
3.3.3: Semi-Lagrangian schemes

  AOSC614   class

Hong   Li



Truly Lagrangian scheme:

     Following an individual parcel, the total derivative (also known as individual,

substantial or Lagrangian time derivative) is conserved for a parcel, except

for the changes introduced by the source or sink S.

      No grid points, No spatial discretization, no stability problem.

       However, It is not practical in general because one has to keep track of
many individual parcels, and with time they may “bunch up” in certain areas
of the fluid, and leave others without parcels to track.

( )du S u
dt

=

The semi-Lagrangian scheme keeps the
advantage of stability and avoids the
disadvantage of parcels bunching up



Semi-Lagrangian scheme(1):

      1) Using regular grid as in Eulerian coordinate, but estimate the total

derivative.

      2) At every new time step we find out where the parcel arriving at a grid

point (denoted arrival point or AP) came from in the previous time step

(denoted departure point or DP).

( )du S u
dt

=

AP



Semi-Lagrangian scheme:

 In a two-time level scheme it could be written as

 Compare with Eulerian scheme:

 No extrapolation, the semi-Lagrangian scheme is absolutely stable with

respect to advection.

 However, how do we know the location of the departure point DP ?
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( )du S u
dt

=

AP



Semi-Lagrangian scheme(3):

     The departure point DP has to be determined from the trajectory integrated

between the departure and the arrival points, for example as

     However, UAP and UDP are not known until the departure point has been

determined, Therefore, it is an implicit equation that needs to be solved

iteratively.

      The accuracy of the SL scheme depends on the accuracy of the

determination of the DP, and on the determination of the value of UDP and

the other conserved quantities by interpolation from the neighboring points.
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3.3.4 Nonlinear computational
instability. Quadratically

conservative schemes. The
Arakawa Jacobian
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Phillips (1957) quasi-geostrophic 2-
level channel model

• In 1957 Phillips published the first "climate" or "general
circulation" simulation ever made with a numerical model
of the atmosphere.

• He obtained very realistic solutions that contributed
significantly to the understanding of the atmospheric
circulation in mid-latitudes.

• However, his climate simulation only lasted for about 16
days: the model "blew up" despite the fact that care had
been taken to satisfy the von Neumann criterion for
linear computational instability.
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In 1959, Phillips pointed out that this instability, which he
named nonlinear computational instability (NCI), was
associated with nonlinear terms in the quasi-geostrophic
equations

  The shortest wave can be
       presented in the grid has the
      wavelength 2Δx  and computational
      wavenumber

 Quadratic terms with Fourier components
      will generate higher wave numbers:

 The new shorter waves, with wave numbers p=π+δ, cannot be represented
in the grid, and become folded back (aliased) into p'=π-δ , leading to a
spurious accumulation of energy at the shortest range
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An example of NCI effect

• We have PDE:

 and its corresponding FDE:

   Suppose at a given time t, we have:
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U2  and U3 will grow without
bound and the FDE will blow up

this will happen even for a linear
model
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Approaches for dealing with NCI problem:
A) Filtering out high wavenumbers

1. Chop the high wavenumbers (wavenumbers between π/2 ~
π), Phillips (1959)

2Δx, pmax= π

4Δx, pmax= π/2

Originally, the Fourier transform  wave
number is (0~π),  therefore the max
wave number generated in a quadratic
term can be pmax’=2π which can not be
presented in the grid.

If chop half of the spectrum, the
remained wave number is (0~π/2), the
max wave number generated in a
quadratic term is pmax’=π which is still
can be presented in the grid

P=kΔx=(L/2π) Δx,

However the procedure is rather inefficient,
since half of the spectrum is not used.
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Approaches for dealing with NCI problem:
A) Filtering out high wavenumbers

         However, for grid point models, experience shows that
complete Fourier filtering of the high wave numbers is not
necessary. Some models filter high wave numbers but only
enough to maintain computational stability.

       For example, Shapiro filter
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“diffusion” operator is applied to the original field n times. This
efficiently filtered out the shortest waves (mostly between 2 and
3Δx) without affecting waves of wavelength 4Δx or longer, and
resulted in an accurate and economic model



Approaches for dealing with NCI problem:
A) Filtering out high wavenumbers

For spectral model, Orszag (1971) showed when transformed original
spectrum back into grid points, if we use a grid with 3/2 as many grid
points as the original grid, then the aliasing is avoided.

Original Pmax= π, and the new Pmax’ from
a quadratic product is 2π

1) If we do not filter high waveumbers,
the grids can not handle the
wavenumbers > π, all the waves
above p= π are folded back.

Lmin=2Δx, pmax= π
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Lmin=4/3Δx, pmax= 3/2π
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2)  If we filter above P=3/2 π,
only the waves above
P=3/2 π are folded back at
3/2 π, and 2 π gets folded
back to π: no spurious
alias below π
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Approaches for dealing with NCI problem:
B) Using quadratically conserving schemes

 Lilly (1965) showed that it is possible to
create a spatial finite difference scheme
that conserves both the mean value and its
mean square value when integrated over a
closed domain.

Quadratic conservation will generally insure that
NCI does not take place.

 The rule is that
 We write the forecast equation for A

consistently with the continuity equation
 We estimate A at the walls of each cell as a

simple average with the neighboring cell
 For example, if the flow is nondivergent
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Let’s start from SWE:
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The total mass is
conserved in time

The mass weighted mean of α is
conserved

The mass weighted mean squared of α is conserved

For PDE in flux form:
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For FDE in flux form:

And if we use
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We have quadratic conservation, and we could
choose several FD formulations as long as,

1. the flux form of the FDE for hα is consistent
with the continuity equation

2. we estimate α at the walls by a simple average
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Finally consider the vorticity equation
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Its PDE in flux form:

If we write its FDE in a way consistent with
the continuity equation:
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 This ensures conservation of the mean vorticity and enstrophy (mean square vorticity).
 Steps for time integration:
1. Integrate vorticity equation from           to time step
2. Calculate streamfunction at t from                    (an elliptic equation)
3. Average to get streamfunction at corners
4. Calculate u,v at time step t  from
5. Forecast vorticity at next time step
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