Chapter 6: Ensemble Forecasting
and Atmospheric Predictability

Introduction



Deterministic Chaos (what!?)

In 1951 Charney indicated that forecast
skill would break down, but he attributed
It to model errors and errors in the initial
conditions...

In the 1960’s the forecasts were skillful for
only one day or so.

Statistical prediction was equal or better
than dynamical predictions,

Like it was until now for ENSO
predictions!



Lorenz wanted to show that statistical prediction could
not match prediction with a nonlinear model for the
Tokyo (1960) NWP conference

S0, he tried to find a model that was not periodic
(otherwise stats would win!)

He programmed in machine language on a 4K memory,
60 ops/sec Royal McBee computer

He developed a low-order model (12 d.o.f) and
changed the parameters and eventually found a
nonperiodic solution

Printed results with 3 significant digits (plenty!)

Tried to reproduce results, went for a coffee and
OOPS!



Lorenz (1963) discovered that even with a
perfect model and almost perfect initial
conditions the forecast loses all skill in a
finite time interval: “A butterfly in Brazil can
change the forecast in Texas after one or
two weeks”.

In the 1960’s this was only of academic
interest: forecasts were useless in two days

Now, we are getting closer to the 2 week
limit of predictability, and we have to
extract the maximum information



Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system
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A simple chaotic model:

Lorenz (1963) 3-variable model
Has two regimes and the transition between them is

chaotic
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Example: Lorenz (1963) model, y(t)
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Definition of Deterministic Chaos
(Lorenz, March 2006, 89)

WHEN THE PRESENT DETERMINES
THE FUTURE

BUT
THE APPROXIMATE PRESENT DOES NOT
APPROXIMATELY DETERMINE THE FUTURE
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Predictability depends on the 1nitial conditions (Palmer, 2002):
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A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)
grow much faster than if they are stable



Fig. 6.2: Schematic of the evolution of a small spherical volume in
phase space in a bounded dissipative system.

b) Linear phase: a hyper

a) Initial volume: a small ellipsoid
hypersphere

O

¢) Nonlinear phase: folding d) Asymptotic evolution to a
needs to take place in order for strange attractor of zero
the solution to stay within the volume and fractal structure.

bounds All predictability is lost




An 8 week RISE project for undergraduate women

 We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1997), a very simple method to grow
errors.

« We told them: “Imagine that you are forecasters that
live in the Lorenz “attractor”. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

« “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”



Example: Lorenz (1963) model, y(t)
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When there is an instability, all perturbations converge
towards the fastest growing perturbation (leading
Lyapunov Vector). The LLV is computed applying the
linear tangent model on each perturbation of the
nonlinear trajectory

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

leading local
Lyapunov vector
random initial

perturbations f



“Breeding”: Grow naturally unstable
perturbations, similar to Lyapunov vectors

but using the nonlinear model twice

« Breeding is simply running the nonlinear model a second time,
starting from perturbed initial conditions, rescaling the
perturbation periodically

|
g(t)= Eln (|5x|/|5x0|)
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In the 3-variable Lorenz (1963) model we used ‘breeding’
the local growth of the perturbations:

Growth of the bred vectors: red: large;

; ; blue: negative (decay)
:Z We “painted”
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With a simple breeding cycle we were able to estimate
the stability of the attractor (Evans et al, 2003)



Predictability depends on the 1nitial conditions (Palmer, 2002):
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Initial conditions that are unstable (with “errors of the day”)
grow much faster



Rules for a forecaster living in the Lorenz model:

X vs time, painted with Growth
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1) Change of Regime: The presence of red stars indicates that the
next orbit will be the last orbit in the present regime.

2) Duration of the New Regime: Few red stars, the next regime
will be short. Many red stars: the next regime will be long
lasting.




These are very robust rules, with skill scores > 95%

Growth, numstep 2000, bst = 8 => 500 steps in 2ach griaph, thiesh = .064

X=var

X=var

X=var

X=var




Summary for this part

* Breeding is a simple generalization of Lyapunov
vectors, for finite time, finite amplitude: simply run
the model twice...

* The only parameters are the amplitude and the
frequency of the renormalization (it does not
depend on the norm)

* Breeding in the Lorenz (1963) model gives
forecasting rules for change of regime and
duration of the next regime that surprised Lorenz
himself...



Ensemble Forecasting

* |t used to be that a single control forecast was
integrated from the analysis (initial conditions)

* |In ensemble forecasting several forecasts are
run from slightly perturbed initial conditions
(or with different models)

* The spread among ensemble members gives
information about the forecast errors



8-day forecast and verification: for a “spaghetti” plot, we draw only
one contour for each ensemble member forecast, showing where
the centers of high and low pressure are

NCEP 500 hPa Height Ensemble Spread (shaded, meters)
MRF 500 hPa Height Forecast (contours, meters)
it: 2003102612 vt: 2003102612 (00h)

» ) e -
MRF 500 hPa Height Forecast (contours, meters)
it: 2003101812 vt: 2003102612 {192h}




Example of a very predictable 6-day forecast, with “errors of the day”
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Errors of the day tend to be localized and have simple shapes
(Patil et al, 2001)



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape

4-day forecast
verifying on
the same day
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Strong instabilities of the background tend to have
simple shapes (perturbations lie in a low-dimensional
subspace)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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It makes sense to assume that the errors in the analysis
(initial conditions) have the same shape as well:
the errors lie in the subspace of the bred vectors



Components of ensemble forecasts

An ensemble forecast starts from initial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”
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Data assimilation and ensemble
forecasting in a coupled ocean-
atmosphere system

A coupled ocean-atmosphere system contains growing
instabilities with many different time scales
— The problem is to isolate the slow, coupled instability related to the
ENSO variability.
Results from breeding in the Zebiak and Cane model (Cai et al.,
2002) demonstrated that
— The dominant bred mode is the slow growing instability associated
with ENSO
— The breeding method has potential impact on ENSO forecast skKill,
including postponing the error growth in the “spring barrier”.
Results from breeding in a coupled Lorenz model show that
using amplitude and rescaling intervals chosen based on time
scales, breeding can be used to separate slow and fast
solutions in a coupled system.



Nonlinear saturation allows filtering unwanted fast, small

amplitude, growing instabilities like convection (Toth and
Kalnay, 1993)

AMPLITUDE
(% of climate
variance)
100% BAROCLINIC (WEATHER)
MODES

10%
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ANALYSIS ERRORS
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lhour 1 day 1 week



In the case of coupled ocean-atmosphere modes, we cannot
take advantage of the small amplitude of the “weather noise™!
We can only use the fact that the coupled ocean modes are slower...

Atmospheric
perturbation
amplitude

Weather “noise”

1 month time



We coupled a slow and a fast
Lorenz (1963) 3-variable model

Fast equations Slow equations

dx 1 dx
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Now we test the fully coupled “ENSO-like” system,
with similar amplitudes between “slow signal” and ““fast noise”

44 29 (4 . 1 h 29
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Then we added an extratropical atmosphere coupled with the tropics



Depending on how we do the rescaling 1n the coupled model breeding,
we can get the BVs for slow “weather waves” or fast “convection”

"Baroclinic Instability” coupled with "convection”
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If we rescale with fast variable, at high frequency,
we get the “convection” bred vectors

"Baro clinic Instability" coupled with "convection"
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Coupled fast and slow Lorenz 3-variable models

SPeﬁa and Kalnax, 20042

— Tropical atmosphere
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Breedlng Ig a coupled Lorenz model
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Short rescallng interval (5 steps)

Long rescaling interval (50 steps)
and small amplitude: fast modes and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



From Lorenz coupled models:

In coupled fast/slow models, we can do breeding to
Isolate the slow modes

We have to choose a slow variable and a long
interval for the rescaling

This is true for nonlinear approaches (e.g., EnKF) but
not for linear approaches (e.g., SVs, LVs)

We apply this to ENSO coupled instabilities:

— Cane-Zebiak model (Cai et al, 2003)
— NASA and NCEP fully coupled GCMs (Yang et al, 2006)
— NASA operational system with real observations



