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Abstract

We present an efficient variation of the Local Ensemble Kalman Filter (Ott et al.
2002, 2004) and the results of perfect model tests with the Lorenz-96 model. This
scheme is locally analogous to performing the Ensemble Transform Kalman Filter
(Bishop et al. 2001). We also include a four-dimensional extension of the scheme to
allow for asynchronous observations.

1. Introduction

This paper describes an efficient method of implementing an Ensemble Kalman Filter (EnKF),
which we call a Local Ensemble Transform Kalman Filter (LETKF). Unlike variational based data
assimilation schemes, LETKF (or any EnKF scheme) represents the forecast uncertainty an with
ensemble of forecasts. Ensemble based data assimilation is a natural approach since numerical
weather prediction centers, such as NCEP and ECMWF, already employ ensemble forecasting
operationally to assess the uncertainty in their forecasts. Using this information in the data
assimilation procedure has the potential to provide better initial conditions, both for the main
forecast and for the ensemble forecast.

∗E-mail: jharlim@math.umd.edu
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The goal of an EnKF is to generate at regular time intervals an analysis ensemble, that is, an
ensemble of model states that reflects both an estimate of the true atmospheric state (through its
mean) and the uncertainty of this estimate (through its spread). If successful, then applying the
forecast model to the analysis ensemble at one time yields a background ensemble at the next
time, representing a probabilistic estimate of the atmospheric state before new observations are
taken into account. The analysis cycle is then completed by adjusting the background ensemble
to better fit the new observations. In particular, the analysis ensemble mean is formed, in a
sense, as a weighted average of the background ensemble mean and the observations, with
the weights determined from the background and observation uncertainties. More precisely, the
analysis ensemble mean is the model state that best fits the given background and observation
probability distributions.

In a Kalman filter, these distributions are treated as Gaussian and the uncertainties are thus
characterized by covariance matrices. The background and observation covariances determine
the analysis covariance. The background covariance is computed as the sample covariance
of the background ensemble, and thus to be consistent one must choose an analysis ensemble
whose sample covariance matches the analysis covariance determined by the Kalman filter. One
approach is to add to the analysis ensemble mean the columns of a square root of the analysis
error covariance matrix. This type of analysis scheme is known as an Ensemble Square Root
Filter (EnSRF) (Tippett et al. 2003) or a deterministic EnKF (Whitaker and Hamill 2002). In con-
trast, the early versions of EnKF (Evensen 1994; Burgers et al. 1996; Houtekamer and Mitchell
1998) are stochastic in the sense that they perturb the observations randomly in generating each
ensemble member. Several variations of implementing EnSRF were introduced by exploiting the
non-uniqueness of matrix square root, including the Ensemble Adjustment Kalman Filter (EAKF)
of Anderson (2001), Ensemble Transform Kalman Filter (ETKF) of Bishop et al. (2001), and Local
Ensemble Kalman Filter (LEKF) of Ott et al. (2002, 2004).

In LEKF, the analysis state is obtained by performing “local analyses” at each model grid
point. Each local analysis accounts for only the observations within a local region surround-
ing the grid point, and therefore the choice of the size of the local regions should reflect the
distance over which dynamical correlations represented by the ensemble are meaningful. The
localization improves the efficiency of the scheme because each local analysis involves much
less data than a global analysis, and the local analyses can be computed independently in par-
allel. More importantly, as pointed out in Anderson (2001), Hamill et al. (2001), and Houtekamer
and Mitchell (2001), the localization suppresses spurious long-range correlations produced by a
limited ensemble size.

For ensemble of size k, LEKF performs the analysis in a (k − 1)-dimensional space E, using
an orthonormal basis consisting of eigenvectors of the background covariance matrix. In this
paper, we show that by performing the analysis in a k-dimensional space S with the background
ensemble perturbations as the “basis”, LEKF computationally becomes more efficient. Formally,

2



each local analysis with this choice of basis is analogous to the ETKF and hence we call our
scheme a Local ETKF (or LETKF). In contrast to the global ETKF, which requires the ensemble
encompass the global uncertainty, in LETKF the ensemble need only encompass the uncertainty
within each local region. We believe that this is feasible with an ensemble of moderate size due
to the local low dimensionality of the atmospheric uncertainty observed in (Patil et al. 2001) and
the results in (Szunyogh et al. 2005) for LEKF on the NCEP GFS model using fewer than 100
ensemble members. In our implementation of LETKF, we form the analysis ensemble pertur-
bations from the symmetric square root of the analysis error covariance matrix, as opposed to
the non-symmetric square root used by Bishop et al. (2001). In this respect, our approach is
analogous to the Spherical Simplex ETKF of Wang et al. (2004).

In an operational setting, the initial conditions are generated every six hours, though many
observations (mainly from the satellite and commercial flight observations) are available more
frequently. Very limited computational time is allowed for each analysis (less than 10 minutes at
NCEP). Given such constraints, an efficient algorithm becomes very important. One approach
is the 4D-EnKF of Hunt et al. (2004). This four-dimensional extension of EnKF finds the analysis
ensemble mean by fitting the linear combinations of the trajectories of the background ensemble
to the asynchronous observations. This scheme may be thought of as an approximation to 4D-
VAR (Talagrand 1981), the four-dimensional data assimilation technique used operationally by
ECMWF; its main advantages is that it does not require computing the linear adjoint model for
the (nonlinear) forecast model. In this paper, we introduce a 4D-LETKF that is analogous to
4D-EnKF but mathematically simpler.

The reminder of this paper is organized as follows. In Section 2 we present our global filter,
this is an alternate formulation of ETKF, together with a step-by-step guide on how to efficiently
implement this formulation. We discuss localization, our four-dimensional extension, and vari-
ance inflation in Section 3. We conclude this paper by showing some results obtained for the
Lorenz-96 model (Lorenz and Emmanuel 1998) in Section 4, and give a brief summary in Sec-
tion 5.

2. Global Filter Formulation

In this section, we first formulate the governing equations of LETKF in a global setting, then
we give step-by-step instructions for applying them in an efficient manner. For a more detail
derivation, see (Hunt 2005).
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2a. Filter Derivation

The goal of an ensemble square root filter is to evolve an ensemble of model states that at any
given time reflects, in the manner described below, both an estimate of the true system state and
an uncertainty of that estimate. The ensemble members are evolved independently according
to the model, except when new observations of the system state become available, at which
point the entire ensemble is adjusted in tandem to reflect the new state estimate and (reduced)
uncertainty dictated by the observations. This adjustment is called the “analysis”.

The inputs to the analysis are the forecast (or “background”) ensemble {xb(i) : i = 1, 2, . . . , k}
of size k, the observation operator H : Rm → Rs that maps the model space to the observation
space, the observations yo ∈ Rs, and the observation error covariance matrix R ∈ Rs×s. The
analysis assumes that the best available estimate to the system state, before the observations
are taken into account, is the background mean

x̄b = k−1
k∑

i=1

xb(i).

Define the m× k matrix of background ensemble perturbations Xb, whose ith column is Xb(i) =
xb(i)− x̄b. Then the background uncertainty in this state estimate is described by the background
error covariance matrix

Pb = (k − 1)−1Xb(Xb)T . (1)

Thus Xb is a matrix square root of (k − 1)Pb. (Since Pb can have rank at most k − 1, it accounts
for uncertainty only in k−1 directions in model space, which can be problematic if k is too small.)

The output of the analysis is the analysis ensemble {xa(i) : i = 1, 2, . . . , k}. The analysis
mean

x̄a = k−1
k∑

i=1

xa(i)

and error covariance matrix
Pa = (k − 1)−1Xa(Xa)T , (2)

should represent respectively the estimate of the system state after the observations are assim-
ilated, and uncertainty in this estimate. Here, the matrix Xa of analysis ensemble perturbations,
whose ith column is Xa(i) = xa(i) − x̄a, is an m× k matrix square root of (k − 1)Pa.

The transformation from background ensemble {xb(i)} to analysis ensemble {xa(i)} is based
on the transformation from the background mean x̄b and error covariance matrix Pb to the analy-
sis mean x̄a and error covariance matrix Pa in the standard Kalman Filter, which assumes Gaus-
sian observation errors, a linear model, and a linear observation operator. Ensemble Kalman
Filters handle nonlinear model dynamics by evolving the analysis ensemble of model states from
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one analysis time to the next and using the sample mean and covariance of the evolved en-
semble as the background mean and covariance for the next analysis. If the time interval and
analysis error covariance are sufficiently small, a Gaussian distribution whose mean and co-
variance match the ensemble’s at the beginning of the time interval evolves approximately to a
Gaussian distribution at the end of the time interval. So, we approximate the background dis-
tribution as a Gaussian. Later, we will describe how we handle nonlinear operator H; for now,
we assume a linear operator H. Then, with a Gaussian background distribution and Gaussian
observation errors, the analysis distribution will be Gaussian too.

Based on the standard Kalman Filter, the analysis ensemble mean is

x̄a = x̄b + K(yo −Hx̄b), (3)

where
K = PbHT (HPbHT + R)−1 (4)

is the Kalman gain matrix. The analysis error covariance is given by:

Pa = (I−KH)Pb. (5)

To construct the analysis ensemble, one must then find an m × k matrix Xa for which (2) is
satisfied, and add x̄a to each column of Xa.

The matrix HPbHT +R, which is invertible as long as R is, is an s×s matrix that changes from
one analysis time to the next. Thus as written, computing K takes at least of order s3 floating-
point operations. Computing Pa and Xa involves operations on m×m matrices. However, since
Pb has rank less than k, so do K and Pa, and they can be computed much more efficiently if k
is small compared to m and s.

Since our ultimate goal is to transform the background ensemble {xb(i)} = {x̄b + Xb} into
an analysis ensemble {xa(i)} = {x̄a + Xa}, the most efficient method for doing so should avoid
computing Pb altogether. Ott et al. (2002, 2004) performed a reduced-rank analysis in the space
E spanned by the background ensemble of perturbations {Xb(i)}, using an orthonormal basis of
E formed by the eigenvectors of Pb. Then Pb = QP̂bQT , where P̂b is a (k− 1)× (k− 1) diagonal
matrix containing the nonzero eigenvalues of Pb, and Q is an m × (k − 1) orthogonal matrix of
the corresponding eigenvectors. The matrix P̂b represents the background error covariance in
the chosen orthogonal coordinate system on E.

In this paper, we replace Q by Xb and avoid solving the eigenvalue problem. Now Xb rep-
resents a transformation from an abstract k-dimensional space S onto the space E within the
m-dimensional model space. This transformation maps the orthonormal basis vectors in S to the
background ensemble perturbations. Thus S and Xb represent a choice of coordinates on E that
is non-orthogonal and over determined (each point in E has multiple coordinate representations
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in S). The same coordinate system is used in the ETKF (Bishop et al. 2001), and the analysis
described below is equivalent to ETKF aside from the choice of matrix square-root to form Xa.
The main convenience of doing the analysis in the space S is that the effective background error
covariance matrix is simply

P̃b = (k − 1)−1I. (6)

This matrix satisfies the relationship Pb = XbP̃b(Xb)T , and thus transforms under Xb into the
correct covariance matrix. Furthermore, P̃b is invertible, unlike Pb, and this allow us to use a
more convenient form of the Kalman filter equations involving the inverse of the background
error covariance matrix.

To derive the LETKF equations, we begin by substituting (1) to (4), yielding

K = (k − 1)−1Xb(Xb)THT [(k − 1)−1HXb(Xb)THT + R]−1. (7)

At this point we can deal effectively with a nonlinear observation operator H. In (7), we see that
every time the linearized operator H appears, it is next to the matrix Xb. The ith column of HXb

is H(xb(i) − x̄b), a first order Taylor approximation of H(xb(i)) − H(x̄b). Instead of linearizing H
on the entire model space, we linearly approximate HXb by matrix Yb of background ensemble
observation perturbations, whose ith column is H(xb(i)) − ȳb, where ȳb is the average over i of
H(xb(i)). Notice that the sum of the columns of Yb is zero.

Next, using matrix identity1

AT (AAT + R)−1 = (I + ATR−1A)−1ATR−1

with A = (k − 1)−
1
2Yb, we have

K = (k − 1)−1Xb[I + (k − 1)−1(Yb)TR−1Yb]−1(Yb)TR−1.

Then from (5),

Pa = (k − 1)−1(I−KH)Xb(Xb)T

= (k − 1)−1Xb(I− (k − 1)−1[I + (k − 1)−1(Yb)TR−1Yb]−1(Yb)TR−1Yb)(Xb)T .

Using the identity I− (I + B)−1B = (I + B)−1 with B = (k − 1)−1(Yb)TR−1Yb yields

Pa = (k − 1)−1Xb[I + (k − 1)−1(Yb)TR−1Yb]−1(Xb)T

= Xb[(k − 1)I + (Yb)TR−1Yb]−1(Xb)T .

1To verify this identity, multiply both sides on the right by AAT + R and observe that AT R−1(AAT + R) =
(AT R−1A + I)AT .
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Then
Pa = XbP̃a(Xb)T , (8)

where
P̃a =

[
(k − 1)I + (Yb)TR−1Yb)

]−1 (9)

is the k × k matrix that represents the analysis error covariance in the space S. Then, (3)
becomes

x̄a = x̄b + XbP̃a(Yb)TR−1(yo − ȳb), (10)

where we have replaced Hx̄b with ȳb; one could use instead H(x̄b). Writing

wa = P̃a(Yb)TR−1(yo − ȳb), (11)

we have
x̄a = x̄b + Xbwa,

where wa represents the analysis increment in S.
To construct an the analysis ensemble, choose

Xa = XbWa, (12)

where Wa is a k × k matrix square root if (k − 1)P̃a; that is, Wa(Wa)T = (k − 1)P̃a. Here the
columns of Wa represent the analysis ensemble perturbations in S. Then from (8), we have the
required relationship (2). The ith member of the analysis ensemble is created by adding the ith
column of (12) to (10)

xa(i) = x̄a + Xa(i).

In order that the mean of the analysis ensemble be x̄a, we need that the sum of the columns
Xa(i) of Xa is zero; that is, that Xav = 0 where v = (1, 1, . . . , 1)T . Since Xbv = 0, it suffices that
v be eigenvectors of Wa. As shown in (Wang et al. 2004), this is true for the symmetric square
root

Wa = ((k − 1)P̃a)
1
2 ,

but is not true for the choice of the matrix square root described in (Bishop et al. 2001); we will
discuss this further in Section 4b. Thus the filter we described in this section is equivalent to
ETKF using the symmetric square root of the analysis covariance in the k-dimensional space S.

2b. Efficient Computation of the Analysis

We now give a step-by-step description of how to implement the analysis described in the previ-
ous section with an eye toward minimizing the amount of computation. The inputs to the steps
below are the m-dimensional vectors {xb(i) : i = 1, 2, . . . , k}, a nonlinear operator H from m
variables to s variables, an s-dimensional vector yo, and an s× s matrix R.
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1. Form {xb(i)} into an m × k matrix X, and apply H to each column of X to form an s × k
matrix Y. Average its columns to get the s-dimensional vector ȳb, and substract this vector
from each column of Y to get Yb. This requires k applications of H, plus 2ks floating-
point operations. If H is an interpolation operator that requires only a few model variables
to compute each observation, then the total number of floating-point operations for this
step is proportional to ks, multiplied by the average number of model variables required to
compute each scalar observation.

2. Average the columns of X to get the m × 1 vector x̄b, and subtract this vector from each
column of X to get Xb; This step requires a total of 2km operations (additions and multipli-
cations).

3. Compute the k × s matrix C = (Yb)TR−1. Since this is the only step in which R is used,
it may be most efficient to compute C by solving the linear system RCT = Yb rather than
inverting R. In practice R will be a block diagonal with each block representing a group of
correlated observations. As long as the size of each block is relatively small, inverting R or
solving the linear system above will not be computationally expensive. Furthermore, many
or all of the blocks that make up R may be unchanged from one analysis time to the next,
so that their inverses need not be computed each time. Based on these considerations,
we estimate the number of operations required for this step in a typical application to be
proportional to ks, multiplied by the average value of the cube of the block size of R.

4. Compute the k × k matrix P̃a =
[
(k − 1)I + CYb

]−1. Multiplying C and Yb requires 2k2s
operations, while the number of operations required is proportional to k3.

5. Compute the k × k matrix Wa = [(k − 1)P̃a]1/2. Again the number of operations required is
proportional to k3.

6. Compute the k-dimensional vector wa = P̃aC(yo − ȳb) and add it to each column of Wa,
forming the k × k matrix W. Computing the formula for wa from right-to-left, the total
operations required are s + 2sk + 2k2.

7. Compute XbW and add x̄b to each column. This requires a total of 2k2m operations.

The output of the final step is an m× k matrix whose columns are the analysis ensemble mem-
bers {xa(i)}. If k is reasonably large but still small compared to m and s, then the number of
floating-point operations required is proportional to k2s (multiplying C and Yb in Step 4) or k2m
(multiplying Xb and W in Step 7), whichever is larger, If k is small enough, then more operations
may be required for Step 3.
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3. Localization, 4D Extension, and Variance Inflation

The fundamental difference between LETKF and ETKF is of course localization, and in this
section we describe how to localize the approach of the previous section. We also describe
a four-dimensional extension that assimilates asynchronous data, and a way to do variance
inflation.

3a. Localization

To perform ensemble data assimilation for a global atmospheric model with an ensemble of
moderate size, some form of localization is important. As we will see in Section 4b, even for
relatively small models, localization can improve filter performance. See Hunt et al. (2004) for a
discussion of different localization strategies.

Our localization is similar to that of (Keppenne 2000) and (Ott et al. 2002, 2004), in that the
analysis is done separately and, if desired, in parallel for different local regions that cover the
globe. In our formulation, the localization is relatively simple; for each grid point of the model,
we choose a local subset of the global observations and apply the equations of Section 2 using
only the local observations. To be more precise, we first perform Steps 1 and 2 of Section 2b
globally (though in parallel implementation, it is possible to perform them locally if H is a local
interpolation operator). Then for each model grid point, we truncate yo, ȳb, and Yb to include only
observations from a local region surrounding that point, and truncate x̄b and Xb to include only
the model variables for that grid point. Performing Steps 3 to 7 then yields an analysis ensemble
{xa(i)} of model states at the given grid point. After we do Steps 3 to 7 for each grid point, we
have determine the global analysis ensemble.

In order to use the analysis ensemble members as initial conditions for the forecast model, it
is essential that the results of the analysis be similar at nearby grid points. This can be ensured
by choosing similar sets of observations for neighboring grid points. As long as the observation
sets overlap heavily, the analyses will be similar. Our choice of the matrix square root is important
here; the symmetric square root ensures that Wa depends continuously on P̃a.

3b. 4D-LETKF

In this section, we describe four-dimensional extension to LETKF that handles asynchronous
observations. The main idea of this method is to find the linear combination of the ensemble tra-
jectories that best fits all of the observations collected between two analysis times. Our approach
is analogous to that of (Hunt et al. 2004), but is simplified in the LETKF setting.

In that paper, the observations at different times are expressed as a function of the model
state at the analysis time, using the background ensemble at both the analysis time and the
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observations times in conjunction with the observation operator H. In the LETKF framework, we
are able to simplify this approach by simply mapping the background ensemble into observation
space at the observation times without referring to the background state at the analysis time.

Recall that in Section 2 we wrote the analysis mean as x̄a = x̄b + Xbwa, where wa is de-
termined from R,yo, ȳb, and Yb by (9) and (11). In essence, the coordinates of wa specify the
linear combination of background ensemble states that best fit the data yo; recall that ȳb, and Yb

are formed by mapping the background ensemble into observation space. So if the observations
are not made at the analysis time, then they must redefine ȳb, and Yb accordingly.

Specifically, suppose that we have data (tl,yo
l ) from various times tl since the last assimi-

lation. Let Hl be the observation operator for time tl and let Rl be the error covariance matrix
for these observations. Let x̄b(tl) and Xb(tl) be the ensemble background mean and matrix of
background ensemble perturbations at time tl. We now form a combined observation vector yo

by concatenating (vertically) the (column) vectors yo
l . The corresponding error covariance matrix

R is a block diagonal matrix with blocks Rl (thus, we assume that observations taken at different
times have uncorrelated errors). Form ȳb

l and Yb
l as in Section 2: apply Hl to each background

ensemble state xb(i)(tl) to get vectors yb(i)
l , average those vectors to get ȳb

l , and subtract ȳb
l from

yb(i)
l to get the columns of Yb

l . Let ȳb be the vertical concatenation of the column vectors of
ȳb

l , and let Yb be the matrix formed by stacking the matrices Yb
l vertically. Then Yb maps the

k-dimensional analysis space S to the observation space containing yo.
Here then is how to modify the steps in Section 2 for this scenario of asynchronous data.

First, perform Step 1 for each observation time tl and combine the results as described in the
previous paragraph to form ȳb and Yb. But perform Step 2 only at the analysis time and save the
resulting Xb and x̄b to use in Step 7.

In an efficient implementation of the steps above, it is probably best to store the blocks Rl of
R separately from each other and sum over l at appropriate places. For example, the matrix C
defined in Step 3 has blocks Cl = (Yb

l )
TR−1

l , and the matrix CYb in Step 4 is then the sum over l
of ClYb

l . Likewise, the vector wa defined in Step 6 is the sum over l of vectors wa
l = P̃aCl(yo

l−yb
l ).

3c. Variance Inflation

In order to compensate for the tendency of a small ensemble to underestimate uncertainty, it may
be desirable to artifically inflate the background error covariance matrix Pb before each analysis.
(Or, one could instead inflate the analysis error covariance matrix Pa after each analysis.)

From the formulation in Section 2a,

P̃a =
[
(P̃b)−1 + (Yb)TR−1Yb)

]−1

,

where P̃a and P̃b is defined by (9) and (6), respectively. The standard variance inflation approach
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is to multiply the background ensemble perturbations Xb by a constant factor √ρ > 1, which
effectively multiplies Pb by ρ. A similar result can be achieved more efficiently by leaving Xb

alone and multiplying (6) by 1/ρ. Therefore, (9) is replaced by

P̃a =
[
(k − 1)I/ρ + (Yb)TR−1Yb)

]−1
,

In other words, replace (k − 1)I by (k − 1)I/ρ in Step 4 of Section 2b. One can check that this
change yields the same x̄a and Xa in (10) and (12) as leaving (9) unchanged and replacing Xb

and Yb by√ρXb and√ρYb respectively. For linear H, this is the same as inflating the background
ensemble by √ρ before applying H to form Yb, and even for nonlinear H the result is similar if ρ
is close to one.

4. Simulation on Lorenz-96

4a. Experimental Design

The Lorenz-96 model represents an “atmospheric variable” x at m-equally spaced points around
a circle of constant latitude. The jth component is propagated in time following differential equa-
tion:

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F (13)

where j = 1, ...,m represent the spatial coordinates (“longitude”). This model is designed to
satisfy three basic properties: it has linear dissipation (the −xj term) that decreases the total
energy defined as V = 1

2

∑m
j=1 x2

j , an external forcing term F that can increase or decrease the
total energy, and a quadratic advection term that conserves the total energy (i.e. it does not
contribute to d

dtV ). Following Lorenz (1996) and Lorenz and Emmanuel (1998), we choose the
external forcing to be F = 8 and the number of spatial elements to be m = 40. We also use
a fourth-order Runge-Kutta scheme for time integration of (13) with time step ∆t = 0.05. With
these parameters, the attractor has 13 positive Lyapunov exponents, with the leading Lyapunov
exponent corresponding to a doubling time of 0.42 time units, and a Kaplan-Yorke dimension of
27.1 (Lorenz 1996). On the basis of doubling time, Lorenz suggested that 1 time unit of the model
is roughly equivalent to 5 days in a global weather model. Thus, performing data assimilation
every time step of our model integration corresponds roughly to performing it every 6 hours in a
global weather model.

We perform all simulations in the perfect model scenario; that is, a long integration of an
arbitrary initial condition is assumed to be the “true” state. Throughout this paper, we assume that
the observational variables are the same as to the model’s and can be obtained at each model
grid. In other words, the measurement function H is identity. We create the observation vector yo
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by adding to the true state a random vector, where each coordinate is chosen independently with
standard normal distribution. Hence, the observation error covariance matrix R is the identity
matrix. The initial background ensemble (xb(i) : i = 1, 2, ..., k) is created by adding uncorrelated
perturbation vectors to the true state. In fact, one may start with an arbitrary ensemble where
each member is uncorrelated to the the true state.

In all of the results below, we measure the quality of the analysis at time t by calculating the
Root-Mean-Square (RMS) difference between the true state and the analysis ensemble mean
at time t, where t = ∆t, 2∆t, ..., N∆t. We then take the root-mean-square average of these
differences over 10 different runs of N=20,000 analysis each. For the rest of this paper, we refer
to this averaged quantity as RMSE. An RMSE value of greater than one implies that the distance
from the true state to the analysis ensemble mean is no smaller on average than from the true
state to the observation state with unit variance, and hence, one may trust the observations
rather than performing analysis.

4b. Results

In this section, we verify and assess the sensitivity of LETKF and 4D-LETKF toward different
parameter quantities. The parameters are number of model variables m, localization distance d,
ensemble size k, and variance inflation coefficient ρ. By localization distance d, we mean that
the analysis at a given grid point uses the observations from the 2d+1 grid points centered at the
analysis point. In 4D-LETKF, additional parameter will be introduced later. In the experiments
below, we refer the default parameter set as fixing m = 40, d = 6, and k = 10. This value of d
was found to be optimal for the given value of m and k (Ott et al. 2002, 2004).

In our first experiment, we are interested with how well LETKF performs compared to LEKF
using default parameter set. Particularly, we plot the accuracy (or RMSE) of both schemes as
functions of variance inflation coefficient. Figure 1 indicates that both schemes perform about
equally well for 1.04 ≤ ρ ≤ 1.06 with RMSE ≈ 0.21, and diverge when ρ < 1.04.

In the second experiment, we examine the sensitivity of the local and global analyses under
the variations of the ensemble member k and the model dimension m. In particular we fix ρ, d,
and m; and plot the RMSE as a function of ensemble size k. For the global analysis, we use all
observations for the analysis at each grid point (essentially, d = m/2). We use ρ = 1.04 in all
cases; as in Figure 1, slightly larger values did not significantly change the results. In the local
analysis, we fix d = 6. Figure 2(a) indicates that if one doubles the model variables m from 40
(dashes) to 80 (solid), similar accuracy (shown by RMSE ≈ 0.21) can be obtained by performing
the local analysis with ensemble of size k = 10. In Figure 2(b), results for the global analysis is
plotted in similar fashion as the local’s in Figure 2(a) for ensemble of size 10 to 70 with interval
5. The results here show that to obtain an accuracy of RMSE ≈ 0.19, an ensemble of size 20
sufficed when m = 40, but an ensemble of size at least 40 is needed for m = 80. Thus while
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Figure 1: RMSE of the LEKF (solid) scheme and the LETKF (dashes) scheme as functions
of variance inflation coefficient ρ. Differences for ρ < 1.04 are not significant; in these cases,
both methods have RMS errors for some of the 10 runs, indicating that the inflation amount is
insufficient.

the number of ensemble members required grows is proportional to system size for the global
analysis, for the local analysis this number remains small as the system size grows. A similar
result with LEKF was found in (Ott et al. 2004).

As we mentioned before, ensemble square-root filters generate the analysis ensemble by
adding an analysis ensemble of perturbation to the analysis ensemble mean. The ensemble of
perturbations is a square root Xa of the scaled analysis covariance matrix (k−1)Pa. In Section 2,
we wrote Xa = XbWa where Wa is a square root of (k − 1)P̃a; that is, Wa(Wa)T = (k − 1)P̃a.
We can then write

Wa = UΣ1/2V (14)

where the ith column of U ∈ Rk×k is the eigenvector of (k − 1)P̃a corresponding to eigenvalue
stored in the ith diagonal element of Σ, for i = 1, . . . , k; and V can be any k × k orthogonal
matrix (VVT = I). In all of the previous results, we used V = UT so that Wa is symmetric.
Wang et al. (2004) called this choice the Spherical Simplex ETKF. Now, we compare this choice
of square root with the non-symmetric square root Wa = UΣ1/2 (V = I), as was originally
proposed by Bishop et al. (2001). In Figure 3, see that the symmetric square root (dashes) with
k = 20 ensemble members converges with RMSE ≈ 0.19 and the non-symmetric square root
(solid) converges with k = 40 ensemble members and RMSE ≈ 0.25. Thus, even for a global
filter, the choice of the square root can have a significant impact on the results. In the case
of local analysis, the choice of the symmetric square root is even more crucial since it ensures
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Figure 2: RMSE for LETKF as a function of ensemble size k: (a) for local analysis with d = 6 and
(b) for global analysis. In both cases, the dashed curve is for m = 40 and the solid curve is for
m = 80.

consistency between adjacent local analyses. As discussed in Section 3a, this is because it
makes Wa a continuous function of P̃a. By contrast, numerically computed eigenvectors can
depend discontinuously on the input matrix, and thus Wa = UΣ1/2 is not a continuous function
of P̃a. Indeed, we found that the LETKF with this non-symmetric square root diverges even for
k = 12 ensemble member and variance inflation ρ = 1.30.

In the last experiment, we validate the four-dimensional scheme described in Section 3b.
Here, we compare the accuracy of the 4D-LETKF and LETKF as one varies the “steps per
analysis” n. That is, we perform analysis every n∆t time units, where ∆t = 0.05 is the numerical
integration time. For each analysis, our LETKF results ignore all observations at the non-analysis
steps (times l∆t, where l is not a multiple of n) and use only the observations at the analysis
time. On the other hand, 4D-LETKF uses all the observations collected since the previous
analysis time. That is, for analysis at time jn∆t it accounts observations at time l∆t for l =
(j − 1)n + 1, (j − 1)n + 2, . . . , jn. For n = 1, 4D-LETKF and LETKF are equivalent.

Figure 4 plots the RMSE of both the LETKF and 4D-LETKF as functions of number of steps
per analysis n. In this simulation, we use our default values for model size (m = 40), localization
distance (d = 6), and ensemble size (k = 10), and tune the variance inflation ρ so that the RMSE
is minimized for each value of n. In LETKF, we obtained the lowest RMSE (solid) by setting
ρ = 1.04, 1.12, 1.24, 1.33, and 1.65 for n = 1, 2, . . . , 5. In 4D-LETKF, we obtained the lowest RMSE
(dashes) by setting ρ = 1.04, 1.12, 1.24, 1.38, and 1.75 for n = 1, 2, . . . , 5. Here ρ grows more
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Figure 3: Plots of the RMSE for model size m = 40 as a function of ensemble size k for the
symmetric square root (dashes) and non-symmetric square root (solid) Wa = UΣ1/2. Here
we used variance inflation ρ = 1.04 as before for the symmetric square root, but needed more
inflation ρ = 1.15, to obtain convergence for the non-symmetric square root.

than linearly as a function of n, in contrast to the linear growth used in (Hunt et al. 2004). (In
their experiment, they performed a global analysis (4D-EnKF) with a different type of “additive”
variance inflation.) In Figure 4, we observe that the RMSE of LETKF increases almost linearly
as the steps per analysis n increases up to five. The 4D-LETKF preserves its accuracy better as
one increases n. Of course, this is because it uses more observations than LETKF for n > 1, but
our main point is that 4D-LETKF uses them nearly as well as if the analysis were done every time
step. The need for increasing variance inflation as n increases is primarily due to the increasing
time between analyses for uncertainties not captured by the ensemble and the RMSE becomes
worse as n gets large.

5. Summary

In this paper, we combine the local analysis suggested in (Ott et al. 2002, 2004) and the sim-
plified formulation of the global spherical simplex ETKF of (Bishop et al. 2001) and (Wang et al.
2004). In our experiments with the Lorenz-96 model, we compared LEKF and LETKF and con-
clude that both schemes produce a similar level of accuracy. We also tested the importance of
the local analysis and found as in (Ott et al. 2002, 2004) that localization allows one to maintain
a constant ensemble size as the number of variables in the model increases. We also show
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Figure 4: Plots of the RMSE as a function of the number of steps per analysis n for LETKF (solid)
and 4D-LETKF (dashes) using our default parameters m = 40, d = 6, k = 10. See text for the
amount of variance inflation used.

that using the symmetric square root in the analysis is significantly better than another possible
choice of matrix square root.

In operational weather forecasting, one must assimilate data that are collected more fre-
quently than the time between analysis. LETKF extends easily to this case, in a manner equiv-
alent to but simpler than the 4D-EnKF of (Hunt et al. 2004). The only additional computational
requirement is to make use of the background ensemble at intermediate times between analyses.
In our numerical experiments, we found this approach to perform nearly as well as assimilating
data more frequently.
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