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Abstract 13 

In Ensemble Kalman Filter (EnKF), space localization is used to reduce the impact 14 

of long-distance sampling errors in the ensemble estimation of the forecast error 15 

covariance.  When two variables are not physically correlated, their error covariance is 16 

still estimated by the ensemble, and therefore it is dominated by sampling errors.  We 17 

introduce a “variable localization” method, zeroing out such covariances between unrelated 18 

variables to the problem of assimilating carbon dioxide concentrations into a dynamical 19 

model using the Local Ensemble Transform Kalman Filter (LETKF) in an Observing 20 

System Simulation Experiments (OSSE) framework.  A system where meteorological and 21 

carbon variables are simultaneously assimilated is used to estimate surface carbon fluxes 22 

that are not directly observed.  A range of covariance structures are explored for the 23 

LETKF, with emphasis on configurations allowing non-zero error covariance between 24 

carbon variables and the wind field, which affects transport of atmospheric CO2, but not 25 

between CO2 and the other meteorological variables. Such “variable localization” scheme 26 

zeroes out the background error covariance among prognostic variables that are not 27 

physically related, thus reducing sampling errors.  Results from the identical twin 28 

experiments show that the performance in the estimation of surface carbon fluxes obtained 29 
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using “variable localization” is much better than that using a standard full covariance 30 

approach.  The relative improvement increases when the surface fluxes change with time 31 

and model error becomes significant. 32 
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1. Introduction 33 

An Observing System Simulation Experiments (OSSEs) system for carbon cycle data 34 

assimilation has been created in parallel to a similar system that uses real meteorological 35 

and CO2 observations, and a state of the art model (Kang, 2009; Liu et al., CO2 transport 36 

uncertainties from the uncertainties in meteorological fields, submitted to Geophys. Res. 37 

Lett, 2011).  The ultimate goal of these parallel projects is to estimate not only 38 

atmospheric CO2 but also surface carbon fluxes.  This is a challenging problem plagued 39 

with obstacles whose origin frequently cannot be even identified using real data and 40 

without knowing the “truth”.  In the course of performing OSSEs, we have found several 41 

algorithms that can substantially improve the results.  The focus of this paper is on one of 42 

these algorithms, “variable localization” that reduces sampling errors and can be also 43 

applied to other problems in data assimilation. 44 

The Local Ensemble Transform Kalman Filter [LETKF, Hunt et al., 2007], like other 45 

Ensemble Kalman Filter (EnKF) methods [Evensen, 1994; Houtekamer and Mitchell, 2001; 46 

Anderson, 2001; Bishop et al., 2001; Whitaker and Hamill, 2002; Ott et al., 2004, Zupanski, 47 

2005, and others], produces an analysis using a multivariate background error covariance 48 

matrix that contains an estimation of the error correlation between the dynamic variables.  49 
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When the variables are physically related to each other, the multivariate background error 50 

estimation helps the analysis to efficiently correct the forecast errors.  Indeed, Liu et al. 51 

[2009] have shown that a multivariate assimilation of AIRS (Atmospheric Infrared 52 

Sounder) humidity retrievals has lower wind analysis errors than the standard univariate 53 

assimilation used in operational numerical weather prediction (NWP) system that does not 54 

account for the error covariance between humidity and winds.  However, standard 55 

multivariate EnKF also allows for error covariances among model variables even if some of 56 

those variables are not physically related to each other.  In this case, the estimate of the 57 

error covariance will be solely due to sampling errors. 58 

The direct solution to reduce sampling errors would be to increase the number of 59 

ensemble members, but this is not a practical solution because of computational and storage 60 

requirements.  It is common practice in EnKF with a limited ensemble size to introduce 61 

“space localization” into the background error covariance [Houtekamer and Mitchell, 2001; 62 

Hamill et al., 2001].  The background ensemble perturbations have error covariances that 63 

are good estimates of real covariances over relatively short distances of up to about 500-64 

1000 km in the global NWP applications.  At longer distances, the background errors are 65 

still apparently correlated, but these correlations become dominated by sampling errors, and 66 
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can seriously harm the analysis.  In the widely adopted technique of “space localization” 67 

to solve the problem of long-distance spurious correlations, the background error 68 

covariance terms are multiplied by an approximation of a Gaussian function that decreases 69 

with the distance between the two grid points whose error covariance is being computed 70 

and becomes negligible at distances greater than about 1000 km [Gaspari and Cohn, 1999]. 71 

In our carbon cycle data assimilation OSSEs, we apply a similar concept whenever two 72 

variables are not physically related and therefore estimates of their error covariances are 73 

spurious.  In that case, we avoid spurious correlations by zeroing out these covariances 74 

due to sampling errors.  For example, atmospheric CO2 concentration is determined by the 75 

wind transport as well as by CO2 surface fluxes.  However, the evolution of the carbon 76 

variables is likely to have a much less significant dependence on some other variables such 77 

as the specific humidity or surface pressure.  If this is the case, we zero out the error 78 

covariance between the atmospheric CO2 and both of specific humidity and surface 79 

pressure in the analysis.  This new methodology is denoted as “variable localization” by 80 

analogy with space localization, because the background error covariances between 81 

variables that are not physically linked in a significant way are zeroed out. 82 

There are several previous studies that estimate surface carbon fluxes via data 83 
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assimilation.  Baker et al. [2006, 2008] have applied a four-dimensional variational (4D-84 

Var) method to their OSSEs while Peters et al. [2005, 2007] and Feng et al. [2008] have 85 

used EnKFs.  Peters et al. [2005, 2007] have assimilated observations from the ground-86 

based stations whereas Feng et al. [2008] have used simulated observations of satellite 87 

data, Orbiting Carbon Observatory [OCO; Crisp et al., 2004].  Furthermore, as a part of 88 

Global and regional Earth-system (Atmosphere) Monitoring project [GEMS, Hollingsworth 89 

et al., 2008], a system with a two-step approach has been built for a carbon cycle data 90 

assimilation system: the first is to assimilate satellite and in situ data to monitor the 91 

atmospheric CO2 within a 4D-Var [Engelen et al., 2009] and the second is a variational flux 92 

inversion system [Chevallier et al., 2009a and b].  These studies have shown the 93 

meaningful results in estimating surface CO2 fluxes from the atmospheric CO2 94 

concentration observations of in-situ data as well as the satellite data.  On the other hand, 95 

Zupanski et al. [2007] have applied Maximum Likelihood Ensemble Filter [Zupanski, 96 

2005] to bias estimation of surface CO2 fluxes over a local area with several tower 97 

observations. 98 

In these studies, surface CO2 fluxes are estimated by assimilating the observations of 99 

atmospheric CO2 concentration, but not by any direct observations of carbon fluxes or other 100 
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meteorological variables.  In order to link the surface carbon fluxes with the atmospheric 101 

CO2 concentrations, these studies have used transport models that play an important role in 102 

transferring information from the atmospheric CO2 observations to corresponding changes 103 

in the surface flux of carbon.  Also, these studies need a priori information about the 104 

carbon variables as an initial guess that is pre-calculated using independent observations or 105 

model simulations because the problem of determining surface carbon fluxes is otherwise 106 

ill-posed [Enting, 2002].  The surface CO2 fluxes are determined by minimizing the 107 

squared normalized difference between the simulated CO2 concentration and the observed 108 

CO2, and a priori error for the atmospheric CO2 concentrations and fluxes based on their 109 

error covariances. 110 

So far, data assimilation studies of carbon fluxes have not yet accounted for transport 111 

errors in the atmospheric CO2 forecast that can be caused by both the imperfections of the 112 

transport model and the uncertainty of wind analysis which drives the transport model, even 113 

though many studies [Gurney et al., 2004; Baker et al., 2008; Stephens et al., 2007; 114 

Miyazaki, 2009] have found that the accuracy of atmospheric CO2 forecasts depends on 115 

those transport errors.  The Bayesian synthesis approaches, usually referred to as inversion 116 

modeling, [Bousquet et al., 2000; Gurney et al., 2004; Rödenbeck et al., 2003] have been 117 
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used to estimate surface carbon fluxes prior to the advent of the data assimilation studies 118 

discussed above, and also have the same limitation stemming from unresolved transport 119 

errors.  Indeed, some studies [Gurney et al., 2004; Baker et al., 2008; Stephens et al., 120 

2007] have pointed out that the transport errors can cause biases in both the atmospheric 121 

CO2 analysis and the surface CO2 flux estimation.  Notably, Miyazaki [2009] shows a 122 

significant contrast in the results of atmospheric CO2 forecast obtained using wind fields of 123 

different accuracies.  This result strongly emphasizes the importance of wind uncertainty 124 

in carbon cycle data assimilation.   125 

As a complement of our real-data experiments (Liu et al., 2011), we present here a 126 

similar OSSE carbon cycle data assimilation system that simultaneously assimilates the 127 

observations of meteorological variables (wind, temperature, humidity, and surface 128 

pressure) and atmospheric CO2.  The system analyzes not only these meteorological 129 

variables and atmospheric CO2, but also the surface CO2 fluxes.  Since our method 130 

generates the analysis of meteorological variables and carbon variables simultaneously, we 131 

do not need to run a transport model for carbon variables in addition to running a forecast 132 

model for meteorological variables.  Besides, results of our method do not depend on a 133 

priori information on the initial condition of carbon variables which, like the 134 
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meteorological variables, spin-up and converge even if the ensembles are started from 135 

smooth random fields [Zupanski et al., 2006].  Since our challenging ultimate goal is to 136 

estimate surface CO2 fluxes from a simultaneous analysis of meteorological variables and 137 

carbon variables, we have tested new techniques to improve the ability of EnKF to reach 138 

this goal. Here we introduce one of these techniques, “variable localization” that can be 139 

usefully applied in any EnKF system.   140 

Previous data assimilation estimates of surface carbon fluxes [Baker et al., 2006, 2008; 141 

Peters et al., 2007; Feng et al., 2008; Chevallier at al., 2009a] can be considered as 142 

belonging to the case of “carbon-univariate” analyses where the atmospheric CO2 143 

concentrations and the surface CO2 fluxes are updated by themselves, without including 144 

error correlations between these carbon variables and meteorological variables.  In this 145 

study, various types of analyses including error covariances are introduced and compared, 146 

ranging from a standard “fully multivariate” analysis to a “carbon-univariate” analysis 147 

within the LETKF framework.  Because this is the first test of a new methodology, this 148 

work is limited to OSSEs (in a “twin experiment” approach) in which the observations are 149 

sampled from a “nature run” assumed to be the true evolution of the system and assimilated 150 

using the LETKF.  For simplicity, we also assume that the model is perfect except in the 151 
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last experiments where the surface fluxes of carbon are varied in the nature run but not in 152 

the forecast model, and we focus on the impact of various “variable localization” 153 

techniques.   154 

The paper is organized as follows.  Section 2 provides a description of the model used 155 

for this study and the various “variable localization” schemes tested within the LETKF data 156 

assimilation framework.  Section 3 describes the experimental design.  Results are shown 157 

in section 4, and we summarize and discuss our findings in section 5. 158 

 159 

2. Methodology 160 

2.1. Model: SPEEDY-C 161 

The SPEEDY model [Molteni, 2003] is an atmospheric global, primitive equation 162 

general circulation model (AGCM) with simplified physical parameterization schemes that 163 

is computationally efficient, but it maintains the basic characteristics of a state-of-the-art 164 

AGCM with complex physics.  The version used for this study has triangular truncation 165 

T30 with 7 vertical sigma levels, and has five dynamical variables including zonal (U) and 166 

meridional wind (V) components, temperature (T), specific humidity (q), and surface 167 

pressure (Ps).   168 
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To incorporate atmospheric carbon dioxide concentration (C) and surface flux of 169 

carbon dioxide (CF), the SPEEDY model is extended to the “SPEEDY-C” model, which 170 

contains these carbon-related variables.   171 

 
CFC

t

C





)(                                            (1) 172 

Equation (1) shows how the tendency of atmospheric CO2 is calculated in SPEEDY-C, 173 

where )(C  represents the atmospheric 3-dimensional transport and mixing.  In this 174 

study, chemical processes affecting atmospheric carbon dioxide are ignored since CO2 in 175 

the atmosphere is essentially inert.  Moreover, there is no feedback between the integrated 176 

CO2 and the radiative properties of the SPEEDY-C model.  Surface flux of carbon (CF) on 177 

the right-hand side of Equation (1) provides sources and sinks of CO2.  Carbon flux on the 178 

surface (CF) is converted into the atmospheric CO2 concentrations added to the lowest 179 

layer of the model.  In reality, several types of forcings make up this flux: fossil fuel 180 

emission, land surface fluxes due to vegetation and land use change, and ocean fluxes.  In 181 

this OSSE study, we test the ability of our data assimilation systems with a “variable 182 

localization” to estimate surface CO2 fluxes, so for simplicity we assume that the CF is due 183 

only to constant fossil fuel emissions for most of experiments.  However, in the last 184 

experiment (shown in Figure 10), we do allow for variable fluxes associated with 185 
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vegetation and ocean in the nature run but not in the forecast model run.  Thus, the 186 

SPEEDY-C has six prognostic variables (U, V, T, q, Ps, C), along with either a constant or a 187 

variable forcing (CF) which is not changed by the model.   188 

2.2. The LETKF 189 

The LETKF is an ensemble Kalman filter method where the background error 190 

covariance bP  among the variables can be estimated as 191 

Tbbb

K
XXP

1

1


         (2) 192 

where bX  is the matrix whose columns contain a departure of each ensemble forecast 193 

( )(ibx ) from the ensemble mean ( bx ): the i-th column of bX  is bib xx )( ,  Ki ,,2,1  , 194 

K is the number of ensemble members and x  is a state vector of dynamic variables at the 195 

model grids.  The evolution of bP , which contains the background error covariance 196 

among the dynamic variables, is accounted for in every analysis step so that temporally and 197 

spatially varying uncertainties in the background are considered when analyzing variables.  198 

The first step of the analysis is to compute bX .  Then, the observation operator h  is 199 

applied to the ensemble forecast bx  to transform the background from the model grid 200 

space to the observation space, yb(i )  h(xb(i ) ) .  Let bibb yyY  )( ,  Ki ,,2,1   be 201 

the background perturbations in the observation space.  Then, the estimation of the 202 
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background is ready to be compared with observations in the same space.   203 

In order to produce the analysis at every grid point, the LETKF assimilates only 204 

observations within a certain distance from each grid point so that the following analysis 205 

computations are performed locally.  The analysis mean, a
l )(x , is given by  206 

)()()()( l
b
l

b
l

a
l wXxx  ,        (3) 207 

where )(lw  is the mean weighting vector calculated by 208 

)()(
~

)()(
1
)()()()(

b
l

o
ll

Tb
l

a
ll yyRYPw   .      (4) 209 

Here, 1
)(

1
)()()( ]/)1()()[(

~   IYRYP Kb
ll

Tb
l

a
l  is the analysis error covariance in the 210 

ensemble space, R is the observation error covariance matrix, oy  is the observation 211 

vector, and   is the inflation factor (see section 2.3.3 for details), and the subscript (l) 212 

means a quantity defined on a local region centered at the analysis grid point l.  Within a 213 

local region, space localization is carried out by multiplying the inverse observation error 214 

covariance matrix 1
)(


lR  by a factor that decays from one to zero as the distance of the 215 

observations from the analysis grid point increases [Miyoshi, 2005, Hunt et al.. 2007, 216 

Greybush et al., 2010].   217 

The analysis increment, b
l

a
l )()( xx  (Eqns. 3 and 4), is given by the background 218 

perturbation matrix multiplied by the weight vector which is a function of the 219 
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innovation, b
l

o
l )()( yy  , and error statistics of both background and observation.  Thus, the 220 

analysis reflects observational information more than background information if the 221 

background error is greater than the observation errors, and vice versa.  In addition, the 222 

ensemble perturbations of the analysis are determined by 223 

2

1

)()()( ]
~

)1[( a
l

b
l

a
l K PXX          (5)  224 

With (5) we obtain the estimation of analysis uncertainty in addition to the analysis mean.  225 

The global analysis ensemble )(iax ,  Ki ,,2,1  , is formed by gathering the values 226 

obtained for a
l )(x  and a

l )(X  at all the analysis grid points.  (see Hunt et al. [2007] for 227 

more details and discussion on LETKF.) 228 

   2.3. LETKF application to the SPEEDY-C: variable localization 229 

   2.3.1. Motivation 230 

In order to estimate not only the model prognostic variables (U, V, T, q, Ps, C) but also 231 

the unknown surface fluxes field (CF), we use an augmented state vector x  consisting of 232 

(U, V, T, q, Ps, C, CF) at all model grid points, where CF, like Ps, is defined at the model 233 

surface grid points.  This augmentation enables the LETKF to directly estimate the 234 

parameter like any other (unobserved) variable through the background error covariance 235 

with the observed variables [Baek et al., 2006; Annan et al., 2005]. 236 
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More sophisticated schemes can be designed by taking into account that dynamical 237 

interactions of the augmented variables are not homogeneous in the SPEEDY-C.  As 238 

shown in Equation (1), atmospheric CO2 (C) is advected by (U, V) and forced by surface 239 

carbon fluxes (CF) but has no direct interaction with (T, q, Ps).  In contrast, none of the 240 

meteorological variables (U, V, T, q, Ps) is dynamically affected by C or CF while CF is 241 

not affected by any of the dynamical variables (U, V, T, q, Ps), at least within the SPEEDY 242 

model formulation.  When sampling the standard fully multivariate background error 243 

covariances using a finite-size ensemble (Figure 1a), however, spurious correlations may 244 

arise between the variables.  This motivates us to develop analysis schemes by grouping 245 

the variables based on the idea of the localization according to the “dynamical distance 246 

between the variables”.  This “variable localization” attempts to manage the correlations 247 

between the model variable groups, like the conventional localization attempts to suppress 248 

the spurious correlation based on the “physical” distance.   249 

Various analysis methods are possible according to the method used to group variables.  250 

For example, if one groups an analysis state vector of only carbon variables (C, CF) and 251 

the other of meteorological variables (U, V, T, q, Ps) separately (Figure 1e), the analysis of 252 

carbon is determined by only assimilating atmospheric CO2 observations univariately for 253 
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carbon (Equations 3-5).  In this case, the surface CO2 fluxes are updated by the 254 

multiplication of a background perturbation matrix of surface CO2 fluxes and the weight 255 

vector (Equation 4) as calculated from the forecast and the observations of atmospheric 256 

CO2 concentrations.  If the analysis state vector is designed to include other 257 

meteorological variables in addition to (C, CF), then the analysis can reflect the 258 

background error covariance among all those variables in order to estimate surface CO2 259 

fluxes multivariately (e.g., Figure 1a).  Such an approach implies that the analysis allows 260 

error information to flow from carbon to the meteorological variables in the state vector 261 

and vice versa. 262 

2.3.2. Different covariance structures for analyses: variable localization 263 

In this study, we introduce variable localization and test five analysis methods 264 

characterized by the bP  configurations based on the “dynamical” distance between 265 

variables (Figure 1).  The first method is the standard fully multivariate analysis 266 

(hereafter referred as mult) in which the errors of all dynamic variables are coupled in the 267 

background error covariance (Fig 1a).  This scheme (used in present EnKF methods) 268 

allows errors in all variables to be potentially correlated with one another.  As a result, 269 

the system gives more weight to the atmospheric CO2 observations whenever any of the 270 
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dynamic variables have a larger uncertainty in the background field.  On the other hand, 271 

the uncertainty of the carbon variables can also change the weight vector )(lw  (Equations 272 

3 and 4), which is shared among all dynamic variables.  Analysis uncertainty of all 273 

variables (U, V, T, q, Ps, C, CF) is determined by Equation (5). 274 

The second method is based on the notion that in our model the surface fluxes are only 275 

physically related to the atmospheric CO2 but not to other dynamical variables.  That is, 276 

the white areas of background error covariance matrix bP  in Figure 1(b) contain sampling 277 

errors rather than any useful error correlations or covariances.  Thus, we zero out those 278 

white areas, the covariances between CF and all variables except atmospheric CO2, in order 279 

to eliminate sampling errors in these correlations (localized-multivariate analysis: L-mult, 280 

Fig 1b).  This scheme has two separate analyses, one for (U, V, T, q, Ps, C) (in grey) and 281 

the other for CF (in black).  Analysis of surface carbon fluxes assimilates only 282 

atmospheric CO2 observations but not the observations of meteorological variables for 283 

computing )(lw  and the uncertainty of CF.  In contrast, the analysis of the dynamic 284 

variables except CF assimilates all available observations of (U, V, T, q, Ps, C) for 285 

computing the other )(lw  and their analysis uncertainty.  In other words, a set of 286 

Equations (4)-(5) is computed separately having X1=(U, V, T, q, Ps, C) and X2=(C, CF) to 287 
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get each weight vector )(lw  and analysis error covariance a
l )(

~
P  for updating (U, V, T, q, 288 

Ps, C) and CF respectively.  Eliminating spurious correlations with carbon fluxes is 289 

especially important since we do not start the analysis with any a priori knowledge of 290 

carbon variables.  Because CF is not constrained by any direct observations, it is very 291 

possible for the CF to degrade the analysis of the other variables due to bad initial values at 292 

the initial stage of the mult analysis.  Thus, poor initial conditions for carbon may degrade 293 

the analysis of other meteorological variables in the mult analysis whereas L-mult prevents 294 

initial carbon from poorly influencing the analysis of all other dynamic variables.  295 

The third method is the 1-way multivariate analysis (1way) based on the notion that 296 

wind uncertainties should be able to provide useful information to update carbon variables, 297 

whereas the sampling error in the carbon variable is assumed to be too large to provide a 298 

positive impact to the wind assimilation (Fig. 1c).  In the 1way scheme, the atmospheric 299 

CO2 concentrations and surface CO2 fluxes are updated using an error covariance that 300 

includes the wind fields, while the wind and other atmospheric variables such as 301 

temperature, specific humidity, and surface pressure are updated separately and are not 302 

affected by these two carbon variables (Fig 1c).  This scheme was also found useful by Liu 303 

et al. [2009] when assimilating AIRS moisture retrievals.  304 
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The fourth method is also based on the 1way system, but zeroing out the background 305 

error covariance between surface carbon fluxes and wind fields.  We refer to this as the 306 

localized-1way multivariate analysis (L-1way, Fig 1d), as in the case of the L-mult scheme.  307 

It is based on the idea that winds transport atmospheric CO2 but not surface carbon fluxes, 308 

and thus their errors should be uncorrelated.  Here, the resulting analysis of 309 

meteorological variables should be exactly same as in 1way (Fig. 1c).  The comparison of 310 

the L-1way method with 1way provides a measure of the direct impact of wind 311 

uncertainties on the estimation of surface CO2 fluxes.   312 

The last method considered is the Carbon-univariate analysis (C-univ).  In this 313 

method, atmospheric CO2 concentration and surface CO2 fluxes are updated only by these 314 

two variables themselves, unaffected by other atmospheric variables (Fig 1e).  The 315 

forecasts of atmospheric CO2 are still driven by the ensemble of wind fields.  Although the 316 

ensemble transport of CO2 provides some information about wind uncertainties to the 317 

background state of atmospheric CO2 in C-univ, the transport error term is not explicitly 318 

used for the carbon analysis.  319 

2.3.3. Inflation of the background covariance 320 

In practice, the ensemble forecast tends to underestimate the uncertainty in its state 321 
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estimate because of limited ensemble size, model errors and nonlinearities.  To 322 

compensate for this underestimation, it is necessary to inflate the background covariance 323 

(or the analysis covariance) during each data assimilation cycle.  For the inflation factor, 324 

multiplicative inflation has been applied in this work [Anderson and Anderson, 1999].  325 

This is carried out by multiplying the background perturbation from the ensemble mean by 326 

a factor larger than one (  ).  It is common to tune this inflation parameter manually; 327 

however, such tuning is expensive, and becomes infeasible if the inflation factor is allowed 328 

to depend on space and time, and/or the variable.  Since we have found that the carbon 329 

variables require quite different inflation factors compared to the inflation for the 330 

meteorological variables, the adaptive inflation estimation introduced by Li et al. [2009] 331 

has been used to estimate the inflation factors for the meteorological variables, on the one 332 

hand, and the atmospheric CO2 concentration on the other.  Li et al. [2009] estimated 333 

simultaneously the adaptive inflation and observation errors, using the equations derived by 334 

Desroziers et al. [2005].  Here we assume that the observation error statistics are correct, 335 

and we calculate the inflation adaptively for each vertical layer separately.  Moreover, for 336 

the atmospheric CO2 in the lowest layer, we calculate and apply two separate inflation 337 

factors over the land and the ocean areas.  The methodology of Li et al. [2009] compares 338 
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the analysis increment (analysis minus background) and the observation increment 339 

(background minus observation) with the expected values in observation space.  Thus, that 340 

methodology is only available for variables having observations, which means we need to 341 

apply a different method for the inflation of surface carbon fluxes (CF).  Our approach for 342 

CF is similar to the covariance relaxation method of Zhang et al. [2004], except that we let 343 

the analysis perturbations maintain the same spread as the background.  More details 344 

about the adaptive inflation methods can be found in Li et al. [2009] and Zhang et al. 345 

[2004]. 346 

 347 

3. Experimental design: Observing System Simulation Experiments (OSSEs) 348 

In the OSSEs, the SPEEDY-C model with a total constant fossil fuel emission of 349 

6PgC/yr [Andres et al., 1996; Figure 2a] is used to create the “nature run” assumed to be 350 

the true state in this study (but we also perform an OSSE with varying surface fluxes, 351 

obtained with a model with interactive vegetation, see Figure 10).  Simulated observations 352 

are then obtained from this “nature run” by adding random observational errors.  Standard 353 

deviations of the simulated observation errors are listed in Table 1.  For the atmospheric 354 

variables, the observations have the spatial distribution of the rawinsonde network, with 355 
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about 9% coverage of grid points globally (Figure 3a), with more observations in the 356 

Northern Hemisphere mid-latitudes.   357 

Atmospheric CO2 concentration is assumed to be observed from three different 358 

measurements: one comes from 18 in situ data locations which have continuous records of 359 

CO2 concentration near the surface (Figure 3b: crosses); another source is from 107 flask 360 

data sites which observe CO2 concentrations near the surface every week (Figure 3b: closed 361 

circles); lastly, GOSAT column data [Yokota et al., 2004] are used (Figure 3b: gray lines), 362 

with orbital return periods of three days.  For simplicity, in this simulation we did not 363 

account for the impact of cloud screening.  We assume that the GOSAT data have the 364 

same averaging kernel as OCO [Wang et al., 2009], i.e., nearly constant from the surface to 365 

the top of atmosphere.  For this column data, the column observation increments are 366 

localized to each vertical level by the normalized averaging kernel for each level as 367 

follows:   368 





k

i

b
ii

bTbb ah
1

)()()( HxHxAxy        (6) 369 

where k is the number of vertical levels, H the spatial interpolation operator, by  the model 370 

predicted CO2 column mixing ratio, A the averaging kernel, and ia  the element of A at 371 

the i-th vertical level.  We localize the j-th ensemble forecast column CO2 to i-th vertical 372 
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level by the i-th averaging kernel element ia  as b
ji

b
ij yay ,  and the column CO2 373 

observations to the i-th vertical level by ia  as o
i

o
i yay  .  Then, b

ijy ,  and o
iy  are 374 

compared during the analysis.   375 

In the data assimilation system, the same model as the “nature run” is used for the 376 

ensemble forecasts of 20 members (K=20), so that there is no model error (except for the 377 

last experiment where the nature model has variable carbon fluxes not included in the 378 

forecast model).  Our goal is to test the impact of “variable localization” schemes in 379 

estimating the spatial distribution of true CF shown in Figure 2a.  Since CF is a forcing 380 

term in the SPEEDY-C not changed by the forecast, it is updated only by the analysis step 381 

of data assimilation, and the updated forcing from the analysis is then used for the next 382 

forecast. 383 

The initial ensemble members are chosen by random sampling from a long term 384 

simulation of the SPEEDY-C and a SPEEDY-C coupled with a dynamic terrestrial carbon 385 

model VEGAS [Zeng et al., 2005] (hereafter referred as SPEEDY-VEGAS; Kang, 2009) in 386 

order to generate fields of the initial ensemble background with no a priori information 387 

about the nature run: 20 states of (U, V, T, q, Ps) and C are chosen randomly in time over an 388 

one-year SPEEDY-C output and a three-year SPEEDY-VEGAS run respectively, and then 389 
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they are added by small random perturbations.  For CF, from 20 fields of CO2 390 

concentration of the SPEEDY-C run in the midlevel at arbitrary times, we subtract the one-391 

day prior state of CO2 concentration, and then convert the units of the field from ppmv/day 392 

to kg/m2/s.  Figures 2c and 2d show that the initial ensemble mean of the surface carbon 393 

fluxes and the first level atmospheric CO2 are very different from the true states in terms of 394 

both spatial patterns and intensity.  Since CO2 concentration is well-mixed in the midlevel, 395 

Figure 2d has very small values.  Starting from these initial conditions without any a 396 

priori information, we carried out the analyses of all dynamic variables for four months 397 

using an analysis cycle of six hours. 398 

The experimental settings described above are used for testing all schemes introduced 399 

in this study to see the impact of “variable localization” techniques.  In addition to these 400 

experiments carried out in a perfect model and constant flux configuration, we have also 401 

done another set of experiments testing the impact of variable carbon fluxes in the nature 402 

model.  With the same configuration of the observations and the same initial conditions, 403 

we repeated the L-1way and C-univ experiments now including terrestrial and oceanic CO2 404 

fluxes which evolve in time.  We replace in “nature run” the CO2 forcing every six hours 405 

by the land surface CO2 fluxes computed by VEGAS [Zeng et al. 2005] that includes the 406 
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vegetation impact on the carbon cycle, and the monthly prescribed oceanic fluxes 407 

[Takahashi et al., 2002] in addition to the fossil fuel emission used in the previous 408 

experiments.  We have produced one-year analysis and show the results for the last two-409 

month average in Section 4. 410 

 411 

4. Results 412 

Table 2 contains the global RMS errors for all variables from all the analysis schemes 413 

during the last week of the 4-month data assimilation, and Figures 4 and 5 show the time 414 

evolution of the global RMS errors in zonal wind and carbon variables.  Other 415 

meteorological variables have a similar pattern of RMS errors in the time series plot, 416 

compared to the zonal wind.  First, the standard fully multivariate data assimilation (mult) 417 

has the worst results for all the variables.  This is because mult allows for error 418 

covariances among all variables in the analysis even though there is no physical 419 

relationship between (C, CF) on the one hand and (T, q, Ps) on the other in the “nature” 420 

model.  Therefore, the estimations of the error covariances among these variables are only 421 

due to sampling errors.  Moreover, a poor representation of the initial surface carbon flux 422 

can contaminate analyses of all variables in mult.  As a result, the mult analysis has larger 423 
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errors and eventually undergoes filter divergence, i.e., the feedback from the sampling 424 

errors makes the analysis of meteorological variables so poor that the diagnosis of the 425 

model variables in the forecast fails after 40 days.  In theory, this problem of the mult 426 

system could be resolved by using much larger ensemble size so that sampling errors are 427 

reduced, but in practice this approach is not computationally feasible. 428 

By eliminating the unphysical relationship between the carbon flux CF and (U, V, T, q, 429 

Ps), L-mult prevents a poor initial representation of CF from degrading the analysis of the 430 

other variables.  Also, the analysis of carbon variables benefits from better states of other 431 

variables (without a contamination of the surface carbon flux).  As a result, the L-mult 432 

analysis is improved significantly for all dynamic variables and filter divergence is avoided.  433 

Still, there is unnecessary feedback between C and (T, q, Ps), which is negligible in nature.  434 

Thus, L-mult is not the optimal method and can be improved further by additional variable 435 

localization (Figure 4, 5 and Table 2). 436 

In 1way, we zero out the background error covariance between (C, CF) and (T, q, Ps).  437 

Furthermore, 1way does not allow any changes in the meteorological variables due to the 438 

CO2 variables.  Compared with mult, this does not allow any feedback between carbon 439 

variables (C, CF) and (T, q, Ps), but, in contrast with L-mult, it does include the covariance 440 
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between CF and wind fields.  Carbon variables from 1way analysis are improved 441 

significantly while the analyses of meteorological variables are, as expected, comparable 442 

with the results of L-mult.  Mean RMS errors (Table 2) show that the differences between 443 

1way and L-mult are only on the order of 1% for (U, V, T, q, Ps) whereas 1way improves 444 

the estimates of (C, CF) by 30-35%.   445 

Figure 6 compares maps of the analysis errors in the zonal and meridional wind fields 446 

obtained with 1way and with L-mult.  Due to the distribution of the rawinsonde network 447 

sites (Figure 3a), errors are large over the oceans and polar regions in both L-mult and 448 

1way.  The analysis of wind in 1way has similar error patterns but smaller error 449 

amplitudes than in L-mult.  By contrast, 1way results in a major improvement in the 450 

atmospheric CO2 analysis as shown in Figure 7.  Since L-mult considers the background 451 

of (T, q, Ps) in addition to (U, V, C, CF) for analyzing the atmospheric CO2, the 452 

background uncertainties of (T, q, Ps) can influence the weight between the background 453 

and the observations of atmospheric CO2.  Although a large uncertainty of temperature 454 

can be related to the wind uncertainty so that the carbon dioxide concentration could be 455 

affected by those wind errors, this is not a first-order effect and does not need to be 456 

considered during the analysis.  This is what the result in Figure 7 shows: L-mult has 457 
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larger errors overall and the spatial pattern is not as smooth as the nature run or the results 458 

from 1way.  Because the L-mult analysis reflects more strongly the observations of 459 

atmospheric carbon whenever there are large background uncertainties of (T, q, Ps) in 460 

addition to (U, V, C, CF), atmospheric CO2 observations are over-weighted for the case of 461 

L-mult producing an analysis with additional noise (Figure 7a) compared with the case of 462 

1way (Figure 7c).  Over the ocean, where there are few observations of meteorological 463 

variables, their estimated error, given by the background spread, is large.  Thus, the L-464 

mult tends to give more weights to the atmospheric CO2 observations than it should 465 

because it considers the joint background uncertainties of (U, V, T, q, C, Ps) altogether. 466 

We further localize the variables in L-1way by zeroing out the correlation between CF 467 

and (U,V) from the 1way system.  The analysis can still include the uncertainties in the 468 

wind field to assist the analysis of atmospheric CO2, but the error of surface carbon flux is 469 

coupled with only the atmospheric CO2 uncertainty reflecting the fact that carbon flux is 470 

only related to low level atmospheric CO2 and not with the wind.  Again, the 471 

meteorological variables are not affected by (C, CF), so that the analysis of (U, V, T, q, Ps) 472 

are exactly the same as in 1way, also true for the C-univ analysis for the same reason.  473 

From Table 2 and Figure 5, we find that L-1way has the best performance of five schemes 474 
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for estimating surface CO2 fluxes, while the result for atmospheric CO2 concentration is 475 

comparable with that from 1way (Figure 4).  This implies that the surface carbon fluxes 476 

should not be linked to the wind fields in the background error covariance matrix.  As a 477 

result, the spatial distribution of the analysis from L-1way in Figure 8 also shows a 478 

promising performance in estimating surface carbon fluxes, capturing well the major source 479 

regions in the Northern Hemisphere. 480 

The last method considered, C-univ, has stable results in the analysis of the carbon 481 

variables, but the surface carbon flux is slightly worse than that of L-1way (Figure 4, 5 and 482 

Table 2).  Interestingly, the RMS error of surface carbon analysis grows with time whereas 483 

L-1way keeps reducing the errors (Figure 5).  Since these two systems differ only in 484 

whether the transport error is considered when analyzing the atmospheric CO2 485 

concentrations, the gradual increase of RMS error in C-univ can be seen as a result of 486 

neglecting transport errors.   487 

Figure 9 displays global maps of analysis errors in surface CO2 flux analyses resulting 488 

from the L-mult, 1way, L-1way, and C-univ experiments (recall that the standard 489 

multivariate LETKF without any variable localization blew up after 40 days).  L-mult has 490 

a broad area of overall errors (Fig 9a).  It is apparent that the presence of an error 491 
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covariance among all of the atmospheric variables is not helpful for the analysis of carbon, 492 

since it just introduces sampling errors.  By removing the irrelevant error covariance 493 

between carbon and temperature, humidity, and surface pressure from L-mult, the results in 494 

1way show improvement overall (Fig 9b) compared to the multivariate analyses.  L-1way 495 

provides further localization between the surface carbon flux and wind fields, compared to 496 

1way, and hence obtains the smallest errors in carbon flux analysis.  This technique clearly 497 

has less error, especially over the oceans, than L-mult or 1way.   498 

The approach embodied in C-univ has lost the error information contained in the 499 

relationship between wind and atmospheric CO2 uncertainties and hence has somewhat 500 

worse results than L-1way.  Indeed, over the polar regions (Figure 9d), C-univ has 501 

spurious estimates of surface carbon fluxes in areas where there are large errors in the wind 502 

analysis (Figure 6), whereas L-1way does not have those errors.  We also note that the 503 

error in C-univ over the polar region grows with time, and this leads to RMS error 504 

increases in Figure 5.  Thus, we can conclude that the reason for increasing RMS error in 505 

the surface carbon fluxes is that transport errors are not accounted for in C-univ.  In 506 

addition, experiments with an imperfect model [Kang, 2009] indicate that the perfect model 507 

assumption underestimates the impact of this deficiency of C-univ since transport errors are 508 
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also underestimated in this scenario.  509 

When we allow for time-varying surface CO2 forcing, the estimation problem becomes 510 

more difficult because we are not anymore under a perfect model scenario, since the 511 

forecast model does not change the surface fluxes, only changed by the analysis cycle.  512 

Thus, the overall errors for both schemes become larger and require further research on 513 

potential improvements in the data assimilation techniques (see below).  Nevertheless, the 514 

relatively small advantage of L-1way compared to C-univ observed with constant fluxes 515 

(Fig. 9c and Fig 9d) becomes much more significant (Figure 10) indicating that, for this 516 

scenario, the estimation of surface CO2 fluxes from L-1way is significantly better than that 517 

from C-univ.  It is important to note that L-1way outperforms C-univ especially over the 518 

ocean and the Southern Hemisphere where the wind uncertainties are dominant due to the 519 

lack of rawinsonde observations.  Since the analysis cycle updates surface CO2 fluxes 520 

which in turn force the atmospheric CO2 forecast for the next six hours, unresolved 521 

transport errors when assimilating CO2 in C-univ can degrade the analysis of carbon 522 

variables more in the case with the time-varying forcing than in the case with a constant 523 

forcing. 524 

We note that the adaptive inflation estimation has relatively large changes during the 525 
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first ten days of the analysis when the errors in the initial conditions of the background 526 

states are very large compared to the observation errors (not shown).  The adaptive 527 

inflation of the background covariance for the meteorological variables, which is estimated 528 

initially to be about 35%, settles after spin-up at about 5% ( 05.1  in Equation 4).  The 529 

inflation factor estimated for the atmospheric CO2 concentration also decreases with time: 530 

the inflation factor is estimated at about 50% during the first week and then converges in 531 

time to less than 10%.  These adaptive inflation factors are similar for all the variable 532 

localization schemes that we have examined in this study.  The inflation for the surface 533 

carbon fluxes is estimated to be small, less than 2%, as could be expected for a variable that 534 

is not observed [Anderson, 2009].  If instead, we allow the inflation for the carbon flux to 535 

be the same as for atmospheric CO2, there is filter divergence in the estimation of the 536 

surface carbon flux analysis.  Thus, the adaptive inflation estimation algorithm [Li et al., 537 

2009; Zhang et al., 2004] appears to work quite well in the carbon cycle data assimilation 538 

system. 539 

 540 

5. Summary and Discussion 541 

We have developed a method to estimate surface carbon fluxes via an EnKF data 542 
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assimilation analyzing the meteorological variables and the carbon variables 543 

simultaneously.  The method is fairly efficient in terms of computational cost since it does 544 

not require an additional run of the transport model as the observation operator during the 545 

analysis, a step generally used in previous studies.  In addition, simultaneous analyses 546 

allow accounting for the important day-to-day wind uncertainties when analyzing CO2 547 

variables.  Atmospheric CO2 observations are assimilated from a simulated network of in 548 

situ (continuous record), flask (weekly record), and satellite-based measurements with 549 

realistic resolution.  The results of this study, although far from perfect, are promising 550 

especially considering that no a priori information about carbon has been used. 551 

The focus of this paper is a comparison of several “variable localization” schemes that 552 

reduce sampling errors in the ensemble estimation of the covariance between physically 553 

uncorrelated variables by zeroing out the background error covariance among these 554 

variables.  Since carbon variables in the nature run do not have a physical relationship 555 

with temperature, specific humidity and surface pressure, the standard EnKF approach of 556 

coupling errors of all variables in mult analysis induces sampling error into the system.  557 

As a result, the accuracy of mult analyses for all dynamic variables gets progressively 558 

worse together with surface carbon flux estimation until about 40 days, when filter 559 
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divergence takes place.  Of the five new methods introduced here, the localized one-way 560 

approach, L-1way, has the best performance in the estimation of surface carbon fluxes. The 561 

atmospheric CO2 analysis includes the error covariance of CO2 and surface carbon flux as 562 

well as the wind transport error, which is strongly related to the forecast of atmospheric 563 

CO2.  This approach excludes the non-physical error covariance between the wind field 564 

and surface CO2 flux and among the carbon variables and temperature, humidity, and 565 

surface pressure, which are dominated by sampling errors.  Moreover, the carbon variables 566 

are not allowed to influence the analysis of meteorological variables because CO2 is poorly 567 

observed, and thus would increase the sampling errors in the better observed winds and 568 

temperatures [Liu et al., 2009].  569 

The results from L-1way can be contrasted with C-univ, which is closer to previous 570 

studies in a sense that transport error covariances are not considered during the carbon 571 

analysis.  Nevertheless, the C-univ approach within EnKF does allow for information on 572 

transport uncertainties because the different ensemble members have different winds, and 573 

therefore different CO2 transports.  As a result, the carbon univariate approach gives quite 574 

good results when we use constant surface fluxes, although slightly worse than those 575 

obtained with the L-1way approach.  The improvement of L-1way over C-univ becomes 576 



 36

much larger when the imperfection of CO2 forecast becomes important.  The advantages 577 

of L-1way results compared to C-univ results demonstrate that it is necessary to resolve 578 

transport error for the analysis of atmospheric CO2.  579 

We note that the variable localization design of the most successful method in this 580 

paper, the L-1way, is based on our OSSE experimental setting since, in our nature run, 581 

atmospheric CO2 is only transported and mixed by the wind fields and the varying CO2 has 582 

no radiative impact and thus no temperature dependence.  In a more realistic model, 583 

assimilating real observations, the variable localization technique we have introduced needs 584 

to be adapted by considering the “dynamical distance” between each pair of variables in a 585 

real nature and model.  If the background error covariance is dominated by sampling 586 

errors, it will be beneficial to zero out the covariance as we did here, even if the two 587 

variables are, to some extent, physically related.  For example, biospheric and air-sea 588 

carbon fluxes have diurnal, seasonal, and interannual variabilities that are modulated by 589 

precipitation, temperature, cloud cover, relative humidity, and wind speeds.  Only if the 590 

atmospheric carbon model is realistic enough to represent well the covariability of two of 591 

these variables, should the corresponding error covariance be retained.  Furthermore, a 592 

study with more realistic settings such as using a realistic model and an imperfect model 593 
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assumption is required as a next step, in order to further examine the impact of this new 594 

method on assimilating real observations. 595 

We point out that, in this paper, we introduced the methodology of constraining the 596 

unobserved surface CO2 fluxes by assimilating atmospheric CO2 observations 597 

simultaneously with atmospheric observations allowing transport errors to be considered 598 

during the analysis step.  In principle, this methodology could be extended to the 599 

estimation of surface moisture/heat fluxes from the assimilation of observations of 600 

humidity/temperature in the atmosphere, another major challenge in current models. 601 

Finally, we note that the results of these new techniques such as variable localization 602 

and adaptive inflation have clearly improved our ability to estimate the surface fluxes, so 603 

that these techniques can be used in other Ensemble Kalman Filter data assimilation 604 

problems. Nevertheless, since our ultimate goal is to estimate as well as possible not only 605 

the atmospheric CO2 but also the surface carbon fluxes, it is clear that significant more 606 

progress is needed, especially in the imperfect model scenario.  We are doing research 607 

with several promising additional new techniques, including the estimation of the model 608 

bias, and the restructuring of ensemble perturbations that in time tend to align themselves 609 

too much along the most unstable direction (leading local Lyapunov vectors).  The 610 
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difficulty of the problem makes clear the need to perform OSSEs as well as real data 611 

experiments in order to understand what can be achieved with real data and what 612 

techniques should be tested. 613 
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Figure Captions 758 

Figure 1. Schematic plots of background error covariance matrices (Pb=(xb)(xb)T/(K-1)) for 759 

(a) mult, (b) L-mult, (c) 1way, (d) L-1way, and (e) C-univ analysis systems.  Here, C 760 

indicates atmospheric CO2 concentration and CF indicates surface carbon fluxes.  The 761 

colors of the variable names are matched with the system used for their updates.  White 762 

areas with “no” indicate the error correlation between variables is assumed to be zero 763 

during the analysis while areas with “yes” indicate that the errors are allowed to be 764 

correlated. For example, in 1(d), the errors of the standard atmospheric variables are 765 

coupled, the atmospheric CO2 errors are coupled with those of the wind but the wind errors 766 

are not coupled with the CO2 errors (1-way coupling), and the surface carbon flux errors are 767 

only coupled with the CO2 errors. 768 

 769 

Figure 2. True state of (a) surface CO2 fluxes (6 PgC/yr) and (b) atmospheric CO2 770 

concentrations in the lowest layer at the initial time, as well as initial ensemble mean of (c) 771 

surface CO2 fluxes and (d) atmospheric CO2. Units for atmospheric CO2 concentration are 772 

ppmv, units for surface CO2 fluxes are 10-9 kg/m2/s. 773 
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Figure 3. The simulated observational coverage of (a) meteorological variables (black dots) 774 

and (b) atmospheric CO2 concentration (gray lines: GOSAT column data, crosses: 775 

continuous in situ data, closed circles: weekly flask data).   776 

 777 

Figure 4. Time series of global RMS error of (a) U (m/s) and (b) atmospheric CO2 778 

concentration in the lowest layer (ppmv) for four months of analysis. (solid gray: mult, 779 

solid black: L-mult, dashed gray: 1way, dashed black: L-1way, dotted light gray: C-univ) 780 

 781 

Figure 5. Same as Figure 4, except for the surface CO2 fluxes. 782 

 783 

Figure 6. Analysis error (unit: m/s) of (a) zonal wind and (b) meridional wind from the 784 

localized multivariate analysis (L-mult) for the last three months of data assimilation. (c) 785 

and (d): The same as in (a) and (b) except from 1way. Shading indicates positive errors and 786 

contours indicate negative errors with the same color scale as the shading. 787 
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 788 

Figure 7. Analysis (left column) of atmospheric CO2 concentration in the lowest layer and 789 

its error (right column) after four months of analysis.  (a) and (b) results from L-mult, (c) 790 

and (d) from  1way.  Units are ppmv. Shading indicates positive errors and contours 791 

indicate negative errors with the same color scale as the shading. 792 

 793 

Figure 8. (a) True state of surface CO2 fluxes and (b) the analysis after four months of the 794 

L-1way (localized 1-way multivariate) data assimilation. (Units are 10-9 kg/m2/s.) 795 

 796 

Figure 9. Analysis errors of surface CO2 fluxes after four months of analysis.  (a) results 797 

from L-mult, (b) from 1way, (c) from L-1way and (d) from C-univ.  Units are 10-9 kg/m2/s. 798 

(Shading indicates positive errors and contours indicate negative errors with the same color 799 

scale as the shading.) 800 

 801 
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Figure 10. (a) True state of surface CO2 fluxes from a time-varying terrestrial and oceanic 802 

forcing and a fossil fuel emission, and the estimated surface CO2 fluxes from (b) L-1way, 803 

and (c) C-univ data assimilation for the last two months (November-December) of one-year 804 

analysis 805 
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Table 1. Standard deviation of errors used in creating the simulated observations. 806 

 807 

Variable Std. dev. of error 

U 1.0 m/s 

V 1.0 m/s 

T 1.0 K 

q 0.1 g/kg 

Ps 1.0 hPa 

C 1.0 ppmv 
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Table 2.  RMS error of variables from different localization schemes for the last week of 808 

four-month analysis: one-week time average of every six hour values of 809 

nxx
n

i

t
i

a
i  2)( , where a

ix / t
ix  is the analysis/the truth at i-th point, and n is the total 810 

number of grid points (units: CF=10-9kg/m2/s, C=ppmv, U and V=m/s, T=K, q=g/kg, 811 

Ps=hPa). The errors corresponding to Ensemble Kalman Filter divergence are symbolically 812 

represented as “infinite”. 813 

 814 

 mult L-mult 1way L-1way C-univ 

CF ∞ 8.65 6.10 5.65 5.79 

C ∞ 1.05 0.68 0.71 0.67 

U ∞ 1.32 1.32 

V ∞ 1.22 1.20 

T ∞ 0.53 0.54 

q ∞ 0.34 0.35 

Ps ∞ 1.15 1.14 

 815 
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 816 

Figure 1. Schematic plots of background error covariance matrices (Pb=(xb)(xb)T/(K-1)) for (a) mult, (b) L-817 

mult, (c) 1way, (d) L-1way, and (e) C-univ analysis systems.  Here, C indicates atmospheric CO2 818 

concentration and CF indicates surface carbon fluxes.  The colors of the variable names are matched with the 819 

system used for their updates.  White areas with “no” indicate the error correlation between variables is 820 

assumed to be zero during the analysis while areas with “yes” indicate that the errors are allowed to be 821 

correlated. For example, in 1(d), the errors of the standard atmospheric variables are coupled, the atmospheric 822 

CO2 errors are coupled with those of the wind but the wind errors are not coupled with the CO2 errors (1-way 823 

coupling), and the surface carbon flux errors are only coupled with the CO2 errors. 824 
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 825 

Figure 2. True state of (a) surface CO2 fluxes (6 PgC/yr) and (b) atmospheric CO2 826 

concentrations in the lowest layer at the initial time, as well as initial ensemble mean of (c) 827 

surface CO2 fluxes and (d) atmospheric CO2. Units for atmospheric CO2 concentration are 828 

ppmv, units for surface CO2 fluxes are 10-9 kg/m2/s. 829 
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 830 

Figure 3. The simulated observational coverage of (a) meteorological variables (black dots) 831 

and (b) atmospheric CO2 concentration (gray lines: GOSAT column data, crosses: 832 

continuous in situ data, closed circles: weekly flask data).   833 
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 834 

Figure 4. Time series of global RMS error of (a) U (m/s) and (b) atmospheric CO2 835 

concentration in the lowest layer (ppmv) for four months of analysis. (solid gray: mult, 836 

solid black: L-mult, dashed gray: 1way, dashed black: L-1way, dotted light gray: C-univ) 837 
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 838 

Figure 5. Same as Figure 4, except for the surface CO2 fluxes. 839 



 59

840 

  841 

Figure 6. Analysis error (unit: m/s) of (a) zonal wind and (b) meridional wind from the 842 

localized multivariate analysis (L-mult) for the last three months of data assimilation. (c) 843 

and (d): The same as in (a) and (b) except from 1way. Shading indicates positive errors and 844 

contours indicate negative errors with the same color scale as the shading. 845 
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 846 

Figure 7. Analysis (left column) of atmospheric CO2 concentration (ppmv) in the lowest 847 

layer and its error (right column) after four months of analysis.  (a) and (b) results from L-848 

mult, (c) and (d) from  1way.  Units are ppmv. Shading indicates positive errors and 849 

contours indicate negative errors with the same color scale as the shading. 850 
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 851 

Figure 8. (a) True state of surface CO2 fluxes and (b) the analysis after four months of the 852 

L-1way (localized 1-way multivariate) data assimilation. (Shading indicates positive errors 853 

and contours indicate negative errors with the same contour scale as the shading.    Units are 854 

10-9 kg/m2/s) 855 
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 856 

Figure 9. Analysis errors of surface CO2 fluxes after four months of analysis.  (a) results 857 

from L-mult, (b) from 1way, (c) from L-1way and (d) from C-univ.  Units are 10-9 kg/m2/s. 858 

(Shading indicates positive errors and contours indicate negative errors with the same 859 

contour scale as the shading.)   860 
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 861 

Figure 10. (a) True state of surface CO2 fluxes from a time-varying terrestrial and oceanic 862 

forcing and a fossil fuel emission, and the estimated surface CO2 fluxes from (b) L-1way, 863 

and (c) C-univ data assimilation for the last two months (November-December) of one-year 864 

analysis. 865 


