the atmosphere about our best estimate
of the true state of the atmosphere, the latest control
analysis. The shape of this probability distribution will
depend on what kind of errors we may have in the
control analysis. The more likely an error pattern, the
higher probability we should assign to the control anal-
ysis plus and minus that particular error pattern. This
calls for a careful examination of possible analysis er-
rors.

a. Growing and nongrowing errors

A typical operational analysis performed with optimal
interpolation or spectral statistical interpolation (see,
e.g., Lorenc 1981; Parrish and Derber 1992) is a weight-
ed average of 1) observational measurements and 2) a
short-range dynamical forecast (first guess), started from
the preceeding analysis. It has been long recognized that
the resulting analysis is affected by random errors pres-
ent in observations. Recently, it was also pointed out
that the repeated use of a model forecast as a first guess
has a profound dynamical effect on the errors in the
analysis (Toth and Kalnay 1993; Kalnay and Toth 1994).
The analysis cycle can be considered as the running of
a nonlinear perturbation model upon the true state of
the atmosphere. The perturbation amplitude (i.e., the
analysis error) is kept small by periodic ‘‘rescaling,’’
performed at each analysis time, through the use of
limited observational data.

In such a nonlinear perturbation setup, it is inevitable
that the random errors introduced at each analysis time
through the use of data will project into growing direc-
tions of the atmospheric flow at later times. This is
because the growing components of the error, by defi-
nition, rapidly amplify while the decaying components
quickly lose their amplitude in the short-range, first-
guess forecast (see section 4a). And since the obser-
vations are not enough to determine the state of the
atmosphere, these dynamically developing errors cannot
be removed at the next analysis time: their amplitude
can only be reduced (see, e.g., Fig. 9 of Bouttier 1994).
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So at the start of the next short-range forecast in the
analysis cycle, dynamically developed errors are already
present in the initial conditions ready to amplify again.
This is especially true over data-sparse regions like the
oceans and on small spatial scales not resolved by cur-
rent observing systems. The result is that the analysis
contains both random errors introduced by the most re-
cent observations, and growing errors associated with
the instabilities of the evolving flow, dynamically gen-
erated (from random errors introduced in earlier anal-
yses) by the repeated use of the forecast first guess.
Adjoint-based sensitivity calculations (Langland and
Rohaly 1996) and analysis error estimates (Iyengar et
al. 1996) also point out the flow-dependent, dynamically
conditioned nature of important analysis errors.

b. Which type of error is important?

If we could decompose and follow the development
of the errors present in the analysis, we would see that
random errors, introduced just at the latest analysis time
by observational inaccuracies, will decay initially before
projecting, after one or two days, onto growing direc-
tions of the evolving basic flow. Such an initial decay
was apparent in early experiments in atmospheric pre-
dictability (see, e.g., Fig. 4 in Smagorinsky 1969). Even
if the random errors are balanced, they will still initially
grow very slowly or decay. By contrast, ‘‘growing er-
rors’’ will, by definition, amplify, so that they are pri-
marily responsible for short-range error growth. This
means that even though the growing errors constitute
only a portion of the total analysis error field, their
contribution is relatively more important in the forecast
error development. Therefore one might want to focus
on the growing errors when creating ensemble pertur-
bations. The benefit of this approach has been clearly
demonstrated by Ehrendorfer and Tribbia (1997), who
found that the fastest growing combinations of possible
analysis errors give the best results as initial ensemble
perturbations for at least the short range.

Another difference between nongrowing and growing
errors is that the dimension of the subspace of possible
neutral or decaying perturbations is large [at least of the
order of the number of observations, O(105)], whereas
the dimension of the subspace of fast growing pertur-
bations is very much limited by the local (in phase
space) dynamics of the atmosphere, O(102). In other
words, the occurence of any particular, realistic non-
growing perturbation pattern as analysis error is much
[O(103) times] less likely than that of a fast-growing
perturbation. It follows that while the growing subspace
can, the large-dimensional nongrowing subspace cannot
be sampled well with a small ensemble. We note again
that ensemble members/perturbations have to be weight-
ed with their likelihood of being actual analysis errors.
The introduction of nongrowing perturbations of real-
istic amplitudes into a relatively small ensemble will
violate this rule, resulting in a gross oversampling of a

few nongrowing perturbation patterns (while leaving the
rest of the large-dimensional nongrowing subspace un-
sampled). In case of a small ensemble, the nongrowing
perturbations would have to be weighted by the small
likelihood of their occurence (as compared to that of
the fast-growing perturbations)—otherwise they may
have a slight negative impact on the quality of the en-
semble. Oversampling a few nongrowing directions is
equivalent to introducing perturbations that do not pro-
ject onto actual analysis errors and, as seen in section
2, these perturbations have the potential for degrading
the ensemble. The arguments in this paragraph are in
line with our earlier experiments (Toth and Kalnay 1993;
Kalnay and Toth 1994; Iyengar et al. 1996) and are
related to the results of Ehrendorfer and Tribbia (1997),
who showed that at least for the short range, the most
efficient description of the forecast error covariance can
be derived from an ensemble based on the fastest grow-
ing pertrubations (singular vectors). These arguments,
however, are not universally accepted in the research
community and thus should be considered only hypo-
thetical.

Evidence suggests that the growing part of the error
in the analysis can be described by a number of leading
fast-growing directions (Toth et al. 1997). It is only in
cases when one direction (connected, e.g., to explosive
intensification of a weather system) exhibits much high-
er perturbation growth rate than any other, that a single
perturbation may be adequate for representing initial
uncertainty. Otherwise, a number of perturbations is
necessary for a successful description of initial and fore-
cast uncertainty. One should note, however, that when
at later lead times the forecast error/perturbation de-
velopment becomes highly nonlinear, the role of initial
perturbations diminishes and the performance of dif-
ferent perturbation methodologies may become similar.

4. Local Lyapunov vectors and their estimation
through breeding

Since the important, growing component of the anal-
ysis error occupies only a relatively small subdomain
in the phase space, and it depends on the basic flow, it
is possible to compute estimates of possible growing
analysis errors through dynamical methods.

a. The breeding method

For this purpose, Toth and Kalnay (1993) proposed
a method called breeding of the growing vectors of the
atmosphere (BGV). This procedure consists of the fol-
lowing simple steps: (a) add a small, arbitrary pertur-
bation to the atmospheric analysis (initial state) at a
given day t0 (or to any other basic state, such as a long
model run); (b) integrate the model from both the per-
turbed and unperturbed initial conditions for a short
period t1 2 t0 (e.g., 1 day, as for all experiments in this
paper); (c) subtract one forecast from the other, and (d)
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scale down the difference field so that it has the same
norm (e.g., rms amplitude or rotational kinetic energy)
as the initial perturbation. This perturbation is now (e)
added to the analysis corresponding to the following
day t1, and the process (b)–(e) is repeated forward in
time. Note that once the initial perturbation is introduced
in step (a), the development of the perturbation field is
dynamically determined by the evolving atmospheric
flow.

By construction, this method ‘‘breeds’’ the nonlinear
perturbations that grow fastest on the trajectory taken
by the evolving atmosphere in the phase space. One can
decompose the initial perturbation P(t0) into growing
and decaying components. Let us consider the devel-
opment of a small perturbation on top of a nonlinear
model trajectory (i.e., the difference between two non-
linear forecasts). At the end of a short-range integration,
by definition, the relative contribution of the growing
component will be larger, whereas that of the decaying
component is smaller than at initial time. And after a
few cycles, the decaying component will become neg-
ligible.

Note the similarity between the breeding method and
the analysis cycle: in both cases, a nonlinear pertur-
bation model is run with regular rescaling. In the case
of breeding, the perturbation is run over the analyzed
states. The perturbations are defined with respect to the
analysis and then rescaling is done in a deterministic
fashion, so that stochastic (or decaying) components are
eliminated from the perturbations, as discussed above.
The resulting bred perturbations are determined purely
by the dynamics of the system. On the other hand, the
analysis cycle is run based on observed data. The per-
turbations here can be defined as the difference (error)
between the analysis/first guess and the true state of the
atmosphere (which is unknown). In the first-guess short-
range forecast, the growing components of this error
will amplify. However, at the next analysis time obser-
vational data will be used to reduce the difference be-
tween the analysis and the true state of the atmosphere.
The observed data contains random noise that will be
periodically reintroduced into the analysis. Consequent-
ly, the errors present in the analysis, beyond the growing
error connected to the use of short-range forecasts as
first-guess fields, also contain a random or stochastic
component.

The similarity between the analysis and breeding cy-
cles is stronger on the small scales and over data-poor
regions where the analysis is based primarily on the
first-guess forecast (Daley 1991). Over data-rich regions
and on the larger scales the observations can better re-
move the growing errors from the first guess but since
current operational analysis techniques do not have
knowledge about the flow-dependent part of these er-
rors, this removal process cannot be complete (see Iyen-
gar et al. 1996).

b. Lyapunov vectors

Theoretically, the bred perturbations are related to the
local Lyapunov vectors of the atmosphere (LLVs, see
Trevisan and Legnani 1995). The Lyapunov exponents
(li) have been widely used for characterizing the be-
havior of simple dynamical systems:

1 p (t)il 5 lim log , (3)i 2 [ ]t p (0)t→` i

where p is a linear perturbation spanning the phase
space of the system with orthogonal vectors. Note that
while the first Lyapunov exponent is uniquely defined
at least for Hamiltonian systems, the rest of the spectrum
is derived via a periodic reorthogonalization of the per-
turbation vectors (see e.g., Benettin et al. 1980) and
hence will depend on the frequency of reorthogonali-
zation. The li’s can be computed either for the whole
attractor (global Lyapunov exponents) or can be inter-
preted pointwise, where the growth ratio is evaluated
for an infinitesimal time interval at t [local Lyapunov
exponents, see, e.g., Trevisan and Legnani (1995)]. The
leading Lyapunov exponents are associated with pre-
dictability properties of dynamical systems, namely how
fast nearby trajectories diverge (or converge) on the
attractor. Most importantly, if a system has at least one
positive global Lyapunov exponent, its behavior is cha-
otic, that is, arbitrarily close points on the attractor will
eventually separate into unrelated points (Wolf et al.
1985).

When the Lyapunov exponents are interpreted locally,
each of them can be associated with a perturbation vec-
tor, I. The first of these vectors, with the largest ex-
ponent, can be uniquely determined: any random per-
turbation introduced an infinitely long time earlier de-
velops linearly into the leading local Lyapunov vector.
The importance of this property of LLVs in meteorology
was first recognized by Lorenz (1965), who found in
his experiments with a simple linear perturbation model
that initially random perturbations had a strong simi-
larity after 8 days of integration. Indeed, our breeding
experiments with a state-of-the-art general circulation
model indicate that one needs only a few days of in-
tegration (3–4 days) in order to get a good estimate of
the leading local Lyapunov vectors of the atmosphere.
These LLVs are the vectors that grew asymptotically
fastest during a time period leading to the analysis.
Hence they are likely to dominate growing analysis er-
rors and, because of their sustainable growth, also the
forecast errors.

c. Extension of Lyapunov characteristics into the
nonlinear domain

There is an extensive body of literature on the global,
and more recently, on the local Lyapunov exponents of
simple dynamical models. These studies, however, use
a linear tangent model approach and are concerned only
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FIG. 2. Daily amplification of bred perturbations with different
initial perturbation sizes over the Northern Hemisphere, computed
for the period 23–27 February 1992. The range of amplification fac-
tors for different random (Monte Carlo) balanced perturbations is
shown as a vertical dotted line. Average amplification factors for
difference fields between short-range forecasts of different length
verifying at the initial time of perturbed forecast integrations are also
shown with a plus sign.

about error growth in a linear sense. In some studies, a
regular rescaling of the perturbations, also used in the
breeding method, has been applied. Rescaling in these
linear methods, however, is used to avoid computer
overflow, not to prevent/control nonlinear saturation
(see, e.g., Benettin et al. 1976; Shimada and Nagashima
1979). New aspects of the breeding method proposed
by Toth and Kalnay (1993) are that perturbations are
developed for a 1) complex physical system, in a 2)
nonlinear framework, at a 3) high horizontal and vertical
resolution, and that it is 4) the perturbation vectors (and
not only the exponents) that are studied and used for
real world practical applications. With the breeding
method it is possible to estimate the leading local Lya-
punov vectors of the atmosphere with a comprehensive
nonlinear perturbation model including all physical par-
ameterizations.

Nonlinearity plays a crucial role in complex systems
where a host of different physical processes occur, as-
sociated with widely different growth rates and nonlin-
ear saturation levels. A traditional linear approach may
find the strongest instability of the system (such as con-
vection) but this may be associated with processes with
a very low nonlinear saturation level. For perturbation
amplitudes larger than the saturation level, these per-
turbations will decay and are therefore irrelevant. Hence
the bred vectors can be considered as an extension of
the notion of LLVs into the nonlinear perturbation do-
main. Note that the perturbation amplitude is the only
free parameter in the BGV method and that the bred
vectors, just as the linear LLVs, are not sensitive to the
type of norm used for rescaling.

d. Multiple breeding cycles

When a breeding cycle is started, an arbitrary initial
perturbation field is added upon the control analysis.
After three or four days of breeding, most of the orig-
inally decaying components in the perturbation disap-
pear and the perturbation growth rate reaches an as-
ymptotic value around 1.6 per day (with a perturbation
amplitude of 1% in total climatological rms variance).
After this time, the perturbations that remain are those
that could produce the largest growth over the preceed-
ing 3 days or so, given the initial perturbations. In Fig.
2 average growth rates are shown for a 5-day period for
breeding cycles with different perturbation amplitudes.
The independently run breeding cycles had a 24-h re-
scaling frequency and were started several days before
the 5-day evaluation period. It is clear from Fig. 2 that
the growth rate in a breeding cycle depends on the am-
plitude of perturbations but is always larger than that
obtained with other perturbation methods such as scaled
lagged averaged forecasting (Ebisuzaki and Kalnay
1991, not shown), difference fields between short-range
forecasts verifying at the same time (Toth and Kalnay
1993), or Monte Carlo perturbations (which have a wid-

er range of growth rate values than the dynamically
conditioned perturbations).

When the perturbation amplitude is in the range of
1%–10% of the natural variability, the perturbations are
primarily associated with extratropical baroclinic insta-
bility. Within this amplitude range, the growth rate and
shape of perturbations are largely independent of the
perturbation amplitude. However, if the perturbation
amplitude is reduced to less than 0.1% rms variance,
then the growth rate increases enormously, with an am-
plification factor well above 5 per day. This is because
the fastest growing perturbations in the model atmo-
sphere are, in fact, related to convective and not baro-
clinic instability (see Fig. 3). The perturbations at this
amplitude are highly nonlinear and are primarily as-
sociated with convection. The mostly tropical convec-
tive perturbations, however, saturate at less than 1%
amplitudes, much smaller than the estimated size of the
analysis errors (5%–10% of the rms of the natural vari-
ability). The patterns associated with convection are also
present at larger perturbation amplitudes but are not
detectable because they saturate at amplitudes much
smaller than those of baroclinic instabilities. This also
explains why convective instabilities do not produce
dominant analysis errors.

Since breeding is a nonlinear process, the perturba-
tions in the 1%–10% rms variance range, though pri-
marily determined by the dynamics of the system, also
depend on the perturbation at previous times, namely
on how those perturbations project on certain growing
directions, and on the small-scale forcing convection
provides to the larger scales. This forcing (see Fig. 3)
is largely stochastic with respect to the baroclinic pro-
cesses that dominate perturbation development in the
amplitude range of 1%–10% rms variance. If we start
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FIG. 3. An example of bred perturbations at relatively small amplitudes: 500-hPa streamfunction perturbation on 15 February 1992 with
a perturbation amplitude of 0.015% total rms variance (equivalent to about 0.012 m in 500-hPa height). The contour interval is 0.001 m2

s21 and the labels are scaled by 104.

TABLE 1. Subjective comparison of perturbations from 20 inde-
pendent breeding cycles on 23 May 1992. Regional perturbations in
three areas over both the Northern and Southern Hemispheres, marked
with boxes in Fig. 4 and numbered correspondingly from left to right,
are compared. If a perturbation in another cycle is very similar to
that in cycle 17, a plus or minus sign appears, depending on the sign
of the perturbation.

NH 1 NH 2 NH 3 SH 4 SH 5 SH 6

br 1
br 2
br 3
br 4
br 5
br 6
br 7

2
1

2

1
2
1

1
1
2
1
2

2

2
2

1

1

2
1

2
2

1

1
1

br 8
br 9
br 10
br 11
br 12
br 13
br 14

1

2
2
2
1

2
2
2
1

1
2
2
2
1
1

2
1

1

2

1
1
2
1

1

1
1
1
2

br 15
br 16
br 17
br 18
br 19
br 20
Total

1
1
1
2

12

2

1

1
1
11

1

1

14

2

1
1

2
11

2
1
1

12

1
2
1

1
11

independent breeding cycles with different arbitrary ini-
tial perturbations, we find that after a transient period
of about 3 days, the perturbations in the different cycles
can be quite similar over any region (except for their
phase, and to some extent, their amplitude, which are

arbitrary) but only over roughly half of the global do-
main. Table 1 shows the results of a subjective inter-
comparison using 20 independent breeding cycles on a
typical day. The local shape of the perturbations were
compared to those observed in one perturbation (number
17) over three selected regions both over the Northern
and the Southern Hemispheres (see Fig. 4). Perturbation
17 was chosen because it showed a pattern in the se-
lected regions that many other perturbations reproduced.
A plus, minus, or a blank indicate whether the same
perturbation was observed with the same or opposite
sign or whether a different perturbation was observed.
When the same comparison is made with bred pertur-
bations valid on different dates, even as close as 2 days
apart, there is almost no correspondence among the per-
turbations, showing that the bred growing vectors cru-
cially depend on the basic flow and its recent evolution.

From this experiment we note that the linear Lya-
punov vectors [as well as the singular vetors, see, e.g.,
Molteni et al. (1996)] are regional in character and are
associated with areas of high instability in the atmo-
sphere, such as baroclinically unstable regions. In the
areas where the perturbations are very similar, the larg-
est Lyapunov exponent must have a value much larger
than the succesive Lyapunov exponents. Over the rest
of the domain, different perturbations appear in the in-
dependent breeding cycles, suggesting that the first few
Lyapunov vectors associated with baroclinic instability
have similar growth rates, and the appearance of one or
another in any cycle depends on the details of pertur-
bation evolution in that cycle a few days earlier and
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FIG. 4. The 500-hPa streamfunction perturbation fields from three independent breeding cycles
(with hemispherically constant rescaling) for 23 May 1992. The three cycles were started with
independent initial perturbations six days earlier. The six marked boxes correspond to the areas
considered in Table 1. Panels (a), (b), (c) correspond to breeding cycles br8, br12, and br17 in
Table 1, respectively.

also on the details of instantaneous stochastic forcing
(convection).

We can conclude from the above experiments that
each global perturbation pattern is a superposition of a
number of regional features, perhaps of the order of 10–
20 in each hemisphere, which, in turn, are primarily
associated with baroclinically unstable regions of the
evolving basic flow. And as the basic flow has many

degrees of freedom, so does the global perturbation
field. It follows that the phase and amplitude of the
regional patterns (and in the case of competing LLVs
with similar growth rates, the patterns themselves) in
one area are independent of those in remote areas. This
ensures that the bred perturbations from independent
cycles are quasi-orthogonal over the global domain,
without imposing any constraints.
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FIG. 5. Schematic of a self-contained breeding pair of ensemble
forecasts.

The subjective evaluation presented above is con-
firmed by numerical calculations done during July–Sep-
tember 1995 using five vectors, each defined as the dif-
ference between 24-h pairs of ensemble forecasts from
five pairs of operational breeding cycles (see section 7
for details). On average, the absolute value of the cor-
relation between two bred vectors over the globe during
this period is 0.27—that is, only about 7% of the vari-
ance in any of the vectors can be explained by another
vector. The low average correlation value indicates that
there are approximately 13 independent degrees of free-
dom in the space spanned by the five bred vectors.2

Again, over smaller areas the correlation can tempo-
rarily reach values close to one, indicating that a par-
ticular perturbation is able to grow much faster than any
other one.

In summary, a bred global perturbation is a super-
position of regional patterns, each of which is a com-
bination of the leading local (in phase space) Lyapunov
vectors (interpreted at a certain nonlinear perturbation
amplitude) in that area of the atmosphere. The weights
on the individual local Lyapunov vectors are randomly
assigned by the arbitrary initial perturbation and the
stochastic small-scale forcing but are, in a statistical
(ensemble average) sense, proportional to the Lyapunov
exponents themselves. The bred perturbations are there-
fore not unique in a strict sense but only in a statistical,
ensemble average sense. And the more independent
breeding cycles we have, the better we can span the
space of possible fast-growing analysis errors. Nonlin-
ear breeding hence can be considered as a generalization
of the notion of Lyapunov vectors for complex nonlinear
systems. Because of nonlinear interactions and sto-
chastic forcing by convection, and because of the ex-
istence of many regional features, different breeding
cycles do not converge to a single leading LLV but
rather span the subspace of the fastest growing pertur-
bations that can occur at the chosen level of perturbation
amplitudes.

e. Optimal perturbations and Lyapunov vectors

There is another method to determine fast-growing
perturbations of dynamical systems. This linear method
uses the linear tangent and adjoint of a full model to
compute the initial perturbations that grow fastest over
a specified period, measured with a given norm (Lorenz
1965). In its application to ensemble forecasting at
ECMWF (see, e.g., Molteni and Palmer 1993; Buizza
and Palmer 1995; Molteni et al. 1996), the fastest grow-
ing perturbations are determined for a 48-h forecast tra-

2 Correlation is the cosine of the angle between two directions in
phase space. In two dimensions, the average correlation is 1/(2)1/2;
in three, it is 1/(3)1/2, and in n dimensions it generalizes to 1/(n)1/2.
The best estimate for dot is 13 given a correlation value of 0.27 [1/
(13)1/2 5 0.27].

jectory created by the full model and the chosen norm
is based on total energy. The optimal vectors (which are
also called the singular vectors of the linear propagator,
SVs) are those that amplify most over the optimization
period, given the norm and other possible constraints.
A more detailed comparison of the Lyapunov versus
optimal vectors appears in Szunyogh et al. (1997) and
Toth et al. (1996) so only a brief discussion of the sub-
ject is given here.

Ehrendorfer and Tribbia’s (1997) results strongly sug-
gest that the best initial ensemble perturbations are the
SVs, when they are defined given the likelihood of dif-
ferent analysis error patterns. In its current ensemble
application at ECMWF, the SVs are computed without
information on the likelihood of different analysis error
patterns. The breeding method, on the other hand, is
designed to estimate the fastest growing errors that can
be present in the analysis.

In terms of practical considerations, the breeding and
the optimal (or singular) vector methods used at NCEP
and ECMWF, respectively, have several differences that
may or may not be important for certain applications.
1) Computational efficiency: the adjoint technique is
expensive whereas breeding is cost-free, apart from run-
ning the ensemble forecasts themselves (see Fig. 5). As
a result, the breeding can be performed at full spatial
resolution while for the optimal perturbations technique
this is computationally impractical. 2) Breeding is per-
formed with the full nonlinear model with physics while
the optimization is currently done with a tangent linear
system with limited physical parameterizations. 3) Lo-
calization: In contrast to the breeding method, the SV
methodology can provide information on where a par-
ticular linear perturbation originates from. This may be
especially valuable for adaptive observation strategies
that aim at reducing certain aspects of the forecast error
by taking extra upstream observations in sensitive ar-
eas.3 On the negative side of the SV methodology is

3 A cheap alternative to using a traditional linear adjoint algorithm
for targeting is a singular value decomposition in the subspace of an
already existing ensemble (Bishop and Toth 1996).
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FIG. 6. Relative regional uncertainty (for 500-hPa streamfunction) present in the control analysis
as determined from the rms difference between two analyses from independently run NCEP
analysis cycles in April–May 1992. The analysis cycles were practically identical except that the
initial first guesses differed slightly. The values shown are smoothed and the overall global mean
is scaled to one.

that the fastest optimal perturbations cover only a small
fraction of the geographical domain with relatively large
amplitudes and only over the extratropics (cf. Figs. 5
and 6 in Buizza 1995), whereas with breeding, the fas-
test growing regional patterns are automatically deter-
mined for the whole globe (including the Tropics), and
not only for those regions with highest growth rate. 4)
The performance of the SV-based ECMWF ensemble
and the breeding-based NCEP esnsemble was compared
by Zhu et al. (1996), who found that the NCEP ensemble
verified somewhat better in terms of probabilistic and
other skill measures.

5. Ensemble perturbations

From the discussion about LLVs above, one could
draw the conclusion that it does not really matter what
initial perturbations are used for medium- or extended-
range predictions since all linear perturbations turn into
very similar vectors after a few days of integration.
However, one should keep in mind that ensemble fore-
casts, just as the control forecast, are nonlinear inte-
grations. With a perturbation size similar to the esti-
mated size of errors in the analysis, nonlinearity be-
comes important after about two days, and earlier than
that in fast developing synoptic systems. And since non-
linearity prevents the actual forecast errors from fully
converging to the leading LLV, it is necessary that the
ensemble perturbations realistically represent the initial
uncertainty in the analysis, otherwise, as discussed in
section 2, our ensemble will be suboptimal.

In this section we discuss several additional technical
points about the breeding method that were investigated
in the process of implementing operational ensemble
forecasting at NCEP.

a. Regional rescaling

The breeding method was originally used at NCEP
with hemispherically determined rescaling factors (Toth
and Kalnay 1993). Depending on the hemispheric rms
magnitude of the perturbation, a constant factor was
applied over each hemisphere and a linearly interpolated
value was used in the Tropics in the rescaling. While
this method is adequate for studying the instabilities of
the atmosphere as they are represented in our numerical
models, it may not be optimal for ensemble forecasting.
The perturbations should reflect not only the shape, but
also the size of analysis errors. Consequently, we want
to have larger regional perturbation amplitudes in
regions sparsely observed, and vice versa. With hemi-
spherically fixed rescaling, the perturbation amplitudes
will be largest in the areas of strongest instabilities.
While these areas are generally over the poorly observed
oceans, they do not necessarily correspond to the re-
gionally dependent uncertainty in the analysis.

To estimate the geographically dependent uncertainty
in the analysis, we used a technique similar to that of
Augustine et al. (1992). Two independent analysis cy-
cles were run for a 30-day period in April–May 1992.
The cycles were identical except that in one of them
the first guess field was an ensemble average of two
first guesses, perturbed by bred vectors with positive
and negative signs. The two analyses gradually diverged
from each other until, a few days later, the difference
saturated. Beyond this time, we took the average of rms
difference fields between corresponding pairs of anal-
yses. Figure 6 shows the average difference field in the
streamfunction at a model level approxiamtely at 500
hPa, scaled so that the global average is one, and
smoothed with a Gaussian filter on a sphere (J. Purser
1993, personal communication). By using this spectral
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filter, equivalent to T6–T7 (about 2000 km) resolution,
we avoid the aliasing problem associated with simple
truncation in wavenumber space. Different filtering
characteristics are described in terms of ‘‘equivalent’’
triangular truncation. Over the Northern Hemisphere,
the dominant features of the analysis uncertainty field
are the minima over North America and Eurasia, es-
pecially over the eastern part of the continents, and the
high values over the Pacific Ocean. This corresponds
well to the good rawinsonde coverage over the conti-
nents. Due to the use of dynamical first guess, the in-
formation from the observations is ‘‘transported’’ east-
ward, resulting in minima over the eastern part of the
continents.

While there is a hint of a similar behavior in the
Southern Hemisphere east of Africa and over eastern
Australia, there is more zonal symmetry, and the am-
plitude of the uncertainty increases poleward. Such be-
havior is also consistent with the uniform observational
coverage provided by satellite temperatures and by the
fast growth of perturbations in the strongly baroclinic
southern high latitudes.

Note that with the above procedure, we can estimate
the amplitude of growing errors in the analysis,4 which,
as we discussed in section 3b, are assumed to be more
important in ensemble forecasting. Optimal interpola-
tion (OI) could also be used to estimate the distribution
of the analysis errors (Gandin 1965), but such an esti-
mate is very dependent on the assumed error covari-
ances for the forecast and the observations. In addition,
the OI estimate would not properly account for the
growing component of the error. Therefore we believe
the OI estimate would be less reliable than the empirical
procedure we have used here.

In a breeding cycle specifically modified for ensemble
perturbations, we determine the scaling factor as a func-
tion of horizontal location. The perturbation amplitude
is measured and rescaled regionally in a smooth fashion,
to a level corresponding to the values shown in Fig. 6.
At points where the perturbation amplitude (globally
scaled to 1) is below that in Fig. 6, no rescaling is
applied. So a perturbation traveling into a poorly ob-
served oceanic area is allowed to grow freely, while
those reaching a well-observed area are scaled back to
the size of the estimated analysis error. Since the re-
gional rescaling is done in a smooth fashion, most of
the balance naturally present in the bred perturbations
is preserved. With regional rescaling we still retain the
capability of changing the overall global or hemispheric
amplitude but the smoothed relative geographical dis-
tribution is left intact. Based on the varying degree of

4 We note here that while the relative magnitude of the perturbations
(shown in Fig. 6) is realistic, their absolute magnitudes were several
times below other estimates. When in one of the two analysis cycles
the horizontal resolution was doubled to T126, the absolute values
became in line with other error estimates (Iyengar et al. 1996).

hemispheric analysis uncertainty, operationally two geo-
graphical masks have been designed, one for the north-
ern winter and another for the northern summer half
year. More recently, monthly uncertainty estimates were
derived by comparing the NCEP operational analysis
and reanalysis fields (Iyengar et al. 1996).

Medium-range ensemble forecasts performed with the
breeding method modified for regional rescaling (using
self-breeding, see Fig. 5) showed an improvement in
the skill of the ensemble mean over the Southern Hemi-
sphere and also over the Tropics (especially for short
lead times, when compared to the hemispherically re-
scaled perturbations) while there was no change over
the northern extratropics. Over our 12-day experimental
period between 23 May and 3 June 1992, we also tested
applying the regional rescaling outside of the breeding
cycle, to modify only the initial ensemble perturbations,
but found that larger changes were necessary after each
cycle and that the forecast results were not as good.

Since perturbation growth rates increase away from
the equator, the above described regional rescaling pro-
cedure results in perturbations that are somewhat small-
er/larger than desired over the Tropics/high latitudes
(Iyengar et al. 1996). Let us assume, for example, that
perturbation growth is largest over the poles. Since the
rescaling factor applied at the pole is based on pertur-
bation growth measured over a larger disc around the
pole (over which average error growth is smaller than
it is at the pole), the actual rescaling factor that is applied
will not reduce the amplitudes enough at the higher
latitudes. Work is under way to correct this problem.

b. Centering the ensemble around the control
analysis

Since our best estimate of the true state of the at-
mosphere is the control analysis, we must center the
ensemble perturbations around this field. This can be
easily done by adding and subtracting the same pertur-
bation to the control analysis (e.g., Ebisuzaki and Kal-
nay 1991). In this setup, 2n perturbations are derived
from n independent breeding cycles (or from other or-
thogonal vectors). However, a case can be made for
using each perturbation only once, thus possibly im-
proving sampling (J. Purser 1992, personal communi-
cation). We tested this hypothesis by averaging 2n in-
dependent perturbations and then removing their aver-
age from each individual perturbation vector. The re-
sulting medium-range ensemble integrations, however,
had inferior forecast skill as compared to the identically
sized paired ensemble setup: the improvement upon the
control forecast obtained with the centered single per-
turbations was less than two-thirds of that obtained with
the ensemble of positive and negative pairs of pertur-
bations (see Table 2). The implication is that the non-
linear ensemble filtering mechanism discussed in section
2 is not as effective if the perturbations, though centered
initially in a linear sense, are not paired. This must be
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TABLE 2. Comparison of ensembles generated by single bred per-
turbations (i.e., centering individual perturbations on control analysis,
singles) and those generated by positive-negative pairs of perturba-
tions (pairs) for May 23–28 1992 with 5%/10% initial perturbations
for the Northern and Southern Hemispheres, respectively. (a) PAC
skill scores at day 6. (b) Comparative verification as a function of
lead time, Northern and Southern Hemispheres combined. Numbers
indicate how many times either technique is better than the other in
terms of PAC.

(a) Control Singles Pairs

NH
SH
NH/SH Combined

0.680
0.510
0.595

0.687
0.536
0.611

0.692
0.552
0.622

(b) Lead time (days) Pairs–Singles (wins)

1
3
4
5
6

8–4
7–5
7–5
9–3

10–2

due to higher than second-order nonlinear effects pres-
ent in the ensemble perturbations (J. Purser 1995, per-
sonal communication). Our results are confirmed by in-
dependent experiments run at ECMWF (R. Buizza 1995,
personal communication).

6. Ensemble forecasting results

In this section we will give an overview of ensemble
forecasting experiments performed in order to test pos-
sible operational configurations. All experiments were
done with a T62/18 level version of the NCEP Medium
Range Forecast (MRF) model (Kanamitsu et al. 1991).
The period used in these experiments is the 40 days
between 6 May 1992 and 14 June 19925 (or a subperiod
of it, where noted). Except in section 6g, 10-member
ensemble forecasts are evaluated. The initial ensemble
perturbations were derived from five independent breed-
ing cycles with regional rescaling every 24 h, using the
self-breeding algorithm of Fig. 5. To center the ensemble
mean on the control analysis at initial time, each of the
five perturbations was both added to and subtracted from
the analysis. The quality of the ensemble forecasts is
estimated using two measures: the skill of the ensemble
mean forecast and the spread of the ensemble.

a. Measures of ensemble quality

At any lead time, members of the ensemble can be
averaged. The mean ensemble forecast is then verified
against the corresponding analysis much the same way
as the control forecast. As a measure of skill, we use
the forecast/analysis pattern anomaly correlation (PAC)

5 Easy data access and computational convenience were the reasons
for selecting this period. Clearly, forecasts separated by several days
and covering all seasons would provide a more reliable dataset.

measured over three separate belts over the globe: the
Northern and Southern Hemisphere extratropics (208–
808 latitude belts) and the Tropics (6208 latitude). All
scores are computed for the streamfunction field at a
sigma layer close to the 500-hPa height level (resulting
in scores very close to those for 500-hPa geopotential
height). To compute the anomalies, monthly climatology
is used based on analized data for the 1985–91 period.
The rms errors were also computed but are not reported
here because they led to identical conclusions as the
PACs. Forecast PACs for different types of ensembles
are compared to those for the control forecast to see if
they represent an improvement due to nonlinear ensem-
ble filtering.

The spread of the ensemble is determined as the av-
erage of the difference fields between the individual
ensemble forecasts and the ensemble mean. Since ki-
netic energy is used as a norm in operations (see section
7), the difference at each grid point is defined as the
square root of the kinetic energy in the difference (or
error) field. (The use of streamfunction differences leads
to very similar results.) The spatial distribution of the
spread is considered as a prediction of the spatial dis-
tribution of the actual error in the control forecast, which
is measured in the same way, in units of square root of
kinetic energy. After setting the mean of both the fore-
cast spread and observed error fields to zero, their cor-
relation is computed (spread/error PAC). Spread/error
PACs are computed only in the T3–T15 range of equiv-
alent spatial resolution using the spectral filter men-
tioned above (Purser 1993, personal communication).
Another (inverse) measure of spread is the average of
PAC values computed between the control forecast and
each ensemble member. Time correlations between
spread and error statistics are also computed (in which
case the spatial mean of the spread and error fields is
not removed).

b. Size of the initial perturbation

In the section on regional rescaling (section 5a), we
indicated that the overall size of the initial perturbations
is an important parameter that has to be chosen to reflect
the size of initial error in the analysis. An estimate of
the analysis error can be derived from optimal inter-
polation analysis techniques (see, e.g., Gandin 1965;
Buizza 1994). However, since these estimates are sub-
ject to the statistical approximations made within the
analysis scheme, we attempted to optimize the overall
perturbation size experimentally by verifying ensemble
means for ensembles initiated with different initial am-
plitudes for the bred perturbations. The perturbation size
is measured on the 500-hPa streamfunction field. We
note that the wintertime Northern Hemisphere (NH) nat-
ural rms variability of the streamfunction field is around
8 500 000 m2 s21 (whereas it is around 80 m for geo-
potential height).

To estimate the optimal size of the initial perturba-
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TABLE 3. The effect of the size of initial perturbations on the per-
formance of 10-member ensembles for 23 May–6 June 1992. At the
different lead times, PAC scores are computed for the mean forecast
from different ensembles. Shown is the relative performance of each
perturbation size with respect to (a) 10% (Northern Hemisphere) and
(b) 20% (Southern Hemisphere) perturbation size, in terms of how
many times the PAC for the experiment was better/worse (wins vs
losses, W/L) and average improvement (AI). Results judged subjec-
tively the best based on these two objective measures are highlighted
in bold.

Perturb. size
(% rms variance)

Day 3

W/L AI

Day 6

W/L AI

Day 9

W/L AI

(a) Northern Hemisphere
5
7.5

12.5
15
20

5–6
7–5
2–9
2–10
2–10

2
1
2
2
2

6–6
6–6
5–7
4–8
1–11

2
2
1
2
2

4–8
4–8
6–6
4–8
6–6

2
2
1
2
2

(b) Southern Hemisphere
10
15
25
30
40

2–10
4–8
7–5
7–5
3–9

2
2
1
1
2

5–7
6–6
8–4
7–4
5–7

2
2
1
1
2

3–9
3–9
8–4
7–5
8–4

2
2
1
1
1

tions, over a 15-day period in 1992 we performed tests
with different perturbation amplitudes between 3% and
20% of the NH winter variability for the NH and 6%
and 40% for the Southern Hemisphere (SH), respec-
tively, and recorded the skill score for the mean of the
different ensembles. Since at T62 resolution much of
the small perturbations develop linearly in the first 24
h time range, the ensemble mean of perturbations equal
to or less than 10% of the rms variance (standard de-
viation) is not appreciably different from the control at
one day. Though at this short lead time the skill of the
ensemble mean cannot be directly used to determine the
optimal perturbation size,6 it is important to note that
perturbed forecasts with 10% initial ‘‘error’’ for the NH
and 20% for the SH diverged from the control as much
as the control forecast diverged from the verifying anal-
ysis (not shown), suggesting that the optimal pertur-
bation size is around this magnitude. This agrees well
with other estimates for the error in global analysis
fields. Kalnay et al. (1996) found that the difference
between independent height analyses between 850 and
200 hPa from various centers is between 7 and 12 m
for the NH and between 12 and 25 m for the SH. P.
Caplan (1994, personal communication) estimated dif-
ferences in the same range, with the SH uncertainty
being about double of that for the NH. These estimates,
along with other information such as improvement in
forecast skill suggest that the quality of our atmospheric
analysis has been considerably improved since the mid
1980s when Daley and Mayer (1986) estimated the glob-
al analysis error to be between 15 and 20 m at 500 hPa.

In Table 3 we show the results of using different
perturbation sizes for day 3 to 9, comparing them with
perturbations of size 10% for the NH and 20% for the
SH. While some details in Table 3 must be due to sam-
pling fluctuations, there is a clear signal apparent: for
longer lead times, larger amplitudes give better results.
For example, we find that for the NH, at day 3 an am-
plitude of 7.5% is slightly better than 10%, whereas at
day 9, 12.5% is better. This increase in the optimal initial
size with forecast length is also observed in the SH: at
day 3 a size of about 25% is better, whereas at day 9 a
size of 30% is more effective in increasing the skill of
the ensemble average. The difference between the best
and worst performing perturbation size at day 9 is
around 0.02 and 0.05 for the NH and SH, respectively.

In a perfect model environment, the optimal pertur-
bation size should not depend on lead time. However,
our models are imperfect, which means that forecast
errors are growing not only due to the initial difference
but also due to model deficiencies (Reynolds et al.

6 The signal is hard to detect because the errors in the verifying
analysis are not much smaller than the short-range forecast errors.
Had we used observational data for verifications instead of analysis
fields, we may have been able to find a signal even at very short
range.

1994). Part of the model-generated errors project on
growing directions and act like amplifying errors due
to the initial uncertainty, whereas others appear as a
forecast bias. The model errors that project onto growing
directions can be dealt with, to some extent, as an extra
amplitude term in the initial error field, explaining why
the optimal perturbation amplitude increases slightly
with increasing lead time.

Based on the above results we have fixed the initial
amplitude of perturbations in the remainder of this study
at 12.5%/25% rms standard deviation for the NH/SH,
respectively. Note that this amplitude is larger than op-
timal for short lead times but is about optimal for the
medium and extended range.

c. Ensemble mean forecasts

Figure 7 shows the PAC scores for the control and
ensemble mean forecasts for the experimental period.
First we should note that ensemble averaging has a
greater impact over the winter (in this case the SH) than
over the summer hemisphere. This is in line with the
fact that the natural variance, which was found to be
linked with the impact of ensemble averaging in earlier
studies, increases over the winter season. To understand
the seasonal variations in the relative merit of the en-
semble mean, one has to realize that baroclinic distur-
bances are probably the sole major source of instabilities
in the winter. These instabilities have a relatively long
life cycle (few days) and a large saturation amplitude.
Consequently, baroclinic instabilities are directly re-
sponsible for a large portion of wintertime forecast er-
rors. And since at T62 resolution these instabilities are
well resolved, the ensemble based on these perturbations
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FIG. 7. Forecast skill (pattern anomaly correlation) of a 10-member
ensemble mean (solid curve) as a function of lead time for the (a)
northern and (b) southern extratropics and for the (c) Tropics for 6
May–14 June 1992. The score for a single control forecast is also
shown (dashed curve).

is very effective in filtering out part of the forecast error
that is due to initial error uncertainty. In contrast, the
circulation in the summer is more ‘‘local’’ in nature,
both in space and time. This is also reflected in the fact
that the summer circulation has more spatial degrees of
freedom (see, e.g., Fraedrich et al. 1995). Beyond large-
scale dynamics, it is also strongly influenced by con-
vection, which has a shorter lifetime and smaller satu-
ration amplitude. It follows that a larger portion of the
total error is left unexplained by baroclinic instabilities.
As a consequence, our ensembles based primarily on
baroclinic instabilities cannot provide as much improve-
ment in skill in the summer as they can in the winter.
Similar results were obtained by Molteni et al. (1996)
using the ECMWF operational ensemble prediction sys-
tem.

As can be seen from Fig. 7, the skill for the control
and ensemble mean at day 1 are practically identical
when verified against the control analysis (see also foot-
note 6). However, as expected from Leith (1974) and
from section 2, the ensemble mean develops an advan-

tage over the control forecast that becomes appreciable
by day 3 and reaches a substantial 0.07–0.11 by day 9.
If we consider 0.5 PAC as the minimum level of useful
skill, ensemble forecasting extends predictability by a
day or so (17–25 h), out to 8 days over the NH and 7
days over the SH and the Tropics. Note that the im-
provements from ensemble averaging are as large in the
Tropics as they are over the summer hemisphere extra-
tropics.

The gain from ensemble forecasting in the medium
and extended range compares favorably with the in-
crease obtained by doubling the horizontal resolution:
at day 5, the difference between the scores obtained
using the NCEP operational T126 model and a nearly
identical, ‘‘parallel’’ T62 system is slightly below 0.02,
averaged over 32 months of operations. The gain ob-
tained by ensemble averaging with 10 members over
the 40-day experimental period is substantially larger,
although both procedures take about the same computer
time. We should point out that increasing the resolution
of global NWP models has a clear benefit during the
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first few days of a forecast (Tracton and Kalnay 1993).
Running ensembles at a lower resolution, however, has
a substantial advantage for the range beyond 5 days,
where nonlinearities become important. We mention
here that ensemble forecasting can also be beneficial for
the shorter range, as long as the nonlinear aspects of
the flow are relatively well modeled and analyzed (see
Brooks et al. 1995).

d. Ensemble averaging versus spatial smoothing

It might be argued that the gain in skill from ensemble
averaging may be dominated by smoothing resulting
from averaging the different perturbed forecasts. In the
framework of quasigeostrophic integrations, for exam-
ple, Houtekamer and Derome (1995) found that opti-
mally smoothing the control forecast can improve the
forecast verification as much as some ensemble config-
urations.

Figure 8a shows the verifying analysis for a 9-day
forecast started from 30 May 1992. A comparison of
the control forecast (Fig. 8b) with the 10-member en-
semble average forecast (Fig. 8c), and their correspond-
ing errors (Figs. 8d and 8e, respectively) suggests that
ensemble averaging does indeed have a smoothing ef-
fect. It is more appropriate to call this effect ‘‘filtering,’’
since it depends on the flow, particularly upon the vary-
ing degree of similarity amongst the ensemble members.
Ensemble averaging results in a selective smoothing of
those features that cannot be forecast with certainty.
Consider, for example, the forecasts in Fig. 8 over North
America. The trough over the southeastern United States
is well predicted by the control and is hardly changed
by the 10-member ensemble mean. The southern portion
of the trough predicted by the control over the west
coast, however, did not verify. The ensemble mean fil-
tered out part of this system, resulting in smaller overall
errors in this region. Undoubtedly, there are several oth-
er areas/cases where the changes in the ensemble mean
do not verify well but overall it still provides an im-
provement over the single control forecast.

To quantify how much of the improvement due to
ensemble averaging is connected to simple spatial
smoothing (as compared to nonlinear filtering), we per-
formed experiments where both the control and the en-
semble mean forecasts were spatially smoothed with a
filter that has a Gaussian response in the grid domain
(J. Purser 1992, personal communication) till they
reached their maximum PAC verification scores. The
results, presented in Table 4, show that not much
smoothing is needed to maximize the scores in the ex-
tratropics. Even at 9 days lead time, a truncation of T20
has to be retained in the control while, as expected, the
ensemble average requires somewhat less smoothing. In
the Tropics (not shown) no amount of smoothing im-
proves the scores. The main result here is that the en-
semble average retains a considerable advantage (more

than 60%) over the control even after both fields had
been optimally smoothed.

e. Forecast of the spatial distribution of the errors

Ensemble forecasting should offer more than an im-
proved best estimate of the evolution of the atmosphere
(ensemble mean forecast). It should also provide the
means to estimate higher moments, and ultimately the
full probability distribution of the forecasts. A first step
in achieving this goal is the derivation of an estimate
of forecast reliability in the spatial domain. Ideally, we
would like to know in which areas errors are more likely.
We have used the spatially smoothed ensemble spread
of the kinetic energy introduced in section 6a for esti-
mating the magnitude of the expected forecast errors.
Figures 8f and 8g show, for the same 9-day forecast
example of the previous subsection, the spatial distri-
bution of the kinetic energy of the error and of the
ensemble spread, respectively. Several important as-
pects of the error field are indicated quite realistically
in the ensemble spread field. Note, for example, that the
absolute maxima in the error field over the two extra-
tropics is well predicted by the ensemble over southern
Australia and over eastern Asia. Several error features
turn out to be well predicted in the subtropics and Trop-
ics as well—see, for example, the correspondence be-
tween the actual and predicted large errors over Western
Sahara and east of the Hawaiian Islands.

The spread/error PAC scores based on the ensemble
forecasts are displayed in Fig. 9. The fact that the spread/
error PAC is low at short lead times is due to the presence
of random errors in the initial conditions and verifying
analyses (see also Barker 1991; Wobus and Kalnay 1995).
Since there is a strong zonally symmetric component in
the error fields, we computed the PAC of the spread/error
both with (not shown) and without the zonal mean in-
cluded. The spread/skill spatial correlation is about 0.4
without the zonal mean and is above 0.7 with the zonal
mean included. This result is encouraging, suggesting that
ensemble forecasting can result in skillful predictions of
the spatial distribution of the errors.

f. Forecast of the temporal variations in skill

The ensemble forecasts can also be used to predict the
variations of forecast skill (or the reliability of forecasts)
in the time domain. This has been a subject of consid-
erable research because of its importance for medium-
and extended-range forecasts (e.g., Branstator 1986; Kal-
nay and Dalcher 1987; Palmer and Tibaldi 1988). If we
can determine a priori which forecasts are going to be
most skillful, the utility of extended-range forecasts can
be considerably enhanced (e.g., Tracton et al. 1989). Here
we will demonstrate the relationship in time between
ensemble spread and error through a typical example.

In Fig. 10 the PAC scores between 9-day lead en-
semble mean forecasts and the verifying analysis are
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FIG. 8. Ten-member, 9-day lead time ensemble forecast started on 30 May 1992. Shown are
the 500-hPa streamfunction fields for (a) verifying analysis (contour interval: CI 5 107); (b) control
forecast (CI 5 9 3 106); (c) ensemble mean forecast (CI 5 9 3 106); (d) control error (CI 5 3
3 106); (e) ensemble mean error (CI 5 3 3 106); (f) as in (d) but in rms and smoothed; (g)
forecast of the error (f) as in (e) but in rms and smoothed. Labels for (a)–(e) are scaled by 1025.

plotted along with, as an indicator of skill, the average
of the PAC values between the control forecast and each
ensemble member for a 40-day experimental period
started 6 May 1992. During the first 30 days of the
period the two curves have a correlation of 0.62—a
value similar to those reported by Barker (1991) with
a perfect model approach, by Wobus and Kalnay (1995)
using a statistical approach based partly on an ensemble
of control forecasts from different NWP centers, and by
Molteni et al. (1996), using the operational ECMWF
ensemble. Spread-skill temporal correlations from the
operational NCEP ensemble, above 0.6 beyond day 5

lead time, confirm the above experimental results (J.
Whitaker 1996, personal communication). We should
also note that the spread PAC values are somewhat high-
er than the skill PACs, an indication that the spread in
the ensemble is somewhat deficient.

A drastic change occurs in the behavior of the two
curves in Fig. 10, however, around the 30th day. Though
there is still a relationship between ensemble spread and
skill during the last 10 days of the period (with an anom-
aly correlation of 0.47), the spread PACs now are much
higher than the skill PAC values. This may be associated
with the establishment of a summer circulation regime
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FIG. 8. (Continued)

in early June 1992. As it is well known, the MRF (and
global GCMs in general) have more systematic errors in
the summer that can introduce additional errors not ac-
counted for by the ensemble. Notwithstanding the prob-
lem posed by systematic model errors that can ruin the
spread/skill relationship, an objective evaluation of the
NCEP ensemble during the 1995/96 winter season
strongly indicates that the system can effectively distin-
guish between cases with high and low uncertainty (Zhu
et al. 1996).

g. Size of the ensemble

It was Leith (1974) who first considered the question
of how many ensemble members are needed to improve
the skill of the control forecast by ensemble averaging.
Using a simple model he found that eight members are
enough to realize most of the gain attainable through
ensemble averaging. Houtekamer and Derome (1995),
also using a perfect model environment but with a three-
layer, T21 resolution quasigeostrophic model, basically
confirmed Leith’s results. Barker (1991), using a setup
similar to that of Houtekamer and Derome, examined
the effect of ensemble size on the temporal correlation
between ensemble spread and control skill. We now
consider the same question using a setup equivalent to
the operational NCEP ensemble system.

In Fig. 11, the skill of the ensemble mean, the skill
in forecasting the spatial error pattern, and the temporal
correlation between ensemble spread and control error
are displayed as a function of ensemble size between 1
and 40 members. The results are shown for 9 days lead
time, based on a 40-day experimental period during
which a total of 40 forecasts from 20 independently run
breeding cycles were generated. The gain from enlarg-
ing the ensemble is most obvious when going from 2
to 4 and then to 10-member ensembles, a result in agree-
ment with earlier studies. Regarding forecast skill, only
minimal improvement is obtained beyond 20 members.
However, as the steeper curves in Fig. 11 indicate, the
temporal and spatial relationship between spread and
error continues to improve even up to 40 members. From
the shape of these curves it seems there is still a lot to
be gained from increasing the size of the ensemble be-
yond 40 members. Certainly it is clear from the figures
that for higher forecast moments it is necessary to have
many more members in order to reduce the sampling
problem.7

7 Tracton (1993, personal communication) also pointed out that
ensemble-based reliability estimates can be improved upon by in-
cluding one or even two days old lagged ensemble members, even
if the lagged ensemble members do not improve the ensemble mean
appreciably.
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FIG. 8. (Continued)

FIG. 9. Pattern correlation between predicted and actual error in
the forecasts, averaged for the period 6 May–14 June 1992.

TABLE 4. The effect of optimal spatial smoothing on the control
and 10-member ensemble mean forecasts for the period 23 May–3
June 1992 with 10%/20% initial perturbations for the Northern and
Southern Hemispheres, respectively. For further details, see text.

Lead
time

(days)

Optimal smoothing
(;triangular truncation)

Control Ensemble

Ensemble advantage over
control retained

PAC Percent total

5
7
9

T30
T25
T20

T40
T35
T30

0.02
0.033
0.042

62.5%
63.8%
60.5%

h. Comparison of bred versus random initial
perturbations

Finally, we compare the effectiveness of random and
bred initial perturbations. The random perturbations are
created by linearly combining difference fields between
randomly selected analyses with random weights. These
random perturbations are, by construction, not depen-
dent on the flow of the day and hence expected to per-
form poorer than the bred vectors. Toth and Kalnay
(1993) showed that two-member bred ensembles out-
performed similarly sized ensembles with random initial
perturbations in terms of ensemble mean scores. As in-
dicated in Table 5, this is also true for 10-member en-
sembles. The advantage of bred perturbations is more
pronounced over the winter hemisphere, where baro-

clinic instabilities have possibly a greater contribution
to initial errors. The absolute differences in the perfor-
mance of the two ensembles are not large but when
expressed in terms of the difference in skill between the
control forecast and the random ensemble, or between
high and low resolution controls, they can reach values
up to 40%. Since random perturbations initially grow
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FIG. 10. PAC skill values for 9-day lead time forecasts for the
North American region (solid line) along with average PAC between
the control forecast and each of the 10 ensemble members (dashed
line) for 6 May–14 June 1996.

FIG. 11. Forecast skill (solid line), and evaluation of the prediction
of the spatial distribution (dashed line) and temporal variations (using
the spread in kinetic energy, dotted line) in the forecast skill for 1992
May 6–June 14, as a function of ensemble size, at day 9 for the NH
(a), SH (b), and for the Tropics (c).

slower than the bred ones, for a fair comparison the
random ensemble was started with a larger, 18.5%/37%
initial perturbation amplitude to ensure that over the
medium- and extended-ranges the two ensembles have
comparable perturbation amplitudes.

7. Operational implementation

The initial operational ensemble configuration imple-
mented at NCEP in December 1992 consisted of one
pair of bred perturbed forecasts, one T126 and a T62
control forecast, plus a 12-h delayed control forecast
(Tracton and Kalnay 1993). All forecasts initiated in the
most recent 48 h were included, making an ensemble
of 14 valid for 10 days. Based on the experimental re-
sults presented in the previous sections, and following
the installation at NCEP of a new Cray C90 supercom-
puter, the ensemble forecasting system was upgraded on
30 March 1994. In addition to the T62 and T126 control
forecasts, five bred pairs of forecasts are run at 0000
UTC and two pairs at 1200 UTC, and all the forecasts
are extended to 16 days. The new configuration amounts
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TABLE 5. Comparison of the control forecasts (CNT) and 10-mem-
ber, randomly generated (18.5%/37% rms variance initial amplitude)
and bred ensembles (12.5%/25% rms variance initial amplitude) for
23 May–6 June 1992. PAC skill score for T126 control is estimated
based on average difference between high- and low-resolution con-
trols for 3 years.

Forecast skill (PAC)

Day 5

NH Tropics SH

Day 9

NH Tropics SH

Forecast
CNT T62
CNT T126
Random
Bred

0.735
0.753
0.747
0.752

0.503
—

0.516
0.546

0.583
0.601
0.624
0.635

0.395
—

0.474
0.472

0.264
—

0.282
0.302

0.313
—

0.374
0.403

FIG. 12. Schematic of the configuration of the operational ensemble
forecasting system at NMC. Each horizontal line represents a nu-
merical forecast. High-resolution T126 forecasts are marked with
heavy lines while the other forecasts are run at T62 resolution. Note
that at 0000 UTC there are two control forecasts: one started at T126
resolution and then truncated to T62 at day 7 and one started at a
T62 truncated resolution. At 1200 UTC, the high-resolution control
is truncated after 3 days of integration. Pairs of perturbed forecasts
based on the breeding method are marked as B1–B7.

to 17 individual ensemble members every day. When
the forecasts from the last two days are also considered
for the extended range, the total number of ensemble
members valid for two weeks is 46 (see Fig. 12 and
also Tracton 1994).

Based on the results of section 6b, the size of the
initial perturbations is set at 12.5% and 25% of the total
rms variance in the NH and SH, respectively. (During
SH summer, the perturbation size there is reduced to
12.5% rms variance.) In the regional rescaling proce-
dure, the kinetic energy of the flow (rather than the
previously used rms streamfunction norm) is applied.
We use 24-h breeding cycles, and the bred perturbations
are determined as the difference between two perturbed
ensemble forecasts at 24-h lead time. It should be noted
that with this procedure the generation of bred pertur-
bations is performed at no cost beyond that of running
the ensemble forecasts themselves (see Fig. 5). In this
configuration, breeding is part of the extended ensemble
forecasts and the creation of efficient initial ensemble
perturbations requires no additional computing re-
sources beyond that needed to run the forecasts them-
selves. Both subjective (Toth et al. 1997) and objective
(Zhu et al. 1996) evaluation of the results from the new
operational ensemble system support the experimental
results reported in this paper.

8. Conclusions

In this paper different aspects of ensemble forecasting
were examined. First, it was emphasized that the per-
turbations applied to the control initial state of the at-
mosphere (analysis) must be chosen in the directions of
possible growing errors in the analysis. Using Lorenz’s
error growth equation we showed that if the perturba-
tions project on the analysis errors, averaging pairs of
perturbed forecasts results in a nonlinear filtering of
forecast errors. On the other hand, if the initial pertur-
bations do not project on the errors in the analysis, the
same nonlinear processes can lessen the positive impact
of ensemble averaging. We argued that the analysis er-
rors are composed not only by random errors as assumed

in the operational analysis methods, but also by fast
growing ‘‘errors of the day’’ introduced by the succes-
sive use of dynamical short-range forecasts as first-guess
fields within the analysis cycle.

The growing errors in the analysis cycle develop as
perturbations upon the evolving true state of the at-
mosphere. The perturbations (i.e., the analysis errors),
carried forward in the first guess forecasts, are reduced
(or ‘‘scaled down’’) at regular intervals by the use of
observations. However, because of the inhomogeneous
distribution of observations some errors in the analysis
will grow without suppression by observational data.
Examples of this can be found over the oceans and the
SH, where radiosonde data is scarce, and on small scales
anywhere. Due to this process, growing errors associ-
ated with the changing state of the atmosphere develop
within the analysis cycle and dominate subsequent fore-
cast error growth.

We argued that these errors or perturbations can be
well estimated by the method of ‘‘breeding growing
vectors,’’ which simulates the development of growing
errors in the analysis cycle. In a breeding cycle, the
difference field between two nonlinear forecasts is car-
ried forward (and scaled down at regular intervals) upon
the evolving atmospheric analysis fields. The bred vec-
tors, in fact, offer a generalization of the linear Lya-
punov vectors into the nonlinear perturbation regime.
In complex systems like the atmosphere where pertur-
bation growth may critically depend on perturbation am-
plitude, the bred vectors interpreted at a given amplitude
offer the nonlinear equivalent of the Lyapunov vectors.
Thus, we surmise that due to their construction, the bred
vectors are superpositions of the leading local (time-
dependent) finite amplitude perturbation vectors that can
grow fastest in a given perturbation range (i.e., nonlinear
equivalent of the local Lyapunov vectors, LLVs). Breed-
ing cycles with different initial perturbations converge,
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in any geographical region after a few days, to a sub-
space of perturbations that comprises the leading local
(in phase space) fastest growing finite-amplitude per-
turbations of the atmosphere. The unique role played
by the leading LLVs in analysis/forecasting was em-
phasized by pointing out that all linear perturbations,
after a transient period of 3–4 days, assume the shape
of leading LLVs. In any bred perturbation the weight
on the individual leading LLVs is random, determined
by how the preceeding perturbation projects on the dif-
ferent LLVs at that time and also on the impact of small-
er-scale stochastic forcing (convection) on the dominant
baroclinic processes. It was shown that perturbations
from independent breeding cycles are quasi-orthogonal
in a global sense without the introduction of any con-
straint. For these reasons the bred perturbations lend
themselves as good candidates to be used as initial en-
semble perturbations.

The growing component of the regionally varying
uncertainty in the analysis was measured as the differ-
ence between parallel analysis cycles. The average dif-
ference field is then used as a mask in the regular re-
scaling process of the bred vectors to ensure that the
initial ensemble perturbations have a spatial distribution
of amplitudes similar to that of the analysis errors. Each
bred perturbation is both added to and subtracted from
the control analysis.

Results from 10-member experimental ensembles in-
dicate that for short-range forecasts the optimal size of
the initial perturbations is about the same as the esti-
mated size of analysis errors. For longer forecasts, the
optimal size is somewhat larger, presumably because of
the presence of model deficiencies that generate addi-
tional forecast errors that can be, to some extent, treated
just as the initial uncertainty.

We showed that for medium-range forecasting the
mean of the bred ensemble has skill superior to that of
1) a double horizontal resolution control, 2) a control
smoothed optimally, and 3) an ensemble initiated with
random (flow independent) perturbations. We also
pointed out that ensemble averaging removes the un-
predictable components of the flow while leaving the
predictable part virtually intact. These results attest that
the bred ensemble mean offers an economic way for
improving the control forecast and thus can replace the
control as our best estimate of the future state of the
atmosphere.

Higher moments of the probability distribution of fu-
ture states should also be estimated through ensemble
forecasting. For limited samples, we showed that bred
ensemble spread correlates with forecast error both in
space and in time. This information about the reliability
of the forecasts is especially critical at longer lead times
where model performance is known to be case depen-
dent.

The improvement in forecast skill at and beyond 7
days lead times (0.04–0.11 in AC), together with a ro-
bust estimate of forecast reliability (;0.6 temporal cor-

relation between ensemble spread and forecast errors)
indicates that the bred ensemble system has the potential
of extending ‘‘weather outlooks’’ into the second fore-
cast week. To capitalize on this potential, NCEP started
on 30 March 1994 an ensemble forecasting system with
14 perturbed (bred) and 3 control forecasts, each ex-
tending out to 16 days in lead time. When all forecasts
initiated within the past 48 h are considered, there is a
46-member ensemble valid for two weeks available ev-
ery day.

There has been much discussion recently about the
properties and relative merits of bred vectors and op-
timal (or singular) vectors. Despite the many differ-
ences, we would like to emphasize here that both types
of perturbations represent a subspace of possible grow-
ing perturbations. The adjoint technique used to com-
pute the optimal vectors is capable of finding the fastest
growing linear perturbations. When using this linear
methodology, care should be taken so that the likelihood
of different analysis errors is adequately described. This
problem is currently under inverstigation (Barkmeijer
et al. 1997, manuscript submitted to Quart. J. Roy. Me-
teor. Soc.). Until this problem is solved, a simple ap-
proach, proposed by Houtekamer (1995) could be used
to obtain singular vectors that are statistically represen-
tative of analysis errors in terms of baroclinic shear and
spatial error magnitude. Work is also in progress at dif-
ferent centers to include more physical processes in the
tangent linear and adjoint formulations of NWP models
(e.g., Zupanski and Mesinger 1995), which will increase
the utility of the adjoint technique.

If practical aspects such as simplicity and computa-
tional costs are considered, the breeding method has a
clear advantage over competing methodologies. The
bred vectors are computed using the full physics pack-
age of NWP models at the highest required horizontal
resolution. Without the introduction of any special con-
straint, they are well balanced and correspond well with
the estimated structure of analysis errors (Houtekamer
and Derome 1995; Iyengar et al. 1996). However, the
bred vectors are not optimized for future growth. This
may be a disadvantage of the breeding method. How-
ever, it is possible that on the time and spatial scales
considered here the structure of the optimal vectors,
given the likelihood of analysis errors, are similar to
those of the bred vectors. This would be true if non-
modal behavior would not be dominant, given again the
likelihood of different analysis errors. Recent results by
Fisher and Coutier (1995) and Barkmeijer et al. (1997,
manuscript submitted to Quart. J. Roy. Meteor. Soc.)
point into this direction; nevertheless, more research is
needed to further clarify these issues.

At ECMWF the adjoint perturbation technique is
used. A similar technique was adopted for the 30-day
range at the Japan Meteorological Agency more re-
cently, while research is under way regarding the con-
figuration of a medium-range ensemble (Takano 1996,
personal communication). At FNMOC and at the South
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African Weather Bureau a breeding-based ensemble is
operational (Rennick 1995; W. Tennant 1995, personal
communication), while at the National Center for Me-
dium Range Weather Forecasting in India a breeding-
based ensemble system is being prepared to be imple-
mented (G. Iyengar 1996, personal communication). At
the Atmospheric Environment Service of Canada ex-
periments have been carried out with an ensemble sys-
tem in which, beyond the initial atmospheric conditions,
the initial surface parameters, as well as some model
parameters are also perturbed (Houtekamer et al. 1996).
The perturbed atmospheric initial conditions are derived
from running independent analysis cycles, in each of
which randomly generated ‘‘measurement errors’’ are
added to the real observational data. The independent
analysis cycles can be considered as breeding cycles,
where, beyond the growing perturbations, random anal-
ysis errors are also well represented in a statistical sense.
In addition to the above sites, ensemble forecast ex-
periments are under way at several other places, in-
cluding NCAR (Baumhefner 1996).

The different perturbation techniques have various
potential advantages. Their impact on the quality of en-
semble forecasts can be evaluated only after a careful
comparison of experimental results. We conclude by
noting that a combination of ensemble forecasts from
different numerical prediction centers may give further
improvement to the quality of an ensemble (Harrison et
al. 1995). The benefits from having a larger number of
forecasts, and using different analysis schemes, forecast
models, and perturbation techniques may all contribute
to the success of numerical weather prediction.
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