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Abstract. We perform data assimilation experiments with a
widely used quasi-geostrophic channel model and compare
the Local Ensemble Kalman Filter (LEKF) with a 3D-Var
developed for this model. The LEKF shows a large improve-
ment, especially in correcting the fast growing modes of the
analysis errors, with a mean square error equal to about half
that of the 3D-Var. The improvement obtained in the anal-
ysis is maintained in the forecasts, implying that the system
is capable of correcting the initial errors responsible for later
forecast error growth.

Different configurations of the LEKF are tested and com-
pared. We find that for this system, adding random pertur-
bations after every analysis step is more effective than the
standard variance inflation in order to avoid underestimating
the background error covariance and the consequent filter di-
vergence.

Experiments indicate that optimal results are obtained with
a relatively small number of vectors (∼ 30) in the ensemble.
The LEKF is characterized by the “localization” of the anal-
ysis process over local domains surrounding each gridpoint
of the model grid. We find that, when using a fixed num-
ber of ensemble vectors, there is an optimal size of the local
horizontal domain beyond which the results do not change
further.

1 Introduction

Numerical weather prediction has substantially improved in
recent years, due to both an enhancement in the dynamics
and physical parameterizations in models, and to new meth-
ods to generate initial conditions in the data assimilation pro-
cesses (e.g. Kalnay, 2003). It is well known that the atmo-
spheric flow is a chaotic system and that numerical forecasts
are sensitive to small changes in the initial conditions, with a
rapid growth of the initial errors that leads, in a relatively

Correspondence to: M. Corazza
(matteo.corazza@arpal.org)

short time, to deviations responsible for limiting the pre-
dictability of the flow to a week or so. For this reason, dur-
ing the last decades a great effort has been devoted to study
new methods aimed at improving the description of the pre-
dictability of the flow and, as a consequence, of the initial
conditions.

Presently, several operational centers use 3-Dimensional
Variational data assimilation systems (3D-Var, e.g. Parrish
and Derber, 1992; Lorenc, 1986) to generate the analyses
required to provide initial conditions to the model. This
method is a statistical interpolation between the new obser-
vations and a short range forecast (typically 3 to 12 hours),
which is used as first guess or background. In this process,
the corrections of the background toward the observations,
i.e. the analysis increments, are strongly dependent on the
inverse of their error covariances, and only take place within
the subspace spanned by the background error covariance.
Therefore a good representation of the observation and back-
ground error covariances is one of the most important aspects
in the framework of the present efforts in developing data as-
similation systems. In 3D-Var methods the background error
covariance B is given by a statistical average of the error
structures, and is maintained constant in time. That is, there
is no accounting for the variations of the atmospheric state
and consequent day-to-day variability of the background due
to the actual state of the flow. These flow-dependent errors
are hereafter referred to as the “errors of the day”, the im-
portance of which has been described in several recent papers
and books (e.g. Courtier et al., 1994; Kalnay, 2003; Corazza
et al., 2003).

Kalman filtering (see Daley, 1993), in which B is pre-
dicted (Bt = LBt−1LT, where L is the tangent linear
model, LT its transpose and t is time) can be considered the
natural and complete approach to the problem of represent-
ing the variability of B, but the computational cost related
to this formulation makes its operational application impos-
sible without major simplifications, even considering the po-
tential development of the computational facilities during the
next decade. There are other methods that try to account for
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the “errors of the day” in the forecast error covariance, such
as the modification of B in 3D-Var (Purser, 2005; De Pon-
deca et al., 2006; Corazza et al., 2002) 4-dimensional vari-
ational data assimilation (4D-Var, e.g. Courtier et al., 1994;
Rabier et al., 2000), ensemble Kalman Filtering (EnKF, e.g.
Klinker et al., 2000; Houtekamer and Mitchell, 1998; Hamill
and Snyder, 2000), and the method of representers (Bennett
et al., 1996).

Recently, several studies have been carried out in order to
substitute the standard B in 3D-Var with a more complex
covariance matrix, no longer constant, but capable to take
into account time dependent flow. In particular, a general
method to implement any arbitrary anisotropy, and therefore
also flux dependent anisotropies, has been implemented at
NOAA/NCEP, as described by Purser (2005, regarding the
theoretical geometrical implementation), and by De Pondeca
et al. (2006, concerning different implementations of the fil-
ter). All the implementations produced an improvement re-
spect to the standard 3D-Var, further confirming the impor-
tance of the inclusion of the errors of the day in the data as-
similation process. A simpler method, based on the use of
the information provided by an ensemble of bred vectors in
B, has been experimented by Corazza et al. (2002) on the
same system used in this work, also showing improvement
with respect to 3D-Var.

4D-Var is a powerful approach that reduces the compu-
tational cost of Kalman Filtering by estimating the initial
conditions such that the model forecast best fits the obser-
vations within a data assimilation window. 4D-Var produces
the same results as Kalman Filtering under the assumptions
of perfect linear model framework, of Gaussian error, and
of a Kalman Filter representation of the background error
covariance matrix at the beginning of the computation. Al-
though 4D-Var is computationally affordable with the most
powerful available computers, its cost is still high compared
to 3D-Var. In addition, it requires the development and main-
tenance of the adjoint of the model.

Another approximation to Kalman Filtering is Ensemble
Kalman Filtering (EnKF), where the background error co-
variance is estimated by the sample covariance from the
background ensemble vectors. As a result it has the advan-
tage of being model independent, i.e. no tangent linear and
adjoint model is needed, and, in the recent implementations
that allow for the use of a relatively small number of en-
semble members, less computationally expensive than 4D-
Var (Evensen, 1994). A number of studies have been car-
ried out with promising results (Houtekamer and Mitchell,
1998; Hamill and Snyder, 2000; Tippett et al., 2002; Ander-
son, 2001), and the system developed by Houtekamer et al.
(2005) has been implemented in Canada to provide initial
ensemble perturbations.

Kalnay and Toth (1994) have pointed out that the breeding
technique used for ensemble forecasting describes the local
pattern of the “errors of the day” and proposed a method to
use the information made available by an ensemble of bred
vectors to in effect approximate the background covariance
matrix. In their work they argued that the similarity between

breeding (Toth and Kalnay, 1993, 1997) and data assimila-
tion suggests that the background errors should have local
structures similar to those of bred vectors, and this conjec-
ture has been confirmed by Corazza et al. (2003) with the
same Quasi-Geostrophic model used in this work.

More recently, based on the results of Patil et al. (2001),
Ott et al. (2002, 2004) developed a new system, called Lo-
cal Ensemble Kalman Filter (LEKF), in which the Kalman
Filter equations are solved within the space of the ensemble
forecasts, but locally in space. This system has been tested
on a simple 40 variables Lorenz model (Ott et al., 2004), and
on the NCEP Global Forecasting System (Szunyogh et al.,
2004, 2005). It is one of the possible implementations of
the square-root ensemble Kalman filters, where the analysis
increments and errors are computed using a background er-
ror covariance derived from the ensemble of vectors, so that
the increments lay in the subspace spanned by these vectors.
This gives the major advantage of capturing the dominant er-
ror growing directions, thus providing a large improvement
to the informations available from the observational errors.
Other square-root filters derive their computational efficiency
from the assimilation of one observation at a time (Tippett
et al., 2002), whereas the LEKF computes the analysis inde-
pendently at each grid point, using all the observations avail-
able within a local volume surrounding it. This is advanta-
geous when there are large number of observations such as
satellite data, and it allows for very parallel computations.

In this work we test different configurations of the LEKF
by implementing it on a quasi-geostrophic channel model de-
scribed in Rotunno and Bao (1996). The results are com-
pared with those obtained with an optimized 3D-Var system
developed by Morss (1998). A perfect model framework is
assumed, so that the conclusions of this work are not neces-
sarily valid for a more complex model with errors. However
this assumption lets us explicitly define the “true state of the
atmosphere” (by integrating the model from a given initial
state) and therefore perform a direct comparison in which
the analysis and forecast errors are explicitly represented.

The outline of the work is as follows. In Sect. 2 the imple-
mentation of the quasi-geostrophic model and of the 3D-Var
data assimilation system are briefly reviewed. In Sect. 3,
a description of the implementation of the Local Ensemble
Kalman Filter is presented. Results are discussed in Sect. 4,
and a summary and conclusions close the work.

2 Model and 3D-Var data assimilation system

This study uses the model developed by Rotunno and Bao
(1996) and used by Morss (1998) and Morss et al. (2001)
to develop a 3D-Var scheme. It is a quasi-geostrophic mid-
latitude, β-plane, finite-difference channel model, periodic
in longitude, and with impermeable walls on the north and
south boundaries. The bottom and the top boundaries are
treated as rigid lids. It has no orography, land-sea contrast
or seasonal cycle. Quasi-geostrophic potential vorticity is
conserved except for Ekman pumping at the surface,∇4 hor-
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Table 1. List of the optimal settings LEKF system used for the simulations presented in this work unless otherwise noted. In particular we
have adopted a local domain characterized by an horizontal base of 7 × 7 points (l = 3), with no vertical localization (7 layers). Since the
data assimilation variables are u, v, and T , U = 21 (number of variables in a column, Sect. 3.1). Reference simulations have been performed
using 30 ensemble members (k = 30), and constructing the final global fields as an average of all the analysis fields available from different
local domains (“multi column” method, Sect. 4). The average amplitude of the random perturbations added to the ensemble members at the
end of the analysis step is 5% of the average amplitude of the ensemble vectors (Sect. 3.4 and 4). Finally, when multiplicative inflation is
used in the combined method, the ensemble vectors are multiplied by a factor equal to 1.02 at the end of the data assimilation step (Sect.
3.4).

Horizontal grid 64× 32 points
Vertical levels 5 plus top and bottom
Horizontal dimension of the local domain l = 3
Number of variables in a column (u, v, and T in 7 layers) U = 21
Number of members in the ensemble k = 30
Method to update the global field average (“multi column”)
Amplitude of the random perturbations ∼ 5% of the average amplitude of the

ensemble vectors
Inflation factor for the combined system 1.02

izontal diffusion and forcing by relaxation to a baroclinically
unstable zonal mean state. All the experiments described in
this work have been performed over a domain correspond-
ing to an area of roughly 16000 × 8000 × 9 km with a grid
composed by 64 points east-west, 32 south-north and 5 ver-
tical interior layers, plus the bottom and top of the domain,
where potential temperature is forecasted to provide vertical
boundary conditions for the streamfunction.

As indicated in the introduction, the “true” state of the at-
mosphere is created by a long integration of the model. The
3D-Var data assimilation system used in this work as the ref-
erence data assimilation scheme is based on the code of the
scheme originally described in Morss (1998). “Rawinsonde”
observations of u, v and T are obtained from the true state of
the atmosphere at a fixed number of grid-points in order to
avoid interpolation errors. Random Gaussian noise is gener-
ated and added to the observations to simulate observational
errors compatible with those of the real radiosounding sta-
tions of the global operational network.

Analyses are performed every 12 hours and the 12 hour
forecast is used as background for the 3D-Var. The system
has been optimized for the number of stations used in this
work by tuning the amplitude of the background covariance
matrix B originally developed by Morss (1998) so as to min-
imize the analysis and forecast errors of the 3D-Var. The
optimization has been limited to a careful tuning of the am-
plitude of B, because Morss (1998) showed that the spec-
tral coefficients of B obtained for the original system are not
sensitively dependent of the density of the observational net-
work.

In the original formulation Morss (1998) defines the ob-
servation operator H as the operator that transforms the
model variables (grid point components of the potential vor-
ticity and potential temperature) into “rawinsonde observa-
tions”. The global spectral transforms for the Poisson equa-
tion solver and its inverse (required to transform model po-

tential vorticity into observed winds and temperatures and
vice versa) are conveniently computed using a global spectral
approach within the 3D-Var. As we will see in the next sec-
tion, this method cannot be directly applied in the framework
of the LEKF formulation, since the analysis is computed on
local domains, and a different approach has been developed.

3 The implementation of the Local Ensemble Kalman
Filter data assimilation system

3.1 The localization

The implementation of the Local Ensemble Kalman Filter
has been performed following Ott et al. (2002). In the LEKF
the representation of the state of the flow is decomposed over
local domains around each grid point. A detailed description
of the LEKF can be found in Ott et al. (2004) so here we only
provide an overview of the approach, following the notation
adopted in their paper.

In the 2-dimensional horizontal grid of the model, the state
of the flow may be represented by means of a vector field
x(r; t) where r runs over the grid points rmn. At each grid
point x is a vector of the state variables of the model (in our
case potential vorticity and temperature) at all vertical levels.
Let U denote the dimension of x(r; t) at a fixed r. In the
QG-model used in this work, where the forecast variables
are potential vorticity in the five internal layers and poten-
tial temperature at the top and the bottom levels, so that in
the model framework, U = 7. However, as discussed in
Sect. 3.5, the method adopted to locally handle the obser-
vation operator requires instead the alternate use of u, v, T
at all levels, so that in the implementation used in this work
U (in observation space) is equal to 21. We could have also
localized in the vertical, as done in Szunyogh et al. (2005),
but because of the low vertical resolution we have included a
full column in each local volume.



4 M. Corazza et al.: LEKF in a qg model and comparison with 3D-Var.

Following the work of Patil et al. (2001) and Ott et al.
(2002), we introduce at each grid point a local vector xmn

defined as x(rm+m′,n+n′ , t) for −l ≤ (m′, n′) ≤ l. That
is, xmn(t) contains the information of the state of the model
over the local area within a (2l+1) by (2l+1) sub-grid points
centered at rmn, with a dimension equal to (2l+1)2U . Con-
sidering an ensemble of k forecasts started from the previous
analysis step, it is possible to construct the local vectors asso-
ciated with each member of the ensemble (denoted by xb

mn,
where the superscript b stands for ”background”). As in Ott
et al. (2002), xb

mn at time t can be described by a probability
distribution function Fmn(xb

mn, t), approximated by a Gaus-
sian distribution identified by a local background error co-
variance matrix Pb

mn and the most probable state x̄b
mn. As-

suming that the dimension of the null space of Pb
mn is large

compared with the k dimensional subspace orthogonal to the
null space, and since Pb

mn is symmetric, it is possible to com-
pute an orthonormal set of k eigenvectors {u(j)

mn(t)} with a
corresponding set of k non-negative eigenvalues {λ(j)

mn(t)}
generally distinct and such as λ(j)

mn(k) > 0.
In terms of u(j)

mn and λ(j)
mn the covariance matrix is given

by

Pb
mn(t) =

n∑

j=1

x̃b(j)
mn (t)

(
x̃b(j)

mn (t)
)T

(1)

where

x̃b(j)
mn (t) =

√
λ(j)

mn(t)u(j)
mn(t). (2)

Working in the k dimensional space Smn spanned by the
vectors {u(j)

mn(t)} is particularly advantageous since it is pos-
sible to represent Pb

mn(t) as a diagonal matrix equal to

P̂b
mn(t) = diag

[
λ(1)

mn,λ(2)
mn, . . . ,λ(k)

mn

]
, (3)

so that its inverse is trivial (here and in the following text, the
hat represents vectors or matrices in the Smn space).

Patil et al. (2001), used 30-pairs of ensembles of bred
vectors from the NCEP system (Toth and Kalnay, 1993,
1997) and found that forecast errors in the mid-latitude
extra-tropics tend to lie in a low dimensional subset of the
(2l + 1)2U dimensional local vector space. For the sys-
tem used in this work, this result was also very apparent in
Corazza et al. (2003). Thus, it is possible to make the hy-
pothesis that the dimension of Smn is rather low, and that
the error variance in all other directions is negligibly small
compared to the variance

k∑

j=1

λ(j)
mn, (4)

in the directions umn(j), j = 1, 2, . . . , k.

3.2 Data assimilation

Following Ott et al. (2002), let xa
mn denote the random vari-

able (analysis) at time t representing the local vector after

using the observations. If ŷo
mn(t) is the vector of observa-

tions within the local region, with errors normally distributed
with covariance matrix R̂mn(t), the probability distribution
of xa

mn is also Gaussian, and is identified by the most proba-
ble state x̄a

mn and the associated covariance matrix Pa
mn(t).

The data assimilation step determines x̄a
mn (the local analy-

sis) and Pa
mn(t) (the local analysis covariance matrix). Sim-

ilarly to a global 3D-Var data assimilation system, the solu-
tion to this problem can be written in the ensemble subspace
Smn as follows

ˆ̄xa
mn(t) = x̂b

mn(t) +
{
P̂b−1

mn (t) + ĤT
mnR̂−1

mnĤmn

}−1
×

ĤT
mnR̂−1

mn

(
ŷo

mn(t)− Ĥmnx̂b
mn(t)

)
(5)

and

P̂a
mn(t) =

[
P̂b−1

mn (t) + ĤT
mnR̂−1

mnĤmn

]−1
(6)

where Ĥmn (assumed to be linear) is the local observation
operator which maps the local vector x̂mn(t) to the local ob-
servations ŷo

mn(t). Going back to the local space representa-
tion, we have

x̄a
mn(t) = Qmn(t)ˆ̄xa

mn(t) (7)

Pa
mn(t) = Qmn(t)P̂a

mn(t)QT
mn(t), (8)

where Qmn is the (2l + 1)2U by k matrix:

Qmn(t) =
{
u(1)

mn(t)|u(2)
mn(t)| . . . |u(k)

mn(t)
}

. (9)

3.3 Updating the background field

The analysis information Pa
mn and x̄a

mn can be used to
obtain an ensemble of global analysis fields {xa(i)(r, t)};
i = 1, 2, . . . , k as described below (see Ott et al., 2002).
These fields represent the ensemble of initial conditions
for the atmospheric model. By integrating the ensemble
of global fields forward in time to the next analysis time
t + ∆t, it is possible to obtain the background ensemble
{xb(i)(r, t + ∆t)}. This completes the analysis cycle which,
if the procedure is stable, can be repeated for as long as de-
sired. Thus, at each analysis step a global initial condition
is available to be used to compute forecasts of the desired
duration.

The remaining task is to specify the global analysis fields
for the members of the ensemble {xa(i)(r, t)}, starting from
the analysis information, Pa

mn and x̄a
mn. Let

xa(i)
mn (t) = x̄a

mn(t) + δxa(i)
mn (t) (10)

denote k local analysis vectors, where

k∑

i=1

δxa(i)
mn (t) = 0, (11)

and

Pa
mn = (k − 1)−1

k∑

i=1

δxa(i)
mn (t)

[
δxa(i)

mn (t)
]T

. (12)
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(a) (b)

Fig. 1. (a) Time evolution of Analysis Error (rms) of potential vorticity at mid-level for the regular 3D-Var system (filled dots). The empty
dots line represents the 48 hour forecast error. (b) Same as (a) for the reference LEKF system. Here as in the other figures, variables are
nondimensionalized following the relations described, for instance, in Rotunno and Bao (1996, page 1058, Sec. 3.c).

By Eq. (11), the local analysis state x̄a
mn(t) represents the

mean over the local analysis ensemble {xa(i)(t)}, and, by
Eq. (12) the error covariance matrix is computed from the
vectors {δxa(i)(t)}. The vectors δxa(i)

mn (t) can be represented
in the form

δxa(i)
mn (t) = Ymn(t)δxb(i)

mn(t), (13)

where the matrix Ymn(t) can be thought of as a generalized
‘rescaling’ of the original background fields and δxb(i)

mn(t) are
defined as

δxb(i)
mn(t) = xb(i)

mn(t)− x̄b
mn(t) (14)

and are such that

Pb
mn(t) = (k − 1)−1

k∑

i=1

δxb(i)
mn(t)

(
δxb(i)

mn(t)
)T

. (15)

There are many possible choices for Ymn(t) due to the
nonuniqueness of the square root of matrices. Here we fol-
low the choice made by Ott et al. (2004) making the hypoth-
esis that the original background fields are a good represen-
tation of a physical state, so as to minimize the difference
between the new analysis and the background ensembles. As
a result the solution for Ymn(t) is:

Ymn = (16)
[
I + XbT

mn

(
Pb

mn

)−1 (
Pa

mn −Pb
mn

) (
Pb

mn

)−1 Xb
mn

] 1
2

where

Xb
mn = (k − 1)−

1
2

{
δxb(1)

mn | δxb(2)
mn | . . . | δxb(k)

mn

}
(17)

The remaining task is to build an ensemble of global fields
{xa(i)(r, t)} that can be propagated forward in time to the
next analysis time. For this purpose it is possible to set

xa(i)(rmn, t) = Jxa(i)
mn (t), (18)

where J maps the (2l + 1)2U dimensional local vector to
the U dimensional vector updating the vertical profile of the
model (U = 7) at the grid point rmn at the center of the
patch. Equation (18) is applied at every grid point (m,n) of
the atmospheric model. Thus Eq. (18) defines an ensemble
of k + 1 global analysis fields xa(i)(r, t) for i = 1, 2, · · · , k.

3.4 Handling the stability of the system

It is known that a frequent problem that can arise from an en-
semble of vectors not globally orthogonalized is its tendency
to collapse toward a subspace that is too small. As a result,
even for a perfect model, the background error covariance
tends to be underestimated. These effects will tend to un-
derestimate the forecast error, and therefore to give too little
weight to the observations, which can lead to the divergence
of the filter (Anderson, 2001). In order to avoid this problem,
two different methods aimed at separating and enlarging the
ensemble perturbations have been tested and compared in the
implementation of the Local Ensemble Kalman Filter.

1. Multiplicative inflation: the amplitude of each pertur-
bation vector is increased by a factor larger than 1. By
applying this method no change in direction is added at
the analysis step, but the amplitude of the forecast per-
turbation vectors is kept sufficiently large (Anderson,
2001).
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2. Additive random perturbations: a global HT operator
is applied to a set of k random perturbations vectors in
the observational space with an amplitude comparable
with the errors of the observations. The resulting fields
are added to the global vectors of the ensemble. This
allows to “refresh” the ensemble at every analysis step
(Annan, 2004), by introducing perturbations in new ran-
dom directions and therefore increasing the Local En-
semble Dimension (Patil et al., 2001; Oczkowski et al.,
2005), which represents the effective number of inde-
pendent directions present in an ensemble. This method
(Corazza et al., 2002) effectively avoids the excessive
convergence of bred vectors into a small dimensional
space (Wang and Bishop, 2003), and is therefore an al-
ternative solution to the rank-deficiency problem that
causes filter divergence. We note that in practice this
additive inflation can be implemented without requiring
the use of the transpose of the observation operator (e.g.,
Hunt, 2005).

3. Methods 1) and 2) can be used at the same time, in what
we call ”the combined system”.

3.5 Handling the Poisson Solver in the local domain

As mentioned in Sect. 2, the observation operator H per-
forms the transformation from potential vorticity and poten-
tial temperature in the model space to horizontal wind veloc-
ity and temperature in the observation space. The introduc-
tion of H and HT requires the solution of a Poisson equation
that in the original system used by Morss (1998) is solved
by means of the use of global spectral transforms with two
boundary conditions: (1) periodic solution in the zonal di-
rection and (2) rigid lateral boundaries at the northern and
southern walls. When we work locally, as in the LEKF, this
global spectral approach is not feasible. A solution to this
problem is found by splitting the observation operator into
two parts

H = H̄ H̃ (19)

where H̄ is the operator mapping u, v and T defined on the
model grid to the observation locations, and H̃ is the opera-
tor transforming potential vorticity and potential temperature
into u, v and T over the global model grid.

Localizing H̄ is trivial, since only an interpolation pro-
cess has to be carried on. In our experiments, this process is
even simpler, since the observation locations are on the grid
points. Thus it is possible to apply H̃ once, at the begin-
ning of the data assimilation step, to all the vectors, in order
to compute global vectors for u, v and T over the model do-
main. The computation of the new analysis and perturbations
can therefore be carried on considering these as the model
variables. At the end of the process the new global vectors in
u, v, and T are transformed back to the potential vorticity and
potential temperature fields needed by the quasi-geostrophic
model.

(a)

(b)

Fig. 2. (a): Shaded: example of background error for potential
vorticity at mid-level at a fixed time (day = 123) for the regular
3DVar system. The contour plot represents the analysis increments
and the red dots indicate the position of the radio-sounding stations.
(b): same as (a) but for the LEKF. Note different scales in the two
figures.

Table 1 summarizes the parameters used for the configura-
tion of the LEKF. The optimal parameters shown in this table
are used unless otherwise noted.

4 Results

4.1 Comparison between the 3D-Var and the LEKF

The time evolution of the analysis root mean square error of
the potential vorticity as well as of the 48 hour forecast error
for the optimized version of the 3D-Var scheme is presented
in Fig. 1(a), plotted every 12 hours for about a year (711 val-
ues). The system is stable in time, even though the presence
of particularly large maxima (e.g. around days 50 and 120)
indicate significant variability of the errors in time. This is
an example of the importance of ”errors of the day”, i.e., the
variability of the errors in space and time discussed in the
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introduction that can be considered an intrinsic property of
the stability of the flow. The results shown in Fig. 1(a) are
consistent with those obtained using the original 3D-Var sys-
tem developed for this quasi-geostrophic model (see Morss,
1998).

The correspondence of large forecast errors with peaks in
the analysis errors valid at the same time is a clear indica-
tion that these errors are linked to the most unstable modes
of the flow. It implies that their correction is important not
only to reduce the amplitude of the fluctuations of the anal-
ysis errors but also to delay the fast growth of the most un-
stable (and therefore most important) errors of the flow. The
corresponding results for LEKF (Fig. 1(b)), discussed in the
next subsection, clearly indicate that most large “errors of the
day” are eliminated.

The Local Ensemble Kalman Filter implementation (Sect.
3) uses the same observational settings as the optimized 3D-
Var system. Unless otherwise noted, the number of ensem-
ble members is equal to 30. Two methods for updating
the new global vectors were tested (see Sect. 3.3). In the
first one only the central column of the local domain is up-
dated, so that each point of the global domain is modified
only once (“central column method”). In the second method
all the points within the domain of each local assimilation
are updated, so that the final analysis global vector is repre-
sented by an average of the (2l + 1)2 values (“multi column
method”). Only results for the multicolumn method are pre-
sented since they were slightly better than those of the central
column method.

Several tests were performed using different values of
multiplicative inflation. It improved significantly the results
in the first part of the simulations (first 100 analysis steps).
However, a slow increase of the error was observed in the
second part of the simulation (for a wide range of infla-
tion values), suggesting that, at least for this system, infla-

Fig. 3. Shaded: example of background error for potential vorticity
at midlevel at the same time of Fig. 2(a) and (b) (day=123) for
the LEKF system. The contour plots represent one vector of the
ensemble.

tion alone is not enough to keep the dimension of the space
spanned by the ensemble vectors sufficiently large. This re-
sult is not necessarily representative of the behavior of a real,
more complex, system (e.g. Szunyogh et al., 2005) where
multiplicative inflation was satisfactory. In the present quasi-
geostrophic system it is possible that the amplitude of the
vectors is sufficiently small to keep their behavior close to
linear. Under this assumption, the inflation method gives
more weight to the observations, but only within the same
subspace of the ensemble perturbations which with time may
become too small.

A marked improvement in the stability of the LEKF with
time was obtained by the use of additive random perturba-
tions instead of inflation. Unless otherwise noted, all the re-
sults shown hereafter are obtained using this method. Tests
using the combination of additive perturbations and inflation
were slightly better compared to those of the random pertur-
bations alone. A similar strategy is used in Yang et al. (2006)
for the optimization of their Ensemble Kalman Filter experi-
ments1.

Optimal results have been obtained by adding random per-
turbations to the analyses at the observation points following
the procedure described in Sec. 3.4. The standard deviation
of the perturbations is equal to about 5% of the average am-
plitude of the ensemble vectors. Since the average error of
the analysis decreases with the density of the observational
network, and the amplitude of the ensemble vector spread de-
creases as well, it might be thought that in order to keep the
system optimal, the amplitude of the random perturbations
also needs to change with observational density. However,
an important result of this work is that the ratio between the
amplitudes of the optimal random perturbations and the en-
semble vector spread does not depend on the observational
density and is equal to about 5%.

As indicated before, Fig. 1(b) shows the same analysis
and 2-day forecast errors as Fig. 1(a) but for the LEKF sys-
tem. Compared to 3D-Var, there is a marked improvement in
both the analysis and the forecasts. In particular, the analysis
error peaks are reduced, with the consequence that the cor-
responding forecast errors are much smaller as well. As will
be discussed further, this indicates that the LEKF system is
capable of correcting the errors lying in the directions of the
fast growing modes.

Figure 2(a) shows an example of background errors (color
shaded) for potential vorticity at mid-level obtained by means
of the regular 3D-Var scheme. The corresponding analy-
sis increment is shown by contours. The location of the
rawinsonde observations is marked by red dots. This time
(day = 123) has been chosen because it is representative of
a relatively large error maxima both for the 3DVar and the
LEKF systems (see Figs. 1(a) and (b) respectively). As ex-
pected, the analysis increments generally correct the errors

1Yang, S. C., Corazza, M., Carrassi, A., Kalnay, E., and
Miyoshi, T.: Comparison of ensemble-based and variational-based
data assimilation schemes in a quasi-geostrophic model, in prepara-
tion, 2007.
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(a) (b) (c)

Fig. 4. (a): Scatterplot of Analysis Error of potential vorticity at mid-level for the regular 3D-Var and for the LEKF. (b): same as (a) for
streamfunction. (c): same as (a) for the 72 hour forecast.

according to the information provided by the observations,
with the amplitude of the increments decreasing with the dis-
tance to the observation. However, the 3D-Var corrections do
not take into consideration the shape of the background error,
since the constant 3D-Var background error covariance ma-
trix is built as the time average of many error estimations.

The performance of the LEKF in computing the analy-
sis increments is shown in Fig. 2(b). As anticipated at
the beginning of this section, the representation of the back-
ground covariance matrix by means of the ensemble of vec-
tors allows the creation of analysis increments with a shape
similar to that of the background error. This is in con-
trast to 3D-Var where the analysis increments are isotropic
rather than stretched toward the errors of the day, because
the background error covariance matrix has been obtained
from a time average of estimated forecast errors (the “NMC
method” of Parrish and Derber, 1992). In the LEKF the ma-
trix is locally built from the vectors of the ensemble, each of
which contributes to the estimation of the errors of the day.
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Fig. 5. Forecast evolution of the Average Squared Error for the 3D-
Var and the LEKF system.

This can be seen in Fig. 3, where one of the vector pertur-
bations after a data assimilation step is plotted on top of the
background error. The similarity of the analysis increment
shown in Fig. 2(b) with this vector is apparent.

Figure 4(a) is a scatterplot of the space averaged analy-
sis errors at midlevel for the LEKF and the 3D-Var respec-
tively. It shows a consistent reduction in the LEKF analysis
errors compared to 3D-Var. Most of the large errors from
3D-Var are reduced or completely removed. The only ex-
ception in this figure, where errors from two schemes have
similar amplitude, corresponds to the first part of the sim-
ulation, that can be considered a transition phase (see Fig.
1(a) and (b)). A large part of the improvement (about 40%
reduction in rms error) is due to the reduction of the error
maxima. These results are similar for the space averaged
analysis errors in streamfunction at midlevel reported in Fig.
4(b) For this variable the improvement is even larger than for
potential vorticity: the larger error peaks are significantly re-
duced, and the relative average improvement in the rms error
is about 50%. In Fig. 4(c) the scatter plot of the forecast er-
rors for the 72 hour forecast is shown for LEKF and 3Dvar.
It is important to notice that the improvement gained at the
analysis is maintained during the forecast (Fig. 5), further
confirming that the errors corrected by the LEKF are those
responsible for the large growth of forecast errors. In Fig.
1 it can be seen that the peaks in analysis errors and 48 hr
forecast errors occur at the same time. This indicates that
fast growing “errors of the day” are present in the initial con-
ditions 48 hours before attaining their large amplitude, and
that the LEKF evidently succeeds in correcting these small
amplitude, fast growing analysis errors before they have a
chance to grow into the forecast.

The top panels of Fig. 6 represent the power spec-
trum coefficients for potential enstrophy, kinetic energy
and streamfunction computed from the true state, plot-
ted against the global wavenumber. Following Morss
et al. (2001) the global wavenumbers are computed as
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Fig. 6. Power spectrum of the true state
(top panels) for potential enstrophy, ki-
netic energy and streamfunction respec-
tively. The same quantities for the anal-
ysis errors of 3D-Var and LEKF are rep-
resented in the bottom panels. Figures
are computed using data from step 361
to step 720 (180 days).

(
(2.5× k)2 + (5.2× .5× l)2

) 1
2

, where k is the zonal
wavenumber and l is the meridional half wavenumber, while
the coefficients 2.5 and 5.2 are introduced in order to make
the global wavenumber comparable to that of the “real”
global atmosphere. The distribution of the power spectrum
coefficients of the three quantities are similar. Most of the
spectrum amplitude is concentrated at wavenumbers smaller
than 20. The corresponding spectrum coefficients for the
analysis errors are shown in the bottom panels of Fig. 6.
LEKF has smaller errors than 3D-Var for all wavenumbers
and shows a very large improvement for all scales in the ki-
netic energy field. The improvement for potential vorticity is
distributed particularly in mid to small scales while the im-
provement in the streamfunction appears at the larger scales.
The large improvement in the KE field benefits directly from
the fact that the assimilation variables are u, v, and T (Sec.
3). The 3D-Var background covariance matrix is able to suc-
cessfully correct large wavelengths, but its performance be-
comes much worse as the wavenumber increases. This is due
to the fact that information on small scales in 3D-Var back-
ground error covariance is lost in the statistical average. By
contrast, LEKF is able to reduce errors at all wavelengths, so
that its error spectrum is similar to the spectrum of the true
state. The forecast error is dominated by local structures,
and the results suggest that the background error covariance
in LEKF represents well these errors.

4.2 Sensitivity of the LEKF to choice of parameters

As could be expected, LEKF results are sensitively depen-
dent on the number of vectors forming the ensemble. In Fig.

7(a) the error averaged in space and time for potential vortic-
ity at midlevel is shown for the LEKF system running with
10, 15, 20, 30 and 40 vectors, using a fixed size of the lo-
cal domain (l equal to 3). The results with 3D-Var are also
shown for reference. It can be seen that for this system 10
vectors are not sufficient to improve upon 3D-Var. The per-
formance of the LEKF improves with the number of ensem-
ble members but only up to 30 (chosen as reference in the
previous results). The reduction of errors with ensemble size
converges and no further significant improvements are ob-
served with 40 members. An ensemble of 30 members has
much fewer degrees of freedom than the model, and supports
the hypothesis that the local subspace of the most unstable
modes is small and that the LEKF could be used for opera-
tional purposes with a reasonable computational effort.

Another important parameter in the LEKF is the size of
the local volumes (“patches”) used in the localization. Figure
7(b) shows the analysis and forecast errors for different patch
sizes (l=2, 3, 4, 5, corresponding to squares of 5x5, 7x7, 9x9
and 11x11 grid points respectively), using an ensemble of 30
members. The analysis errors improve with size up to l=4
(9x9 grid points), and then they become slightly worse. This
can be explained by the fact that when the number of points
of each local domain increases, the local dimension of the
system also increases, and the number of vectors required to
describe well the local instabilities of the system eventually
needs to be larger. In other words, the larger the local di-
mension, the larger the sampling errors in the representation
of the background errors with a limited number of ensemble
perturbations.

This interpretation is supported by an analysis of the abil-
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Fig. 7. (a): Analysis and Forecast Errors averaged in space and time for potential vorticity at midlevel for the LEKF system as the number
of vectors used in the ensemble varies. Cases for 10, 15, 20, 25, 30 and 40 vectors are reported. (b): same as (a) but the Forecast Errors are
shown as the horizontal dimension of the local domains varies. Cases for l = 2, 3, 4, and 5 are reported. In both figures 3DVar Analysis is
shown for reference.

ity of the ensemble of vectors to describe the background
error. In Fig. 8 the error variance explained by the ensem-
ble (relative amplitude of the projection of the background
error onto the subspace spanned by the ensemble of vectors)
is shown. This is done by projecting at each local domain

a local vector of the values of the error in potential vortic-
ity onto the subspace spanned by the local vectors represent-
ing the n members of the ensemble. The ratio between the
amplitude of this projection and the total amplitude of the er-
ror is computed, and then averaged over all the local domains
and represented in the plots. The process is then repeated at
each data assimilation step. Two cases are shown: in Fig.
8(a) the variation of the projected component is represented
using a fixed dimension of the local domain with a varying
number of vectors. In Figure 8(b) the number of vectors is
fixed and the size of the local domains is varied. The percent-
age of the error represented by the ensemble is on average of
the order of 90% and it increases with the number of ensem-
ble members and decreases with the dimension of the local
domain.

It is interesting to see how the ensemble ability to explain
the background error depends on the amplitude of the error.
In Fig. 9, the relative amplitude of the projection of the back-
ground error at a fixed time (the same instant of Figs. 2(a)
and (b) and 3) is compared with the total amplitude of the
error (contour plot). It clearly shows that the percentage of
the vector projected onto the subspace varies substantially in
space and that the larger the error, the better its projection
on the ensemble. This important property of the LEKF in-
dicates that the projection of the largest errors of the system
onto the ensemble is even larger than what is suggested by
the average values shown in Fig. 8, and explains the success
of the LEKF in reducing the analysis errors even with rela-
tively few ensemble members (in agreement with Szunyogh
et al., 2005) .

The sequential methods for assimilation of observations

(Houtekamer and Mitchell, 1998; Tippett et al., 2002), use
a “localization” of the error covariance obtained by multi-
plying the correlation between grid points and observation
points forecast errors by a Gaussian function of the distance
between these points. This has the effect of reducing the
covariance sampling errors at long distances. By contrast,
the LEKF uses a step function (1 within the local domain
and zero outside). Miyoshi (2005) found that this made the
LEKF slightly worse than the Ensemble Square Root Filter
(EnSRF) of Whitaker and Hamill for the SPEEDY global
model (Molteni, 2003). He followed a suggestion of Hunt
(2005) to apply instead the inverse of the Gaussian localiza-
tion operator, to the R matrix, in such a way that:

R̃ = e
(r−ro)2

2σ2 ◦R, (20)

where σ is of the order of l, r − ro is the distance from the
center of the domain and the symbol ◦ indicates a Shur (or
Hadamard) product. The effect of this is to increase the ef-
fective observation error for observations far away from the
central analysis point, achieving the same result as with the
standard localization. We tested this approach and found a
very small improvement (about 2%) when using the “multi-
point” approach.

Finally we discuss the vertical localization of the domain.
In all the experiments performed in the framework of this
work the local domain have been computed including all the
vertical levels of the model without vertical decomposition of
the domain. Nevertheless, it is interesting to explore whether
further improvements could be expected from vertical de-
composition of the local domain. For this decomposition to
be useful, it is necessary to prove that there is not a high
correlation between the background errors at different lev-
els. In Table 2 the average vertical correlation between the
background error at each level of the local domain is shown.
The correlation is computed considering each local domain
and then averaged in space and time. The values presented
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Fig. 8. Time evolution of the space averaged component of the background error in potential vorticity projected onto the subspace spanned by
the ensemble of local vectors. (a): The dimension of the local domain is constant (l = 3) and the number of vectors varies (N = 20, 30, 40).
(b): The number of vectors is constant (N = 30) and the dimension of the local domain varies (l = 2, 3, 4).

in Table 2 do not depend significantly on the detailed im-
plementation of the system. Results clearly show a signifi-
cant correlation between each level and its closest neighbors,
while the correlation with the second neighbor and levels fur-
ther away is much smaller. This is a clear indication that for
an optimal configuration of this system vertical localization
should be introduced with local domains based on 3 vertical
levels.

5 Summary and conclusions

In this work we have implemented the Local Ensemble
Kalman Filter (LEKF) described in Ott et al. (2004) for a
quasi-geostrophic model widely used in the literature. Re-
sults obtained with the LEKF have been compared to those
obtained by means of an optimized version of a 3D-Var,
showing a marked improvement both in the analyses and
the forecasts. As pointed out in the introduction, the opti-
mization of the 3D-Var did not include an attempt to gener-
ate a flow dependent background error covariance matrix B,
which could have reduced the improvement of the LEKF. A
more general comparison between different data assimilation
systems is discussed in Yang et al. (2007, see footnote 1 at
page 7). In order to adapt to the local framework of LEKF
in the presence of model global spectral transforms, we pro-
posed an alternative split of the observation operator that can
be easily implemented in operational setups.

Different configurations of the LEKF system have been
considered and compared to the 3D-Var. With an ensemble
of 30 vectors, best results have been obtained using a hori-
zontal dimension of the local domains of 9 × 9 grid points,
which allows for the inclusion of a sufficient number of ob-
servations, leaving the dimension of the local space small
enough to be described by a small set of vectors. The fact
that, using a relatively small ensemble, an optimal value of

the horizontal dimension of the local domain does exist is an
indication of the need to find a compromise between includ-
ing the maximum observational information, and limiting the
dimension of the local vectors in order to let the ensemble
member provide an optimal description of the instabilities of
the system. By contrast, using a fixed local domain (l = 3),
results show a monotonic improvement as the number of en-
semble members increases, with saturation at about 30 mem-
bers indicating that a relatively small ensemble is sufficient
to provide a good description of the instabilities and therefore
of the errors.

In order to get stable results, it is necessary to prevent the

Fig. 9. Example showing the relationship between the percentage
projection of the background error onto the subspace spanned by
the local vectors (colors) and the background error (contours). The
time chosen is the same of Figs. 2(a) and (b) and 3; the number of
vectors used is n = 30 and the dimension of the local domain is of
7× 7× 5 grid points (l = 3).
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Table 2. Time and space average of vertical correlation of the back-
ground errors in potential vorticity at different levels of the local
domain. Level 1 represents the bottom level, level 5 the top level.

Level 1 2 3 4 5

1 1.00 0.46 0.17 0.10 0.10
2 0.46 1.00 0.35 0.17 0.14
3 0.17 0.35 1.00 0.47 0.33
4 0.10 0.17 0.47 1.00 0.63
5 0.10 0.14 0.33 0.63 1.00

forecast perturbations from collapsing with time into a sub-
space which is too small. For the quasi-geostrophic model,
the use of additive random perturbations after each data as-
similation step gives much better results than multiplicative
inflation, which in fact fails to prevent filter divergence.

For this system the introduction of the localization of the
observational error covariance matrix R2 tested by Miyoshi
(2005), based on a suggestion of Hunt (2005), does not result
in a significant improvement. This result may not be general
and may be associated with the fact that we obtained best
simulations by means of the “multi column” method, so that
the contribution of the localization is less important than in
the case of the “central column update” method.

It is important that the entire relative improvement ob-
tained for the analysis is maintained throughout the 3-day
forecasts, indicating that the system is correcting the analy-
sis errors laying in the directions of the fast growing modes,
and this reduces the consequent error growth.

The vertical correlation of background errors (Table 2)
shows that the correlation quickly drops beyond the closest
level. This suggests that the LEKF system used in this work
could be improved by introducing a vertical localization of
the domain, in particular considering local domains based on
3 vertical levels.

Our results are very encouraging, indicating that LEKF is
much more accurate than 3D-Var even with a rather small
ensemble size. Some areas that still require further study are:

1. the possible use of an amplitude of the additive random
perturbations that vary in time and depend on the flow;

2. the behavior of the system during the initial spinup, es-
pecially if the starting point of the simulation is far from
the true state of the flow

3. the relationship between additive or multiplicative in-
flation and the observational density, in particular when
the observational network is not homogeneous, e.g.,
when large portions of the domain are not covered by
observations and inflation runs the risk of excessive
growth of the background perturbation vectors.
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