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Abstract 

We have investigated a method to substantially reduce the analysis computations within 

the Local Ensemble Transform Kalman Filter (LETKF) framework. Instead of computing 

the LETKF analysis at every model grid point, we compute the analysis on a coarser grid 

and interpolate onto a high-resolution grid by interpolating the analysis weights of the 

ensemble forecast members derived from the LETKF.  

 

Because the weights vary on larger scales than the analysis increments, there is little 

degradation in the quality of the weight-interpolated analyses compared to the analyses 

derived with the high-resolution grid. The weight-interpolated analyses are more accurate 

than the ones derived by interpolating the analysis increments. Additional benefit from 

the weight-interpolation method includes improving the analysis accuracy in the data-

void regions, where the standard LEKTF with the high-resolution grid gives no analysis 

corrections due to a lack of available observations. 
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1. Background 
 

The resolutions of modern numerical weather/ocean models and observation density have 

greatly increased in recent years in order to resolve the dynamic processes in smaller 

scales such as convective scales in the atmosphere and eddies in the ocean. As a 

consequence, the computational cost required for data assimilation (DA) has also 

increased. To reduce the computational cost, methods like variational analysis (3DVar 

and 4D-Var) focus on reducing the computation during the minimization process of the 

cost function. For example, 4D-Var is solved using the incremental form (Courtier et al. 

1994) in which the so-called inner loop is carried out by running the adjoint model at a 

lower resolution with simplified physics.  

 

For the ensemble methods such as Ensemble Kalman Filter, the computational cost can 

be alleviated by allowing the analysis to be computed in parallel in local regions 

(Keppenne et al. 2002, Ott et al. 2004, Hunt et al., 2007). However, the computational 

burden for such local analyses is still constrained by the ensemble size and the total 

number of local regions in a high-resolution model. It is possible to reduce the 

computation further by carrying out the ensemble analyses on a coarser resolution, as 

done with incremental variational analyses, and then interpolating to the finer resolution. 

We will show that such interpolation step degrades the accuracy of the analysis, 

compared to a full-resolution analysis. 
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In this study, we investigate the feasibility of a method to reduce the computational cost 

in the assimilation procedure. This method is developed following a suggestion of 

Bowler (2006, Section 6.4), who computed the transform matrix derived from the 

solution of Ensemble Transform Kalman Filter (Bishop et al. 2001) on a coarse grid and 

then interpolated it onto the high-resolution grid. The idea is to use the model output of 

ensemble forecasts in full resolution without sacrificing the accuracy of the analysis. A 

similar idea of weight interpolation (Section 3.2 in Keppenne et al. 2008) is used to speed 

up the analysis computation of an ensemble Kalman filter (EnKF ocean, Keppenne et al. 

2002). However, in these studies the properties of the weights for linearly combining the 

ensemble perturbations and how this relates to maintain the analysis accuracy are not 

discussed in detail. For example, Keppenne et al. (2008) compares the computational 

time and the performance loss for one analysis cycle with different sparseness of the 

analysis grid, not mentioning the impact on the overall analysis accuracy by recycling 

these analyses. In addition, Bowler (2006) investigates the weight-interpolation method 

with a simple Lorenz95 model (Lorenz, 1995; Lorenz and Emanuel, 1998) under a 

perfectly observed framework (observation is available at every grid point). Therefore, 

implications in a more realistic setup with under-observed regions, are still unclear. 

 

In this study, the weight-interpolation method is adapted to the framework of the Local 

Ensemble Transform Kalman Filter (LETKF, Ott et al., 2004 and Hunt et al. 2007). This 

method has the advantage of being configured for local analyses, where the analysis 

ensemble is expressed with weights that linearly combine the background (12-hour 

forecast) ensemble. The interpolation is done through these weights for the background 
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ensemble in order to create an analysis at full resolution. As we will show, this method 

allows us to substantially reduce the required number of local analyses for the LETKF 

assimilation without sacrificing analysis accuracy.  

 

This paper is organized as follows: Section 2 briefly describes the implementation of the 

LETKF in a Quasi-Geostrophic model and the setup of the assimilation experiments. In 

Section 3, we explain how the sparse analysis is done within the LETKF framework. The 

results of the interpolated data assimilation experiments are discussed in the Section 4.  A 

summary and discussion is given in Section 5. 

 
2. Data assimilation in a Quasi-Geostrophic model 
2.1 Local Ensemble Transform Kalman Filter (LETKF) 
 

The LETKF scheme, described in detail in Hunt et al. (2007), is an ensemble-based 

Kalman Filter that analyzes the current model state within a local region. Similar to other 

ensemble Kalman filters the error statistics are sampled by the ensemble except that they 

are evaluated locally. The local analysis is then derived based on the local error statistics 

and the observations collected in the same local region. 

 

The LETKF scheme is a more efficient version of the Local Ensemble Kalman Filter 

proposed in Ott et al. (2004). This scheme has been shown to have similar accuracy as 

other sequential ensemble-based Kalman Filters implemented in the same numerical 

weather prediction model (Whitaker et al. 2008). Its parallel implementation, made 
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possible because the analysis at each grid point is independent of other grid points, 

becomes more efficient as the number of processors grows.  

 

We briefly discuss the LETKF scheme, where the data assimilation is performed at the 

central grid point of a local region and sequentially loops for all the analysis grids.  

Let x f denote a matrix whose columns are the background ensemble in a local region 

evolved from a set of perturbed initial conditions. The ensemble states can be represented 

by (1): 

x f = x f + X f ,                                                       (1) 

where x f is a column vector containing the mean of the ensemble and  is a matrix 

whose columns are the background ensemble perturbations from the ensemble mean. 

With K denoting the ensemble size, the background error covariance matrix is defined as 

   

1
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T . Similar definitions are given for the analysis ensemble mean and the 

perturbations: x
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a
respectively.  

 

The LETKF determines a transform matrix that converts the local background ensemble 

perturbations into the analysis ensemble perturbations. The local analysis error 

covariance can be written as (2), where Pa is the analysis error covariance matrix and 
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The transform matrix (Hunt et al., 2007), is computed as:  

[ ]11)1(
~ !

!
+!= f

T

fa K YRYIP                                              (3) 

, where Yf , the background perturbations in observation space, R is the observation error 

covariance assumed to be diagonal. With the observation operator H, the background 

ensemble is converted from the model space to observation space. The background 

perturbations in observation space are then approximated by computing the mean and the 

deviations in observation space, denoting as y f and Yf  in (4). 

H (x f ) = H (x f + X f ) ! y f + Yf                                    (4) 

Given that the ensemble size is much smaller than the model dimension, the K×K matrix 

 
!P
a  is efficiently computed within the ensemble space.  

 

After 
 
!P
a  is obtained, the mean analysis at the central grid point of the local region is 

computed from the background ensemble mean according to (5)  

                         afffo

T
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~ 1                   (5) 

In (5), the K × 1 vector of weight, 
  
w

a
 is derived with the information about observational 

increments, yo ! y f . In the final step, the analysis ensemble perturbations at the central 

grid point are derived by multiplying the background ensemble perturbations by the 

symmetric square root of 
a

K P
~
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In (6),  is a multiple of the symmetric square root of the local analysis error 

covariance matrix in ensemble space. It is computed by singular vector decomposition 

(SVD): 

W
a
= US

1
2U

T                                                         (7) 

where U is the matrix whose columns are the left singular vectors of 
a

K P
~
)1( !  and S is a 

diagonal matrix whose diagonal elements are the singular values.  

 

The use of a symmetric square root matrix ensures that the sum of the analysis ensemble 

perturbations is zero and depends continuously on 
a
P
~ (Hunt et al. 2007). Adjacent 

analysis points, whose corresponding local background ensemble has small differences, 

will have slightly different 
a
P
~ . The derived symmetric square root matrix can carry such 

characteristics and thus yield similar analysis ensemble perturbations at adjacent points, 

necessary to ensure the smoothness of the analysis. This property of the symmetric square 

root matrix also ensures that the analysis ensemble perturbations are consistent with the 

background ensemble perturbation since the symmetric square root matrix makes Wa the 

matrix closest to the identity matrix1, given the constraint of the analysis error covariance 

matrix (Ott et al. 2004). Harlim (2006) demonstrated that the symmetric solution has 

better performance than those obtained with a non-symmetric square root, given the same 

ensemble size.  

 

Eqs. (5) and (6) show that the analysis ensemble at each grid point is simply derived 

through a linear combination of the background ensemble, with weighting coefficients 
                                                
1 The distance between Wa and the identity matrix is measured by the Frobenius norm. 
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given by 
  
w

a
 (a K × 1 vector) for the mean analysis, and Wa (a K × K matrix) for the 

analysis perturbations. Thus, the kth analysis ensemble member is given by   

                                  xa,k = x f + X f ,k wa +Wa,k!" #$                                        (8) 

where Wa,k is the kth column of Wa.  

 

Let u denotes a vector of K ones, T)1,,1,1( …=u , u is an eigenvector of X f  because of the 

sum of the perturbations has zero mean (X fu = 0 ). Since the sum of the columns of Yf is 

equal to zero, v is also an eigenvector of 
 
!P
a

-1  and, thus, of  as well (Hunt et al. 2007):  

uuP(uWW =!=
aaa

K
~
)1                                     (10) 

With 0=uX f , the analysis perturbations also have a zero mean (11).  

0== uWXuX afa ,                                             (11) 

 

2.2 The Quasi-Geostrophic model  

In this study, the LETKF is implemented on a quasi-geostrophic (QG) model (Rotunno 

and Bao 1996). The dynamic flow described by this model is confined to a zonally 

periodic channel and bounded meridionally at top and bottom by rigid surfaces. The 

model is forced by relaxation to a specific zonal mean state at all levels and an Ekman 

pumping at the bottom level. A fourth-order horizontal diffusion provides dissipation. 

The model variables are non-dimensionalised. They are pseudo-potential vorticity (q) in 
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the five internal levels, governed by (11a) and non-dimensional temperatures (θ) at the 

bottom and top levels (z = 0,1), governed by Eq (11b). 
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q is defined through the streamfunction, φ, as q = !y + "2# "z2 +$2#  and the velocity 

and the temperature are (u,v,!) = ("#$ #y ,#$ #x ,#$ #z) . In (11a,b), qref ,!ref  are the 

zonal mean reference state for potential vorticity and temperature and v = (u,v)  is the 

horizontal velocity. τ is the relaxation time and D denotes the fourth-order horizontal 

diffusion and ! controls the Ekman pumping at the bottom level (z=0). Further details on 

the mathematical formulations and the numerical schemes used for advecting and 

inverting the potential vorticitiy are described in Rotunno and Bao (1996). The forcing 

and dissipation included in the model are specified in Snyder et al. (2003). 

 

In the following experiments, the dimensional values for the model parameters are the 

same as in Morss (1999) and Snyder etl al. (2003, see Table 1). There are 64 grid-points 

in the zonal direction, 33 grid-points in the meridional direction and a total of 7 levels in 

vertical.  
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For this QG model, its error-doubling rate is 2.5-4 days, on average slower than the real 

atmosphere. Their characteristics of the dynamical errors can be found in Corrazza et al. 

(2003) and Snyder et al. (2003). Yang et al. (2008) discuss the analysis errors from 

different assimilation schemes implemented in this model.  

 

2.3 Setup for data assimilation experiments 

The data assimilation framework has a 12-hour analysis cycle and the analysis variables 

are the model variables. The analyses are verified against the true states, generated from a 

long model integration with the perfect model setting. Observations are generated by 

adding random Gaussian errors to the true profiles of zonal and meridional winds and 

potential temperatures. The observation error is 0.8 ms-1 for the zonal wind, 0.5 ms-1 for 

the meridional wind and 0.8°C for potential temperature. These amplitudes are about 

20%, 17% and 11% of the climate variability for temperature, zonal and meridional wind, 

respectively. For the data assimilation experiments, 128 “rawinsonde” observations are 

available every 12-hour. Their locations are determined at the beginning of the 

experiments by random selection with a minimum spacing between observations. In this 

study, we allow the forecast model to be slightly imperfect by underestimating the 

amount of Ekman pumping. This is done by decreasing the vertical eddy diffusion from 5 

m2/s (in the true run) to 4.75 m2/s.  With such choice, the imperfect model causes slightly 

smaller climate variability. Compared to the perfect climate variability, it reduces 0.7% 

of the climate variability of the potential temperature at the bottom level. 
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The implementation of the LETKF for this QG model has been discussed in Yang et al. 

(2008), who compared the performance of LETKF with other DA schemes in this model. 

They showed that with a perfect model configuration (no model errors), the analysis 

derived from the LETKF was more accurate than the analyses from the 3D-Var or from 

the 4D-Var with a short assimilation window2 (12-hour), but with 24-hour windows 4D-

Var was more accurate.  A similar DA framework as in Yang et al. (2008) is used here to 

test the method of interpolated LETKF analyses.  

 

To initialize the ensemble members, the first initial condition of the ensemble is centered 

at an analysis derived from the three-dimensional variational data assimilation system 

(3D-Var, developed by Morss 1999). The 3D-Var background error covariance is time-

independent and is constructed following the assumptions in Parrish and Derber (1992)3. 

Note that the 3D-Var analysis is performed 100 days before the starting time of the 

LETKF experiments to obtain a initial condition not too far from the true state. This 

choice for the first initial condition is because that the spin-up time for the ensemble-

based assimilation schemes depends on the accuracy of the background state in the first 

analysis cycle (Caya et al. 2005, Kalnay and Yang, 2008). The first initial ensemble 

perturbations are Gaussian random perturbations of 0.05 variance. This amplitude is an 

order larger than the mean analysis error obtained with the LETKF with 128 

observations. 

                                                
2 In this QG model, 12-hour is a relatively short assimilation window, according to the 
error growth rate (Yang et al. 2008). 
3 The 3D-Var background error covariance matrix is diagonal in the spectral space with 
separable horizontal and vertical structures. It is also assumed that the structure of the 
covariance is insensitive to the observation density. Details about the 3D-Var system in 
the QG model can be found in Morss (1999). 
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For the LETKF analysis, the local patch for performing local analysis is a cuboid whose 

center is the analysis grid point, For our experiments, we use 20 ensemble members and 

choose the local patch to be 7×7 grid-points in the horizontal and to include the whole 

column (7 levels). For each local analysis applied on each analysis grid, 
  
x

a / f
 is a vector 

with a size of 1029, containing all the model variables within each local domain. 

Similarly,
   
X

a / f
 is the perturbation matrix with a size of 1029×20. The local analysis 

ensemble is then updated by (5-6).  

 

To optimize the LETKF performance, three procedures are carried out additionally. First, 

a Gaussian function with a decorrelation length of 5 grid points is applied to the 

observation error covariance to reduce the impact of more distant observations on the 

analysis (Miyoshi, 2005). Second, the multiplicative inflation values are arranged to vary 

in vertical due to the mean error profile and remain constant in time. From the bottom to 

top levels, they are 8.4%, 5.8%, 6.7%, 8%, 7.5%, 7.4% and 13.8 %. Finally, an additive 

perturbation with a very small amount of random perturbations (2% of the observation 

error) is added onto the analysis ensemble perturbations (Corazza et al., 2007). This 

procedure encourages the ensemble to capture more sub-growing directions and avoids 

the ensemble tendency to collapse into similar directions.  

 

We note that for local patches without available observations, there is no update in the 

standard LETKF for the background ensemble. The analysis ensemble is directly taken 
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from the background ensemble in these local patched, giving 
  
w

a
a vector of zeros and 

W
a

 equals to the identity matrix. 

 

3. Interpolation of the analysis weights 
 

The local analysis error covariance matrix in the LETKF is estimated by combining the 

contributions from each member of background perturbations and each available 

observation in the local region. Such contributions are represented in the local ensemble 

space by the weighting coefficients (
  
w

a
, Wa in (4-5)). The same information from 

observations and background states is used over several regions due to the use of 

overlapping local regions. This ensures that the weights vary slowly and allows the local 

analysis to be performed on a limited number of grid points (a coarse-resolution grid), 

and to spread out the information of the error statistics to the higher-resolution grid 

through the interpolation of the weights.  

 

Figure 1 illustrates how the sparse analysis is done within the LETKF configuration. The 

background ensemble is available at all the grid points of high resolution denoted as dots 

and crosses in Figure 1. The dots, arranged on a coarser grid, denote the grid points 

where the LETKF analyses and the weighting coefficients (
  
w

a
vector and 

  
W

a
 matrix) are 

computed. In this example, the analysis is only computed every three grid-points in both 

zonal and meridional. Therefore, considering any 3×3 grid-box, the coverage of the 

analysis grid, defined as the number of analysis grid points divided by the total number of 
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grid points is 11%. After the weight coefficients are collected on the coarse grids, we 

interpolate 
  
w

a
 and  onto the high-resolution grid points where no analysis has been 

computed, in order to generate the weight fields.  

 

This will result in one map of weight coefficients associated with the mean analysis 

increment, and K maps of weights associated with the analysis ensemble perturbations. 

As discussed in Section 2, the first map of weights (
  
w

a
) represents the observational 

impact in correcting the mean state, and the latter K maps (
  
W

a
) apply “errors of the day” 

structures4 based on the dynamical evolution of the ensemble perturbations to generate 

the analysis perturbations. Yang et al. (2008) showed that the accuracy of the ensemble 

mean state and the flow-dependent perturbations related to “errors of the day” are both 

important in improving the accuracy of the LETKF analysis. By projecting the 

corrections onto the local dynamical instabilities estimated by the ensemble, the LETKF 

background error covariance is able to properly correct the background ensemble mean 

with the available observations. At the same time, the accuracy of the mean state also 

determines the effectiveness of ensemble perturbations.  

For the interpolation of the weights, we apply a smooth bi-variate interpolation scheme 

(Akima, 1978) based on locally fitting quintic polynomials as the function of the zonal 

and meridional positions of the analysis grid. The chosen interpolation scheme is linear in 

the interpolated values. This ensures that the vector of K ones is still an eigenvector of 

                                                
4 The “error of the day” is the time-dependent, dynamical error related to the dynamically 
evolving instability (Kalnay, 2003). Corazza et al. (2003) provides detail discussions 
about the characteristics of the “error of the day “ from this QG model. 
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the interpolated Wa, so that the analysis ensemble perturbations calculated from the 

interpolated weights will maintain the property of zero mean as in (10).  

 

In addition to the analysis grid arrangement shown in Figure 1, we also conducted 

assimilation experiments with even coarser analysis grids. In the following, we show the 

results of three weight-interpolation experiments that the LETKF analysis is computed 

every 3, 5 or 7 grid-points zonally and meridinally. In terms of the sparseness, the 

corresponding analysis coverage is 11%, 4% and 2% respectively (one local analysis is 

computed every 3×3, 5×5 and 7×7 horizontal grid-box). We will show in the next section 

that even though the number of total local analyses is substantially reduced, the analyses 

derived by interpolating the weights to full-resolution show little degradation. 

 

Bowler (2006) indicated that the spatial consistency of the weighting coefficients is the 

advantage of the interpolation of the weights for performing analyses on a coarse grid. As 

an example, Figure 2(a) shows the weight coefficient derived from the full analysis for 

observational correction of the background ensemble mean. With the use of the 

symmetric square root matrix, the weighting coefficients derived at adjacent points are 

typically close to each other. This example is the contribution from the 4th ensemble 

member (an element of the 
  
w

a
 vector of maps) to the analysis mean at Day 48 00Z. The 

time and ensemble member for this example are arbitrarily chosen for illustration. The 

empty spots in Figure 2(a) are areas where there are no observations available in the 

corresponding local patch and the background ensemble is therefore not updated in these 
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regions. We note that there are some blockiness shown in Figure 2(a) due to the local 

analysis procedure. This does not generate sharp gradients in the analysis increments 

since the patterns of the weights are not the same among ensemble members at the same 

analysis time (Figure 4a shows the corresponding analysis increment for Figure 2a). 

 

Figures 2(b)-(d) are the interpolated maps of this weighting coefficient with coarser 

analysis grids for the same ensemble member. Because the weights tend to be consistent 

at adjacent points, the interpolated weight structures can represent the original structures 

reasonably well. Although the structure of the interpolated weights is smoothed out with 

2% analysis grid coverage (Figure 2d), the overall large-scale features are retained after 

interpolation. In section 4.1, we will give further discussion about representing the large-

scale features from the weight-interpolation.  

 

We now examine the weights applied to form the analysis ensemble perturbations, based 

on a diagonal element of  and an off-diagonal element. Figures 2(e)-(h) show the 

maps of the weight coefficients of the first element in the first column of the matrix , 

representing the contribution from the first background ensemble perturbation to the first 

analysis ensemble perturbation. The values derived from the full analysis coverage are 

shown in Figure 2(e). Figure 2(f)-(h) are the same weights after interpolation on coarser 

analysis grids. Since Wa is close to the identity matrix (as discussed in Section 3) the 

property gives the consistency between the analysis and background perturbations so that 

the main contribution for constructing an analysis ensemble perturbation is taken from its 

own background perturbation. Thus in Figure 2(e), the first ensemble forecast 
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perturbation has the most influence in determining the first analysis perturbation, with 

weights ranging from 0.7 to 1.0. Regions with lower values in these maps indicate that 

the contributions from other ensemble perturbations are important.  The main features of 

the weight map derived from full analysis coverage are well recovered in the interpolated 

maps, except for the 2% case, in which the patterns are heavily smoothed.  

 

As an example of the off-diagonal elements, Figures 2(i)-(l) show the maps of the weight 

coefficients of the fourth element in the first column of the matrix , representing the 

contribution from the fourth background ensemble perturbation to the first analysis 

ensemble perturbation. The large values in Figures 2(i)-(l) correspond to small values 

appearing in Figures 2(e)-(h). This again indicates that at this location, the other 

ensemble perturbations contribute more. Overall, their amplitude is much smaller 

compared to Figures 2(e)-(h), also because of the property that  is close to the identity 

matrix. The main features shown in Figure 2(i) are well recovered in Figures 2(j) –(l) 

after interpolation. 

 

Besides reducing the analysis computation, the interpolated weights also provide an 

additional benefit in obtaining reasonable weights for those local patches without 

available observations (the empty points in the interior domain of Figure 2 (a), (e) and (i)). 

For these points, the analysis ensemble is equal to the background ensemble in the 

original full analysis setting ( T

a
)0,,0,0(w != and W

a
= I ). This interpolation provides a 

feasible way to update the background ensemble in the regions that have not been 
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observed, or that are under-observed compared to neighboring regions (more discussions 

in Section 4.2). 

 

4. Interpolated Analysis Results 
 

In this section, we compare the LETKF sparse analyses constructed using weight 

interpolation with the analysis derived at full resolution. For comparison, we also conduct 

sparse analyses using interpolated analysis increments, after running the full-resolution 

LETKF for 20 days. The analysis increment is the difference between the ensemble mean 

of the analysis and background ( x f ! xa ), representing the correction made to the 

background ensemble mean. The increment interpolation is a traditional method used to 

convert a coarse resolution analysis into a full-resolution analysis. In this study, the 

increment interpolation uses the same interpolation method as used in the weight 

interpolation.  

 

The time series of the root mean square error for the analysis ensemble mean of the 

potential vorticity is shown in Figure 3. The LETKF analyses derived from full resolution 

or weights interpolation from the sparse grids outperform the 3D-Var analysis derived at 

the high (full) resolution. The 3D-Var analysis provides a reference when a background 

error covariance consists of the statistically-averaged structures. Results show that the 

sparse analyses with the interpolated weights at different analysis coverage (blue lines) 

have a quality similar to or even slightly better than the one obtained at full resolution. 

This result suggests that the interpolated weights are very useful in retaining the quality 
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of the analysis. Furthermore, they are supported by a large reduction in their 

computational costs. Table 1 summarizes the average computing time required for 

finishing one analysis cycle for different analysis grid coverage, including the time for 

looping for all the analysis grids and for interpolating the weights. Results show that the 

total computational time required for total local analyses can be reduced if the LETKF is 

not performed at full resolution. However, with the 11% analysis-grid coverage, the time 

spent on interpolation makes the overall computation cost slightly higher than the original 

full resolution. The computational time required for interpolation is reduced as the 

analysis coverage decreases below 4%, almost having half of computational time used to 

perform the full resolution LETKF.  

 

The analysis accuracy from using interpolated weights becomes worse only when the 

analysis grid is so coarse (2% or less) that the local patches of each analysis do not 

overlap. The sparse analyses using interpolated increments (shown as the blue lines in 

Figure 3b) are more sensitive to the sparseness of the analysis grid-point and have much 

lower analysis accuracy than the ones derived from the interpolated weights.  

 

The analysis accuracy from the interpolated increments remains satisfactory only when 

using a high analysis coverage of 50%, where the analysis grid-point is arranged as a 

staggered grid available every other grid-point. Once the coverage decreases, the 

accuracy degrades quickly. With 25% analysis coverage, the analysis increments are 

smoothed out and stretch isotropically and thus the analysis has accuracy similar to the 

3D-Var analysis. With a lower analysis coverage of 11%, the LETKF with the 
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interpolated increments diverges (the dashed blue line in Figure 3b). These results show 

that interpolating the analysis increments leads to a serious degradation of the analysis, 

whereas interpolating the weights retains the analysis accuracy and the advantages of the 

LETKF with the efficiency of low-resolution analysis. 

 

The results shown in Figure 3 can be further understood from the structures of the 

analysis increments obtained from the sparse analyses constructed with interpolated 

weights. The analysis increments, as shown for potential vorticity at the mid-level in 

Figure 4, represent forecast errors stretched by the flow, and they have elongated 

structures and scales similar to that of bred vectors (Corazza et al. 2002).  

 

We found that the analysis increments 

obtained from interpolated weights at different analysis coverage (11%, 4% and 2%) are 

very similar, as shown in an example in Figure 4(a)-(d). It is clear that interpolating the 

weights succeeds in recovering quite well the full analysis increments and the obtained 

analysis increments are insensitive to the analysis coverage. This is because the weights 

vary on a larger scale than the analysis increments (this is discussed further in Section 

4.1). By contrast, if the interpolation is done on the analysis increments, as in Figures 

4(e)-(h), the structures of the analysis increments are quickly smoothed out as the 

analysis grid becomes coarser. Only with a high analysis-coverage of 50% can the local 

characteristics in the analysis increment at full resolution be retained and thus maintain 

an advantage over 3D-Var. In Figure 4(h), the pattern of interpolated analysis increment 

with 2% analysis coverage has an unrealistic large-scale feature. As could be expected, 
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this will impose false corrections to the background state and lose the advantage of using 

the time-dependent error statistics in the LETKF. Thus, the analysis accuracy will be 

quickly degraded once these increment-interpolated analyses are recycled in a continuous 

analysis cycles). 

 

4.1 Spectral analysis 

The impact of the different interpolation schemes can be illustrated through the spectral 

analysis of the distribution of errors and analysis increments, shown for potential 

temperature on the bottom level. This variable is chosen to show because, in this QG 

model, the perturbation growths at the boundaries account most of the variances in wind, 

temperature or streamfunction (Snyder et al. 2003).  

Figure 5 shows the time-averaged power spectra for the weights, 
  
w

a
 used to update the 

background ensemble mean, the analysis increment and the forecast and analysis errors 

obtained from the full resolution LETKF. The time averaged spectrum of the true 

potential temperature is also included in each figure 5 in grey.  The spectrum of the true 

state shows that the model solution varies on a large scale, with most of its power in 

global wavenumbers smaller than 15 and little amplitude in the small scales (global 

wavenumbers larger than 50). Comparing the spectral slopes of the weights and the 

analysis increments (Figures 5a, b) shows that the weights derived from LETKF vary on 

much larger scales than the analysis increments. From Figure 5(c), the analysis 

increments correct background errors for the features of scales smaller than the 

wavenumber 50, but the analysis errors in the short waves are an order of magnitude 
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larger than the forecast errors. This indicates that the analysis increment from the full-

resolution LETKF introduces unnecessary error structures at small scales, even though 

their amplitudes are insignificant compared to the large scale. Also, such structures are 

quickly damped being evolved by the model. 

 

Figure 6 shows the corresponding results of the spectral analysis for weight and 

increment interpolations. For weight interpolation (Figure 6a), the amplitudes of the large 

and medium scales in the interpolated weights are similar to those of the full resolution 

analysis. However, the spectral amplitudes of the small-scale structures are reduced by an 

order of magnitude as the analysis-grid coverage is reduced. These features are also 

reflected on the analysis increments created by using these weights (the blue lines in 

Figure 6b). For the analysis increments derived from the weight-interpolation, the 

spectral amplitudes of the larger scales are not sensitive to the analysis-grid coverage 

while the amplitudes of the small scales decrease as the coverage reduces. Therefore, the 

small-scale error structures appearing in the full resolution analysis, are avoided. By 

contrast, when using increment interpolation for the 50% analysis-grid coverage, the 

small-scale structures of the increments are amplified although the large-scale features 

remain similar to the full resolution analysis. The small-scale errors are largely increased 

by increment interpolation because the analysis grids cannot resolve the small-scale 

features of the increments. Since these small-scale structures have relatively small 

amplitudes, with a 50% grid coverage this does not affect the overall analysis accuracy 

significantly. However, as the coverage reduces to 25%, the structures of the increments 

are smoothed out (the red dashed line in Figure 6b). This degrades the analysis accuracy 
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at all scales, as indicated by the larger analysis error (the red dashed line in Figure 6c). 

This also indicates that the increment interpolation is more sensitive to the analysis grid 

coverage. 

 

4.2 Impact on the data-void region 

In the standard LETKF, the local analysis for the region without observations is directly 

taken from the corresponding background states. Therefore, the forecast skill of such 

region can only be improved from dynamical propagations through model integration. 

The weight-interpolation method could have an advantage at these regions by providing 

values for the weight coefficients to construct the analysis. To investigate this, 14 

observations were removed from the original 128-observation distribution. This create a 

data-void region in the centre of the model domain with a size of 17 × 9 grid-points.  

 

Figure 7 compares the RMS analysis errors in the data-void region for the full and the 

weight-interpolated LETKF. After removing 14 observations, the analysis accuracy from 

derived with the full-resolution is much degraded (the black line) compared to the one 

derived from 128 observations (the grey line). With the same 114 observations, the 

weight-interpolated analyses with either 11% or 2% analysis grid coverage are both better 

than the full-resolution one, especially at the times with large errors. Averagely, the 

weight interpolation can reduce as much as 18% of the analysis errors in this region. 
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The impact can be illustrated by regarding the corresponding analysis increments. Figure 

8(a) shows the increment structures of potential vorticity at the 3rd level required to 

correct the background ensemble mean if all observations are available in the full-

resolution LETKF. With the existence of the data-void region, the number of locally 

available observations is greatly reduced since observation distribution is not regular. 

This even affects the local analysis outside but near the data-void region, increasing the 

amount of zero corrections outside the data-void region, as shown in Figure 8(b). This 

degrades the analysis accuracy near this region. In contrast, the analysis increments 

derived from the weight interpolation are able to provide useful corrections for the 

background (Figure 8c,d). In this example, the increments in the northeast part of this 

region are retrieved with either the 11% or the 2% analysis-grid coverage. Our results 

confirm that for the under-observed region the analysis accuracy can benefit from the 

weight-interpolation method. 

 
5. Summary 
 

In this study, we investigated an efficient method to reduce the analysis computational 

cost within the framework of the LETKF following a suggestion by Bowler (2006). The 

LETKF analyses are computed on coarse grids, but the weights used to update the 

background ensemble are interpolated onto the high-resolution grids. Instead of 

repeatedly using the observations and the background ensemble to perform the LETKF, 

the analysis at the high-resolution is derived through estimating the interpolated weights. 

In the LETKF, the weights of the analysis ensemble represent two sources of 

information: one is associated with the observations contribution to the mean background 
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state and the other is associated with the dynamically evolving error structures obtained 

from background ensemble perturbations. Interpolations are done separately on these two 

components of the weights by taking advantage of the symmetric square root solution of 

the transform matrix used in the LETKF.  

 

We showed that the weights derived from the LETKF vary on larger scales than the 

analysis increment and they are consistent among nearby points. The interpolated weight 

maps for a coarse analysis-grid can represent evolving features very well. For the same 

reason, there is little degradation in the quality of the weight-interpolated analyses 

compared to the analyses derived with the high-resolution grid. Therefore, the 

corresponding analysis accuracy is still high even when the analysis grid is reduced to 

just 2% of the grid-points of the full resolution grid. The results are insensitive to the 

analysis coverage in this study.  

 

For comparison, we show that the weight-interpolated analysis are much more accurate 

than the analysis constructed from interpolating the analysis increments. Also, the 

analysis quality from the weight-interpolation is insensitive to the sparseness of the 

analysis-grid while the quality from the increment-interpolation is much more sensitive to 

the analysis grid coverage due to the stretching of dynamical scales.  

 

The analysis accuracies by interpolating the weights or the increments are related to their 

corresponding spectral characteristics. Spectral analysis shows that the weights vary on a 
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larger scale than the analysis increment. For the weights, the spectral power at larger 

scales is not sensitive to the analysis grid converge but the amplitudes of short waves are 

damped after interpolation. Given that the background errors have very little amplitude in 

on small-scales, the analysis accuracy can be well retained by the weight-interpolation. 

This implies that the weight-interpolation may bring benefits on damping the unwanted 

small scales features such as the gravity waves. For increment-interpolation the spectral 

power is very sensitive to the sparseness of the analysis grids.  Not only the amplitudes of 

the small scales of the increments are amplified with interpolation and the analysis errors 

are degraded at all scales by reducing the analysis grid coverage. 

 

Besides performing sparse analyses, the weight-interpolation can also be used to provide 

analysis weights for regions without local observations, so that instead of returning the 

background ensemble values without updating them, as in the original LETKF procedure, 

the analysis ensemble can still be computed for these under-observed regions. This 

advantage of smoothing the weights in handling under-observed regions and the fact that 

the spectral power of the weights is dominated by the large scales explains why the 

interpolated weight results are not just comparable but even slightly better than the full 

resolution analysis. As a result, smoothing the weights may be advantageous even when 

using the full resolution analysis grid.  

 

For each local analysis, the analysis ensemble is the linear combination of the 

background ensemble and any conserved quantity that is a linear function of the model 

state will be equally conserved in the original LETKF analysis. With the method of 
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weight interpolation, the linear property of W
a
v = 0  is well maintained at the non-

analysis grid point. This can keep the analysis ensemble centered at the mean state 

(X
a
v = 0 ). Additionally, the analysis remains in the subspace of the forecast ensemble, 

so that properties such as conservation of total mass and balance, satisfied by each 

ensemble member, are also satisfied in the analysis.  

 

As the ensemble-based data assimilation becomes feasible for operational use 

(Houtekamer et al. 2005, Keppenne et al. 2002, Miyoshi et al. 2008 and Whitaker et al. 

2008), this study provides guideline for performing sparse analyses with interpolated 

weights. We note that the results obtained in this study may be over-optimistic since the 

quasi-geostrophic model used in the experiments was only slightly imperfect. 
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Table caption 
Table 1 Computational time required for one analysis cycle for different analysis-grid 
coverage. 
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Figure Captions 

 
Figure 1 The grid arrangement for an 11% analysis-grid coverage. The dots are the grids 

where the LETKF analysis is actually performed. The crosses indicate high-resolution 

grid points whose analysis will be derived by weight-interpolation or increment 

interpolation (see the explanation in the text). 

Figure 2 (a) The weighting coefficients corresponding to the fourth element of the 

weighting vector ( a
w ) for updating the background ensemble mean, derived with 100% 

analysis grid-point coverage (full resolution); (b)-(d) the same as (a), except that the 

weight is interpolated at the 11%, 4% and 2% analysis grid coverage. (e)-(h) are the first 

element of the first column of the weighting matrix ( a
W ) for constructing the first 

analysis ensemble perturbation derived at the same resolutions used in (a)-(d). (i)-(l) are 

the same as (e)-(h) except for the fourth element of the first column of a
W . In (a), (e) and 

(i), the empty spots denote the local regions with no available observations: they are zero 

for (a) and (i) and one for (e).  

Figure 3 (a) The time series of the RMS analysis error in terms of the potential vorticity 

from different DA experiments. The LETKF analysis from the full-resolution is denoted 

as the black line and the 3D-Var derived at the same resolution is denoted as the grey 

line. The LETKF analyses derived from weight-interpolation with different analysis 

coverage are indicated with blue lines, (b) the sane as (a), except for the blue lines, they 

are the LETKF analyses derived after the first 20 days from increment-interpolation with 

different analysis coverage. 



 34 

Figure 4 The analysis increment for potential vorticity at the 3rd level at Day 48 00Z 

from the LETKF with (a) a full resolution, (b) obtained through interpolated weights with 

11% analysis coverage, (c) the same as (b) except for 4% analysis coverage, (d) the same 

as (b), except for 2% analysis-grid coverage. (e)-(h) are the interpolated analysis 

increments computed by taking 50%, 11%, 4% and 2% analysis coverage of analysis 

increment obtained at the full-resolution and interpolating back to the full-resolution. 

Figure 5 (a) Power spectra of weights derived from the full-resolution LETKF, (b) same 

as (a) but for analysis increment for potential temperature at the bottom level, and (c) 

same as (b) but for analysis and forecast errors. Power spectra of the true potential 

temperature at the bottom level is overplotted with the grey line, adjusted by a constant 

factor of 10-4.  

Figure 6 (a) Power spectra of weights derived from the LETKF with full resolution and 

interpolated weights with different analysis grid coverage, (b) same as (a) but for analysis 

increment for potential temperature at the bottom level and the ones obtained from 

interpolated increment, and (c) same as (b) but for analysis errors.  

Figure 7 The time series of the RMS analysis error in terms of the potential vorticity 

from different DA experiments for the domain that the x-grid points are between 23 and 

41 and the y grid points are between 12 and 22 (the data-void region defined in the text). 

The LETKF analysis from the full-resolution with 114 observations is denoted as the 

black line. The analyses derived from weight-interpolated LETKF with 11% and 2% 

analysis coverage are indicated with blue lines. The analysis derived with 128 

observations from full-resolution LETKF is denoted as the grey line.  
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Figure 8 The analysis increment for potential vorticity at the 3rd level at Day 77 from the 

LETKF with (a) full resolution and 128-observation network, (b) full resolution and 114-

observation network that has a data-void region indicated by the dashed box (c) obtained 

through interpolated weights with 11% analysis coverage, (c) the same as (b), except for 

2% analysis-grid coverage. 
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Table 2 Computational time required for one analysis cycle for different analysis-grid 
coverage 

Analysis grid 
coverage 

Computing  
time (sec)  

100% 11% 4% 2% 

Total  5.1 6.7 2.9 2.1 
local analysis  4.6 0.5 0.2 0.1 
interpolation  4.9 1.6 1.0 
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Figure 1 The grid arrangement for an 11% analysis-grid coverage. The dots are the grids 
where the LETKF analysis is actually performed. The crosses indicate high-resolution 
grid points whose analysis will be derived by weight-interpolation or increment 
interpolation (see the explanation in the text). 
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Figure 2 (a) The weighting coefficients corresponding to the fourth element of the 
weighting vector (

a
w ) for updating the background ensemble mean, derived with 100% 

analysis grid-point coverage (full resolution); (b)-(d) the same as (a), except that the 
weight is interpolated at the 11%, 4% and 2% analysis grid coverage. (e)-(h) are the first 
element of the first column of the weighting matrix (

a
W ) for constructing the first 

analysis ensemble perturbation derived at the same resolutions used in (a)-(d). (i)-(l) are 
the same as (e)-(h) except for the fourth element of the first column of 

a
W . In (a), (e) and 

(i), the empty spots denote the local regions with no available observations: they are zero 
for (a) and (i) and one for (e).  
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Figure 3 (a) The time series of the RMS analysis error in terms of the potential vorticity from different 
DA experiments. The LETKF analysis from the full-resolution is denoted as the black line and the 3D-Var 
derived at the same resolution is denoted as the grey line. The LETKF analyses derived from weight-
interpolation with different analysis coverage are indicated with blue lines, (b) the sane as (a), except for 
the blue lines, they are the LETKF analyses derived after the first 20 days from increment-interpolation 
with different analysis coverage. 

(b) 

(a) 
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Figure 4 The analysis increment for potential vorticity at the 3rd level at Day 48 00Z from the LETKF 
with (a) a full resolution, (b) obtained through interpolated weights with 11% analysis coverage, (c) the 
same as (b) except for 4% analysis coverage, (d) the same as (b), except for 2% analysis-grid coverage. (e)-
(h) are the interpolated analysis increments computed by taking 50%, 11%, 4% and 2% analysis coverage 
of analysis increment obtained at the full-resolution and interpolating back to the full-resolution. 
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Figure 5 (a) Power spectra of weights derived from the full-resolution LETKF, (b) same 
as (a) but for analysis increment for potential temperature at the bottom level, and (c) 
same as (b) but for analysis and forecast errors. Power spectra of the true potential 
temperature at the bottom level is overplotted with the grey line, adjusted by a constant 
factor of 10-4. 
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Figure 6 (a) Power spectra of weights derived from the LETKF with full resolution and 
interpolated weights with different analysis grid coverage, (b) same as (a) but for analysis 
increment for potential temperature at the bottom level and the ones obtained from 
interpolated increment, and (c) same as (b) but for analysis errors. 
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Figure 7 The time series of the RMS analysis error in terms of the potential vorticity from different DA 
experiments for the domain that the x-grid points are between 23 and 41 and the y grid points are between 
12 and 22 (the data-void region defined in the text). The LETKF analysis from the full-resolution with 114 
observations is denoted as the black line. The analyses derived from weight-interpolated LETKF with 11% 
and 2% analysis coverage are indicated with blue lines. The analysis derived with 128 observations from 
full-resolution LETKF is denoted as the grey line.  
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Figure 8 The analysis increment for potential vorticity at the 3rd level at Day 77 from the LETKF with (a) 
full resolution and 128-observation network, (b) full resolution and 114-observation network that has a 
data-void region indicated by the dashed box (c) obtained through interpolated weights with 11% analysis 
coverage, (c) the same as (b), except for 2% analysis-grid coverage. 


