Atmospheric Predictability: From
Basic Theory to Forecasting Practice.

Eugenia Kalnay
Alghero, May 2008, Lecture 1

We honor Ed Lorenz (1917-2008)
who started the whole new
science of predictability
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Edward N. Lorenz (1917-2008)

Meteorologist and father of chaos theory.

Edward Narton Larenz, whose pioneering
studies of stmoespheric dynamics led w
his aceidemal discovery of chaos theary,
died of cancer at his home in Cambridge,
Massachusetts, on 16 April. A maodest,
unassurning and kind man, his persanal
qualities and imellectual insights had
been aconstant feature in the Geld of
metearology for mare than 60 vears; he
co-auatherred his kst paper just weeks before
his death.

Baocn an 23 May 1917 in West Hartford,
Connectiout, Lorens toak bachelor’s
and master's degrees in mathematics at
Drartmouth Callege, New Hampshire, and
Harvard University, respectively. Service
a1 2 weather forecaster for the US Army
Air Corps during the Second World War
led him into metearology, and he received a
doctorate in the subject at the Massachusetis
Institute of Technology (MIT) in 1948,
He resmained in MITs Department of
Metearology for the rest of his scademic
career, becoming emeritus professor
there in 1987,

nonlinear systems such as the stmosphere.
Most immediately for Lorens's feld,
this meant that long-term weather
predictions were impossible, because the
atmasphene’ initial state can never be
specified precisely enough. That wasa
situation that inereased computing power
could not change.

Lorene pecfectly encapsulated this
unkaowability in the title of a talk thar
b gave to the American Association for
the Advancement of Science in 1972, The
question it asks has since lodged el in the
public’s consciousness: "Does the Map ol a
butterfly’s wings in Brazil set off 2 vornado
in Texas?™ Bul the influence of chaos theary
extends far bevond meteorology, and much
deeper: it challenges the entire deterministic
world view, as was confidently expressed,
for instance, by the mathematician and
philosopher Pierre-Simaon Laplace, who
stated at the beginning of the ninsteenth
century that the entire future could be
determined by constructing and salving
the equations governing all components of

Lorenz made erucial contributions o ata consistent rate. When Lorenz plotted the Universe,
atrnespheric science, many of which are variables representing temperature and Although the existence of chaos had been
still rouatinely tasght to students and widely flovw against ane another, the system recagnized before Lorene — notably in the
used in weather forecasting. Ferhaps eventually adopted trajectories that 185905 by Henri Poincard, in his study af the

faremost among Lhese is his formulation in traced out something akin o a pair aff motians of three or more gravitating celestial



Insbitufe of lEechnolopy [ LD Jun 1998,
He resmained in MITs Department of
Metearology for the rest of his scademic
career, becoming emeritus professor
there in 1987,

Larenz: made erwecial contributions o
atrnespheric science, many of which are
still rouatinely tasght to students and widely
used in weather forecasting, Perhaps
faremost among Lhese is his formulation in
the mid-1950s of the concepl ol ‘available
potential energy, which he used w explain
how potential enengy and kinetic energy
are interchanged in the atmosphere. His
application of these ideas culminated in
his influential book of 1967, The Naodure
arad Theory of the Creneral Circulation of the
Atmosphere. He was also instrumental in
the development of numerical technigues
for weather prediction. One example
— again, @il widely used — is his scheme
for the numerical treatment of changes in
atrnospheric variables with height, now
known as the Lorenz vertical grid.

Bt the woark for which Lorenz is
undouhtedly most widely known isa
nivw-classic paper published in the fournal
af Afseaspheric Science in 1963, Entitled
Deterministic nonperiodic ow) it presented
surprising results from a simplified
computational model that sinnlated thermal
canvection in a fuid layer heated fram below
and cooled fram the tog. The calculated
o of the fluid was extremely irregulas,
with almost random qualities. But maore
impartantly, it exhibited extremely sensitive
dependence an initial conditions vwo uid
states thal were at first just slightly different
diverged from each other exponentially,
with their differences doubling repeatedly

Ny

ata consistent rate. When Lorenz plotted
variables representing temperature and

flovw against ane another, the system
eventually adopted trajectories that

traced out something akin o a pair aff
butterfly wings — a pattern sinee called

the Lorenz antractor. He further observed tha
the system trajectory moved from one wing
al the butterfly 1o another in a seemingly
erralic manner.

I his baak The Huence of Chaos, Lorenz
recounts how he cume to discover the
extreme sensitivity of his model to small
changes. Wishing to repeat his simulation,
he restarted it with nuembers that had been
printed out for the start canditions, and
beft it vo go down the ball v fetch a cug of
colfee, O bias retwrn, he found that the
resultwas nothing like the previous one,

He soon identified the reasan: the numbers
fram the print-out were rownded off. In the
coarse af aooffee break, that small ercor lad
prapagated with exponential speed o change
the result completely.

This discovery was epoch-making for twao
reasang, The first by in Lorene’s imtegration
af analytical methods with computational
sirmulations, with which ke — allst witha
pre- 1960 computer Lt was bulkier, noksier
and vastly slower than the PCs of today — st
an early precedent for a maode of researnch
that has since become a norm. But muech
muore prafound ramifications stemmed fram
Lorenz's realization of just how general the
typres of motbon ke had uncovered were in
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phiasopher Frerre-mon Laplace, who
stated at the beginning of the ninsteenth
century that the entire future could be
determined by constructing and salving
the equations governing all components of
the Universe.

Although the existence of chaos had been
recagnized before Lorene — notably in the
185905 by Henri Poincard, in his study af the
motians of three or more gravitating celestial
bodies — i was Lorenz's meteorological
demonstration and analysis that established
the universal applicability of the cancept, and
earmed him the title the Bther of chaas’ But
it bk a decade for chaos theory 1o percolate
through to the general scientific comemenity.
When it finally did, it lavnched a revalution,
rapidly extending its sway imo many Gelds of
phvsics, chemistry, biology and engineering
— and, in doing o, becaming part af the
popular lexicon.

Lorene received many honours and prizes
in recognilion af his work, among them the
Craboord Prize — established by the Boyal
Swedish Academy of Seiences wo recognize
work in Gelds not covered by the Nobel
prizes — in 1983, and the Kyoto Prize in
1991. The citation for that prize lauded “his
boldest scientific achievemen in discovering
deterministic chaos, a principle that kas
prafoundly influenced 2 wide range of basic
sciences and brought about ane of the maost
dramatic changes in mankind's view of nature
since Sir lsase Mewtoo”.

Edward Ot

Edtavard (Ot i in the Departments of Physics,
arid of Ebectrical and Compuder Enginesring,
University of Maryland, College Park,
Manyland 20742, US4
e-mail: ediodf Fumd edu






“Well, we cannot live forever...”

(Lorenz to a friend, 2008)



Chaos in Numerical Weather Prediction
and how we fight it

* Lorenz (1963) introduced the concept of “chaos” in meteorology. (Yorke,
1975, coined the name chaos)

— Even with a perfect model and perfect initial conditions we cannot forecast
beyond two weeks: butterfly effect

— In 1963 this was only of academic interest: forecasts were useless beyond a day
or two anyway!

— Now we exploit “chaos” with ensemble forecasts and routinely produce skillful
forecasts beyond a week

— The EI Nifo coupled ocean-atmosphere instabilities are allowing one-year
forecasts of climate anomalies
« “Breeding” is a simple method to explore and fight chaos
— Undergraduate interns found that with breeding they could easily predict Lorenz
regime changes and their duration
 Chaos-Weather research led to the UMD Local Ensemble Transform
Kalman Filter (LETKF, Hunt et al., 2007)



Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system

TRUT TRUT

FORECAST

FORECAST




8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt 2003102612 {192h)
o T =

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Need good models, good observations, good data assimilation



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt 2003102612 {192h)
o T =

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)

Almost all the centers of low and high pressure are very well
predicted after 8 days!
Over Southern California forecast has a cut-off low, not a trough



8-day forecast and verification

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
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Southern California: winds are from the wrong direction!
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Deterministic Chaos (what!?)

In 1951 Charney indicated that forecast
skill would break down, but he attributed
It to model errors and errors in the initial
conditions...

In the 1960’s the forecasts were skillful for
only one day or so.

Statistical prediction was equal or better
than dynamical predictions,

Like it has been until now for ENSO
predictions!



Lorenz wanted to show that statistical prediction could
not match prediction with a nonlinear model for the
Tokyo (1960) NWP conference

S0, he tried to find a model that was not periodic
(otherwise stats would win!)

He programmed in machine language on a 4K memory,
60 ops/sec Royal McBee computer

He developed a low-order model (12 d.o.f) and
changed the parameters and eventually found a
nonperiodic solution

Printed results with 3 significant digits (plenty!)

Tried to reproduce results, went for a coffee and
OOPS!
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Lorenz (1963) discovered that even with a
perfect model and almost perfect initial
conditions the forecast loses all skill in a finite
time interval: “A butterfly in Brazil can change
the forecast in Texas after one or two weeks”.

In the 1960’°s this was only of academic
interest: forecasts were useless in two days

Now, we are getting closer to the 2 week limit
of predictability, and we have to extract the
maximum information



Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system

TRUT TRUT
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A simple chaotic model:

Lorenz (1963) 3-variable model
Has two regimes and the transition between them is

chaotic
dx
—=0(y—x
7 (¥ —x)
dy
—— =rxX—y—Xz
i Y
%zxy—bz

dt



Example: Lorenz (1963) model, y(t)

50 -

4000

3000
2000

warm
-10 1000

cold P
Y Axis e Time steps




Definition of Deterministic Chaos
(Lorenz, March 2006, 89 yrs)

WHEN THE PRESENT DETERMINES
THE FUTURE

BUT
THE APPROXIMATE PRESENT DOES NOT
APPROXIMATELY DETERMINE THE FUTURE
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Predictability depends on the 1nitial conditions (Palmer, 2002):

stable less stable unstable
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A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)
grow much faster than if they are stable



Fig. 6.2: Schematic of the evolution of a small spherical volume in
phase space in a bounded dissipative system.

b) Linear phase: a hyper

a) Initial volume: a small ellipsoid
hypersphere

O

¢) Nonlinear phase: folding d) Asymptotic evolution to a
needs to take place in order for strange attractor of zero
the solution to stay within the volume and fractal structure.

bounds All predictability is lost




When there is an instability, all perturbations converge towards
the fastest growing perturbation (leading Lyapunov Vector). The
LLV is computed applying the linear tangent model on each
perturbation of the nonlinear trajectory

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

leading local

Lyapunov vector
random initial
perturbations



Predictability depends on the 1nitial conditions (Palmer, 2002):
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0 Qg

et L)

S\ Q %
ﬁ : Y
ﬂ =, a
1 Vo
7 £
5 %
'.'.;5‘ I
R -
Sy 30
DN U
s ) ’:|. .
* 1 35
" 2 v

A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)
grow much faster than if they are stable



“Breeding”: Grow naturally unstable
perturbations, similar to Lyapunov vectors

but using the nonlinear model twice

« Breeding is simply running the nonlinear model a second time,
starting from perturbed initial conditions, rescaling the
perturbation periodically

Forecast values

Initial rar}dom Bred Vectors ~LLVs
perturbation

. 1 1 1 1
/ / / / ! /
/ Vs Vi /
e , -, ., P e 4
——’— —f’ _” _f’ _—/ ,’ ,’ —”

T

Control forecast (without perturbation)

time



An 8 week RISE project for undergraduate women (2002)

 We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1993), a very simple method to study the
growth of errors.

« We told them: “Imagine that you are forecasters that
live in the Lorenz “attractor’. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

« “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”



Breeding: simply running the nonlinear model a
second time, from perturbed initial conditions.

Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval

Initial random Bred Vectors ~LLVs

perturbation / \ \
. / !
/I /, ! / /
2 % ’ ’ ’
---" -7 _—’/ _—’/ -7 -7 _-7 _.7

T

Unperturbed control forecast

time

Local breeding growth rate: g(?) ——111 (6x|/|6x,|)



4 summer interns computed the Lorenz Bred Vector

growth rate: red means large BV growth,
blue means perturbations decay

3000
2000

warm S
1000

cold -
-30  -1000 .
Time steps

4000



In the 3-variable Lorenz (1963) model we used
breeding
to estimate the local growth of perturbations:

BV Growth

) Bred Vector Growth:
red, high growth;
green, low growth;
blue, decay

20

With just a single breeding cycle, we can estimate the stability
of the whole attractor (Evans et al, 2004)



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result
almost made me faint:



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result
almost made me faint:

X vs time, painted with Growth
20 T T

151

Growth rate of
bred vectors:

_ A * indicates
%“ fast growth

10

T —— ot

(>1.8 in 8 steps)

-20
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1 I | | 1 1
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time steps



Forecasting rules for the Lorenz model:

X vs time, painted with Growth
T T

20

151

“warm’” 1oL

Growth rate of
bred vectors:

A * indicates
%j fast growth
4 (>1.8 in 8 steps)
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0 500 1000 1500 2000 2500 3000 3500

time steps

Regime change:The presence of red stars (fast BV growth) indicates that the next
orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red stars:
the next regime will be long lasting.

These rules surprised Lorenz himself!




These are very robust rules, with skill scores > 95%

Growth, numstep = 2000, bst = 8 => 500 steps in 2ach gigph, thiesh = .064




Summary for this part
and rest of the talk

Breeding is a simple generalization of Lyapunov vectors, for finite time,
finite amplitude: simply run the model twice, take the difference and
rescale...

Breeding in the Lorenz (1963) model gives accurate forecasting rules for
the “chaotic” change of regime and duration of the next regime that
surprised Lorenz!

Rest of the talks 1 and 3:

The same ideas can be applied to fight chaos in the full forecast models
that have dimension 10-100 million rather than just 3!

In the atmosphere, in the ocean, and in coupled systems

We can also use breeding to understand the physical mechanisms of the
instabilities that create chaos



A major tool to “fight chaos” 1s
ensemble forecasting

An ensemble forecast starts from initial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”

POSITIVE

PERTURBATION

Good ensemble Bad ensemble

CONTROL

~. AVERAGE

N\
* TRUTH

NEGATIVE
PERTURBATION



In ensemble forecasting we need to represent the
uncertainty: spread or “spaghetti plots”

MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt: 2003102612 {192h)

NCEP ENHEMBLE 500mb Z
S e 007 Man FEB 11 2
Tue‘ FEB,12 2008

—Cntrl 12z —CLIM

GrAS: COLA/IGES




Breeding: running the nonlinear model again from
perturbed initial conditions: introduced by Toth and
Kalnay (1993) to create initial ensemble perturbations

Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval

Initial random Bred Vectors ~LLVs

perturbation / \ \
. ) 1
// /, / / /
- / / / /
---" -7 _—’/ _—’/ -7 -7 _-7 _.7

T

Unperturbed control forecast

time

Local breeding growth rate: g(?) ——111 (6x|/|6x,|)



Example of a very predictable 6-day forecast, with “errors of the day”
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951115/1200V000 500 MB height 5640m VER T126
951115/1200V144 500 MB height 5640m AVN ptbn
951115/1200vV144 500 MB height 5640m AVN T126
951115/1200V132 500 MB height 5640m MRF ptbn
951115/1200V132 500 MB height 5640m MRF T62
951115/1200vV132 500 MB height 5640m MRF T126

The bred vectors are the growing
atmospheric perturbations: “errors of the day”



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape

4-day forecast
verifying on
the same day

=130 EET) -1do -
- 0V000 500-MR_baight 5640m V.

95 YER-T3Z6 %

95 0V120 500 MB height 5640m AVN gthn

35 0Vi20 500 MB height 5640m AVN T126
0vVi0o8 500 MB height 5640m MRF ptbn

95 0V108 500 MB height 5640m MRF T62

35 0vio8 500 MB height 5640m MRF T126



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape
4 days and 6 days ensemble forecasts verifying on 15 Nov 1995
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951115/1200V000 500 MB height 5640m VER T126

{i1s/1200 . VER-TE26 951115/1200V144 500 MB height 5640m AVN ptbn

$51115/1200V120 500 MB height 5640m AVN gthn 951115/1200vV144 500 MB height 5640m AVN T126

95111571200V120 500 MB height 5640m AVN T1i26 951115/1200V132 500 MB height 5640m MRF ptbn

951115/1200V108 500 MB height 5640m MRF ptbn 951115/1200V132 500 MB height 5640m MRF T62

$51115/1200vV108 500 MB height 5640m MRF T62 951115/1200v132 500 MB height 5640m MRF T126
$5111571200v108 500 MB height 5640m MRF T126



Strong instabilities of the background tend to have
simple shapes (perturbations lie in a low-dimensional
subspace of bred vectors)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space

............
111111
111111
111111
111111
111111
111111

111111111111
1200v000 500-MB _heig

i A
1200V¥060 500 MB height 5640m MRF ptbn
1200v¥060 500 MB height 5640m MRF T62
1200v¥060 500 MB height 5640m MRF T126

. RN

This simplicity (local low-dimensionality, Patil et al.
2000) inspired the Local Ensemble Transform Kalman
Filter (Ott et al. 2004, Hunt et al., 2007)



5-day forecast “spaghetti” plot

120H Porecast fram: 007 Mon FEBL T 2008
Valid time: 00Z Sat FEB,16 2008
*The ensemble is able to B

separate the areas that are
predictable from the ones that
are chaotic.

« Even the chaotic ones have
local low-dimensionality
 This is what makes possible
to do Ensemble Kalman Filter
with 50 ensemble members
(not a million!) with good

results

00z Runs:(11) - 12z Runs:{11)

—5400m ——5840m = Cntrl 00z




15-day forecast “spaghetti” plot: Chaos!

NCEP ENSEMBLE 500mb 7
360H Forecast from: 007 Mon FEB,11 2008
Valid time:_DQZ]\.T.UEAWFF?’QE 2008
After 15 days, Lorenz’ ‘
chaos has won!
No predictability left in
the 15-day forecast

(except in East Asia)

00z Runs:(11) - . 12z Runs:{11)

5400m ——5840m




Summary for this part

 Lorenz discovered the finite limit of
predictability

* Predictability depends on the stability of the
atmosphere: the errors of the day (or local
Lyapunov vectors) that make model errors
grow

« Ensemble forecasts allow us to estimate the
predictability in space and in time



Elements of Ensemble
Forecasting

It used to be that a single control forecast was
integrated from the analysis (initial conditions)

In ensemble forecasting several forecasts are run
from slightly perturbed initial conditions (or with
different models)

The spread among ensemble members gives
information about the forecast errors

How to create slightly perturbed initial conditions?

Basically

— Singular Vectors

— Bred Vectors

— Ensembles of data assimilation (perturbed obs. EnKF)



Summary for Lecture 1

Lorenz discovered deterministic chaos

Instabilities (“errors of the day”) make the
atmosphere unpredictable beyond 2 weeks

All perturbations evolve towards the most
unstable (local Lyapunov vectors)

Bred vectors are a finite time, nonlinear
extension of LVs

With ensemble forecasting, we fight chaos by
estimating the local predictability in space and
in time



Components of ensemble forecasts

An ensemble forecast starts from initial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”

POSITIVE

PERTURBATION

Good ensemble Bad ensemble

CONTROL

~. AVERAGE

N\
* TRUTH

NEGATIVE
PERTURBATION



Data assimilation and ensemble
forecasting in a coupled ocean-
atmosphere system

A coupled ocean-atmosphere system contains growing
instabilities with many different time scales
— The problem is to isolate the slow, coupled instability related to the
ENSO variability.
Results from breeding in the Zebiak and Cane model (Cai et al.,
2002) demonstrated that
— The dominant bred mode is the slow growing instability associated
with ENSO
— The breeding method has potential impact on ENSO forecast skKill,
including postponing the error growth in the “spring barrier”.
Results from breeding in a coupled Lorenz model show that
using amplitude and rescaling intervals chosen based on time
scales, breeding can be used to separate slow and fast
solutions in a coupled system.



Nonlinear saturation allows filtering unwanted fast, small

amplitude, growing instabilities like convection (Toth and
Kalnay, 1993)
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In the case of coupled ocean-atmosphere modes, we cannot
take advantage of the small amplitude of the “weather noise™!
We can only use the fact that the coupled ocean modes are slower...

Atmospheric
perturbation
amplitude

Weather “noise”

1 month time



We coupled a slow and a fast
Lorenz (1963) 3-variable model

Fast equations Slow equations

dx 1 dx
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Now we test the fully coupled “ENSO-like” system,
with similar amplitudes between “slow signal” and “fast noise”
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Then we added an extratropical atmosphere coupled with the tropics



Coupled fast and slow Lorenz 3-variable models

SPeﬁa and Kalnax, 20042
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Breedlng Ig a coupled Lorenz model
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Short rescallng interval (5 steps)

Long rescaling interval (50 steps)
and small amplitude: fast modes and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



From Lorenz coupled models:

In coupled fast/slow models, we can do breeding to
Isolate the slow modes

We have to choose a slow variable and a long
interval for the rescaling

This is true for nonlinear approaches (e.g., EnKF) but
not for linear approaches (e.g., SVs, LVs)

This has been applied to ENSO coupled instabilities:

— Cane-Zebiak model (Cai et al, 2003)
— NASA and NCEP fully coupled GCMs (Yang et al, 2006)

— NASA operational system with real observations (Yang
et al. 2008)



Examples of breeding in a coupled ocean-
atmosphere system with coupled instabilities

In coupled fast/slow models, we can do breeding
to isolate the slow modes

We have to choose a slow variable and a long
interval for the rescaling

This identifies coupled instabilities.

Examples
— Madden-Julian Bred Vectors

— NASA operational system with real observations (Yang
et al 2007, MWR)

— Ocean instabilities and their physical mechanisms
(Hoffman et al, 2008, with thanks to Istvan Szunyogh)



Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities BV by choosing an appropriate rescaling amplitude
(only within the tropics)




Finding the shape of the errors in El Nino
forecasts to improve data assimilation

 Bred vectors

— Differences between the control forecast and
perturbed runs:

— Should show the shape of growing errors

 Advantages
— Low computational cost (two runs)
— Capture coupled instabilities
— Improve data assimilation
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Yang (2005): Vertical cross-section at Equator for
BV (contours) and 1 month forecast error (color)
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Yang: Impact of forecasts of El Nino with 3 pairs of
BVs: November and May restarts (1993-2002)
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Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST): making them grow and break!
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