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 The summer of 2002 marked the beginning of the Research Internships in Science and 

Engineering (RISE) program.  RISE worked to build an extensive network of women faculty, 

science and engineering researchers, graduate students, and undergraduates.  The program built this 

network through an eight-week summer research experience for “rising” junior and senior 

undergraduates.  The goal was to encourage all participants to remain in science and engineering 

and to pursue graduate degrees. 

 By engaging twenty undergraduate junior and senior RISE scholars in teams with research 

projects coordinated by female faculty, the program introduced female students to women mentors 

and role models while providing high-quality opportunities to enhance their research knowledge 

and skills.  RISE interns received advanced training in team skills, interpersonal communication, 

and project management.  They were also able to become a part of the hierarchy of female 

mentorship by interacting with a group of incoming freshmen students.  By sharing their experience 

as students in science and engineering and as RISE interns, they became role models to the younger 

students. One of the RISE participants described her experience as follows: “As an intern in the 

RISE program, my main expectation was to gain familiarity with the research process.  Without 

prior research experience, I was unsure if graduate school was a realistic option for me.  The RISE 

program allowed me to make my final decision to pursue a graduate degree and gave me 

confidence in my ability to contribute to a research project. I was assigned to a project in the field 

of Meteorology, a field about which I had little or no knowledge.  Through the guidance of our 

faculty mentor, Dr. Eugenia Kalnay, and graduate advisors Malaquías Peña and Shu-Chih Yang, 

my team and I were able to first understand problems involved with weather prediction, and then 

apply our new knowledge to researching a method of weather prediction.  Interpreting results, 

accepting that actual results may not agree with expected ones, and exploring new paths that the 
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results lead to, are all exciting components of the creative process of research that my team and I 

had the opportunity to engage in.  The fact that we were able to contribute to the discovery of new 

results helped me to decide to continue participating in research in graduate school.” The summer 

concluded with the RISE Research Symposium, where research teams presented the results of their 

research.  Coordinating faculty and representatives from the A. James Clark School of Engineering 

and the College of Mathematics and Physical Sciences, as well as staff from the National Science 

Foundation, were among those attending the Symposium.  Dr. Rita Colwell, Director of the 

National Science Foundation, gave the keynote address. 

 One of the teams worked on atmospheric predictability. The purpose of this note is to 

describe the experience and results obtained by this team in order to encourage similar programs to 

attract women and minorities into graduate studies in the geosciences.  Although the four RISE 

interns were selected because of their outstanding mathematical, physical and computer sciences 

skills, three of them had no background in meteorology, and the fact that the research internship 

had to be completed in 8 weeks imposed a significant challenge. The team was given a problem: 

become familiar with the famous Lorenz (1963) model, and explore its predictability using 

breeding (Toth and Kalnay 1997, Kalnay, 2003), an algorithm chosen for this project because of its 

simplicity. The Lorenz model equations are  

( )dx y x
dt
dy rx y xz
dt
dz xy bz
dt

σ= −

= − −

= −

   (1) 

where the parameters 10σ = , b , and 8 / 3= 28r =  chosen by Lorenz result in chaotic solutions 

(Fig. 1). This model has been very widely used as a prototype of chaotic behavior and an example 
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of lack of long-term predictability (e.g., Sparrow, 1982, Tsonis, 1992, Kalnay et al., 2002). The 

stability properties and the dependence of the forecast error growth on the initial conditions have 

been previously studied (e.g., Nicolis et al, 1983, Nese, 1989, Elsner and Tsonis, 1992, Palmer, 

1993), but we are not aware of studies about the prediction of the occurrence of regime changes and 

their duration. The students were given as a template a MATLAB program of a coupled fast-slow 

Lorenz model written by Jim Hansen, from which they unraveled the classic Lorenz model code 

and learned how to run and plot its results. They were asked: “Imagine that you are a forecaster 

living in the Lorenz attractor. Everybody in the attractor knows that there are two weather regimes, 

which we could denote as ‘Warm’ and ‘Cold’ (see Figure 1), but the public needs to know when 

changes in regime will happen and how long will they last. Can you develop simple forecasting 

rules to alert people about imminent changes of regime?” 

 The students implemented breeding, a method used to estimate forecast errors in weather 

models. Bred vectors are simply the difference between two model runs, the second originating 

from slightly perturbed initial conditions, periodically rescaled (Figure 2).  The amplification of the 

bred vectors can be used to identify regions of high error growth within the attractor. The Lorenz 

model used in this project was integrated using a fourth order Runge-Kutta time scheme with a time 

step of ∆t=0.01. The bred vectors were obtained from a second run with the same model started 

from an initial perturbation 0 0 0( , , 0 )x y zδ δ δ δ=x  added to the control at time . Every 8 time 

steps the vector difference 

0t

δx  between the perturbed and the control run was rescaled to the initial 

amplitude 2 2 2
0 00 0| | x y zδ δ δ= +x δ+  and added to the control run (Fig. 2). The bred vector 

amplification factor was defined as the size of the bred vector after 8n =  steps divided by its 

original size 0/δ δx x , and the growth rate as ( 0
1 ln /
n

δ δ= x x )g .  The students plotted the 
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observed bred vector growth on the Lorenz attractor in order to explore its predictability (Figure 3).  

Red indicates that during the last 8 steps the perturbation growth rate g was larger than 0.064 (i.e., 

the size of the bred vectors grew by 1.67 or more in 8 time steps), whereas blue indicates a negative 

growth rate, meaning that the perturbations are actually decaying. The results shown in this figure 

were very promising because they suggested that bred vector growth would allow estimating 

regions of high and low predictability of the attractor. 

 The students then examined the bred vector growth for patterns of predictability. They 

found that plotting the growth rates on the evolution of the variable x(t) provides a means to predict 

when the model will enter a new regime, and also how long the new regime will last.  Figure 4 

illustrates the "forecasting rules" that the students developed by inspection.  Rule 1: When the 

growth rate exceeds 0.064 over a period of 8 steps, as indicated by the presence of one (or more) 

red stars, the current regime will end after it completes the current orbit. Rule 2: The length of the 

new regime is proportional to the number of red stars. For example, the presence of 5 or more stars 

in the old regime, indicating sustained strong growth, implies that the new regime will last 4 orbits 

or more (see Fig. 5 for the relationship between number of red stars and the duration of the new 

regime).   

After the RISE internship had been completed, and the results presented at the RISE 

Research Symposium, Evans (supported by the School of Engineering) and Peña carried out an 

objective verification of these simple forecasting rules. Table 1 is the contingency table for the 

categorical Rule 1 that forecasts the occurrence of a regime change during the following orbit. 

Table 2 is the corresponding contingency table for Rule 2 that the presence four stars or less 

indicates that the new regime will only last up to three orbits. Figure 5 shows that there is a strong 

relationship between the number of red stars in the old regime and the duration of the new regime. 
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The verification scores obtained for the rules, with hit rates over 90%, threat scores over 80%, and 

false alarm rates of less than 10% indicate that both rules provide excellent predictions of regime 

change and duration. 

 In summary, the RISE students succeeded in providing the mythical inhabitants of the 

chaotic Lorenz attractor with robust prediction rules that would allow them to be prepared for 

changes in regime and indicate how long the new regime would probably last. While in this 

process, the undergraduate women learned that they were able to both perform and enjoy research 

and strengthened their motivation to pursue research careers in science and engineering. 
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Figure legends: 

 

Figure 1: Solution of the Lorenz model equations (1) over 1500 time steps, showing a “warm” 

regime with positive values of x and y, and a “cold” regime with negative values of x and y. The 

solution typically remains for several loops in each regime before changing to the other regime.  

 

Figure 2: Schematic of the construction of bred vectors, which are the difference between a 

perturbed and a “control” (unperturbed) solution. Every few (in this case 8) steps, the difference, 

rescaled to the original size and added to the control forecast, becomes the initial condition for the 

perturbed forecast. The ratio between the initial and the final size is the amplification of the bred 

vector during that interval. 

 

Figure 3: The Lorenz “butterfly” attractor with bred vector growth over 8 steps. The table indicates 

the range of the growth rate corresponding to each color. 

 

Figure 4: Time series of the variable x versus time step, with breeding cycles of 8 time steps, with 

colored stars indicating the bred vector growth as in Fig. 3.  Each panel shows 4000 steps, 

corresponding to 500 breeding cycles.  

 

Figure 5: Observed number of cycles in the new regime for a given number of red stars in the old 

regime.  The numbers indicate the number of pairs observed, with blanks indicating no observed 

pairs. Dashed lines indicate the specific rule verified in Table 2, although other combinations yield 

similarly high verification scores.  
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    Obs 

Fcst 

 

Yes 

 

No   

 

Total 

Yes 187 13 200 

No 33 299 332 

Total 220 312 532 

 

Table 1: Contingency table for Rule 1 (a change of regime takes place in the orbit after the 

appearance of at least one red star), computed over 40,000 time steps, with 187 changes of regime. 

These numbers correspond to a hit rate (percentage of the forecasts correctly anticipating the 

subsequent change or lack of change of regime) is HR=91.4%, the threat score or critical success 

index is TS=80.3%, and the false alarm rate, the percentage of forecasts in which a change of 

regime was forecast but did not occur, is FAR=6.5% (Wilks, 1995, pp 238-241).   
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    Obs 

Fcst 

 

Yes 

 

No   

 

Total 

Yes 134 3 137 

No 12 38 50 

total 146 41 187 

 

Table 2: Contingency table for Rule 2 (fewer than five red stars in the old regime indicate that the 

new regime will only last three orbits or less, see Figure 3), computed over 40,000 steps. These 

numbers correspond to HR=92.0%, TS=90.0%, and FAR=2.2%. 
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Figure 1: Solution of the Lorenz model equations (1) over 1500 time steps, showing a “warm” 

regime with positive values of x and y, and a “cold” regime with negative values of x and y. 

The solution typically remains for several loops in each regime before changing to the other 

regime.  
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Figure 2: Schematic of the construction of bred vectors, which are the difference between a 

perturbed and a “control” (unperturbed) solution. Every few (in this case 8) steps, the difference, 

rescaled to the original size and added to the control forecast, becomes the initial condition for the 

perturbed forecast. The ratio between the initial and the final size is the amplification of the bred 

vector during that interval. 
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Figure 3: The Lorenz “butterfly” attractor with bred vector growth over 8 steps. The table indicates 

the range of the growth rate corresponding to each color. 
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Figure 4: Time series of the variable x versus time step, with breeding cycles of 8 time steps, with 

colored stars indicating the bred vector growth as in Fig. 1.  Each panel shows 4000 steps, 

corresponding to 500 breeding cycles.  
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Figure 5: Observed number of cycles in the new regime for a given number of red stars in the old 

regime.  The numbers indicate the number of pairs observed, with blanks indicating no observed 

pairs. Dashed lines indicate the specific rule verified in Table 2, although other combinations yield 

similarly high verification scores.  
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