
6.3 Tangent Linear Model, Adjoint Model, Singular Vectors, 
and Lyapunov Vectors 
 

Lorenz (1965) published in 1965 another paper based 
on a low-order model that behaved like the atmosphere with 
just 28 variables. In this fundamental paper, Lorenz 
introduced for the first time (without using their current 
names) the concepts of tangent linear model, adjoint model, 
singular vectors, and Lyapunov vectors for the low order 
atmospheric model, and their consequences for ensemble 
forecasting. He also introduced “errors of the day”: the 
predictability of the model is not constant with time: it 
depends on the stability of the evolving atmospheric flow 
(the basic trajectory or reference state).  
 
a) Tangent linear model (TLM) and adjoint model 
 

Consider a nonlinear model discretized in space.The 
model can be written as a set of n nonlinear coupled 
ordinary differential equations (ODEs): 
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This is the model in (time) differential form. Once we 

choose a time-difference scheme (e.g., Crank-Nicholson, 
see Table 3.1), it becomes a set of nonlinear-coupled 
difference equations (DEs). Typically, an atmospheric 
model consists of one such system of DEs which, for 



example, using a 2-time level Crank-Nicholson scheme 
would be of the form  
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"Running the model" gives us a nonlinear model 
solution that depends only on the initial conditions: 
 
x(t) = M (x(t

0
))      (1.3) 

 
where M is the time integration of the numerical scheme 
from the initial condition to time t. A small perturbation y(t) 
can be added to the basic model integration x(t): 
 

   
M (x(t

0
) + y(t

0
)) = M (x(t

0
)) +

!M

!x
y(t

0
) + O(y(t

0
)2 ) = x(t) + y(t) + O(y(t

0
)2 )

 (1.4) 
 
At any given time, the linear evolution of the small 

perturbation    y(t)  will be given by 
 

  

dy

dt
= Jy       (1.5) 

where 
 

J =
!F

!x
 is the Jacobian of F .     

 
This system of linear ODEs is the tangent linear model 

(TLM) in differential form. Its solution between t0 and t can be 



obtained by integrating (1.5) in time using the same time 
difference scheme used in the nonlinear model (1.3): 
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Here
   
L(t

0
,t) =

!M

!x
is an (nxn) matrix known as the 

resolvent or propagator of the TLM: it propagates an initial 
perturbation at time t0 into the final perturbation at time t.  
Because it is linearized over the flow from t0 to t, L depends 
on the basic trajectory x(t) (the solution of the nonlinear 
model), but it does not depend on the perturbation y. (The 
original nonlinear model is autonomous since F(x) depends 
on x(t) but not explicitly on time, but the linear tangent model 
is non-autonomous). Lorenz (1965) introduced the concept 
of the TLM of an atmospheric model, but he actually 
obtained it directly from (1.4), neglecting terms quadratic or 
higher order in the perturbation y: 
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He did so by creating as initial perturbations a "sphere" 
of small perturbations of size ! along the n unit basis 

vectors    yi
(t

0
) = ! e

i  and applying (1.7) to each of these 
perturbations. With this choice of initial perturbations, 
subtracting (1.3) he obtained the matrix that defines the 
TLM: 
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The Euclidean norm of a vector is the inner product of 
the vector with itself:  
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The Euclidean norm of y(t) is therefore related to the 

initial perturbation by  
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The adjoint of an operator  K is defined by the 

property  < x,Ky >!< K
T
x, y > . In this case of a model 

with real variables, the adjoint of the TLM    L(t
0
,t) is simply 

the transpose of the TLM. 
 

Now assume that we separate the interval (t0,t) into two 

successive time intervals. For example, if t0 < t1 < t , 
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Since the adjoint of the tangent linear model is the 

transpose of the TLM, the property of the transpose of a 
product is also valid: 
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Equation (1.11) shows that the TLM can be cast as a 
product of the TLM matrices corresponding to short 
integrations, or even single time steps. Equation (1.12) 
shows that the adjoint of the model can also be separated 
into single time steps, but they are executed backwards in 
time, starting from the last time step at t, and ending with the 
first time step at t0. For low order models the tangent linear 
model and its adjoint can be constructed by repeated 
integrations of the nonlinear model for small perturbations, 
as done by Lorenz (1965), equation (1.7) and by Molteni and 
Palmer (1993) with a global quasi-geostrophic model.  

 
For large NWP models this approach is too time 

consuming, and instead it is customary to develop the linear 
tangent and adjoint codes from the nonlinear model code 
following some rules discussed in Appendix B.  An example 
of a FORTRAN code for a nonlinear model, and the 
corresponding TLM and adjoint models are also given in 
Appendix B. See also the lecture on 4D-Var by Shu-Chih 
Yang. 
 
 
b) Singular Vectors 
 

Recall that for a given basic trajectory and an interval 
(t0,t1) the TLM is a matrix that when applied to a small initial 
perturbation y(t0) produces the final perturbation y(t1): 
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Singular Value Decomposition (SVD) theory (e.g., 
Golub and Van Loan, 1989) indicates that for any matrix L 
there exist two orthogonal matrices U, V such that  
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and  

UU
T
= I; VV

T
= I       (1.15) 

 S is a diagonal matrix whose elements are the singular 
values of L. 

 

If we left multiply (1.14) by U, we obtain  

   
LV = US, i.e., L(v

1
,...,v

n
) = (!

1
u

1
,...,!

n
u

n
)

  (1.16) 

where   
v

i  are the columns of  V and   ui the columns of U . 
This implies that  
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i
u
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Eq. (1.17) defines the vi’s as the right singular 
vectors of L, hereafter referred to as initial singular 



vectors, since they are indeed valid at the beginning of the 
optimization interval over which L is defined. 

We now right multiply (1.14) by VT and obtain: 
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Transposing (1.18), we obtain 
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so that 
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The ui’s are the left singular vectors of L and will be 
referred to as final (or evolved) singular vectors, since 
they correspond to the end of the interval of optimization.  
 
From (1.17) and (1.20) we obtain 
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Therefore the initial SVs can be obtained as the 

eigenvectors of LTL, a normal matrix whose eigenvalues are 
the squares of the singular values. Since U, V are orthogonal 
matrices, the vectors vi and ui that form them constitute 
orthonormal bases, and any vector can be written in the 
following form: 
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where < x,y > is the inner product of two vectors x, y . 
 
Therefore, using (1.22)a and (1.17) 
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If we now take the inner product of (1.23) with ui we obtain 
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This indicates that by applying the TLM L each initial 
vector vi will be stretched by an amount equal to the singular 

value ! i (or contracted if! i
< 1), and the direction will be 

rotated to that of the evolved vector ui., i.e., that by applying 
the adjoint of the TLM, LT, each initial vector vi will be 
stretched by an amount equal to the singular value ! i  
 
Exercise: Use (1.20) and (1.22)b to show that 
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If we consider all the perturbations y(t0) of size 1, from 
(1.24) we obtain that for each of them  
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so that an initial sphere of radius one becomes a 
hyperellipsoid of semi-axes! i . The first initial singular vector 

  
v

1
 is also called an "optimal vector" since it gives the 

direction in phase space (i.e., the shape in physical space) 
of the perturbation that will attain maximum growth !1  in the 
interval (t0,t1) (Fig. 6.3). 



Fig. 6.3: Schematic of the application of the TLM to a sphere 
of perturbations of size 1 for a given interval (t0,t1). 
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Fig. 6.4: Schematic of the application of the adjoint of the 
TLM to a sphere of perturbations of size 1 at the final time. 
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 Note that applying L is the same as running the TLM 
forward in time, from t0 to t1.  Applying LT is like running the 
adjoint model backwards, from t1 to t0.  From (1.21) we see 
that if we apply the adjoint model to a sphere of final 
perturbations of size one (expanded on the basis formed by 
the evolved or left SVs), they also become stretched and 
rotated into a hyperellipsoid of semiaxes in the directions of 

the vi with length! i  (Fig. 6.4) 
 

Therefore, if we apply LTL (i.e., run the TLM forward in 
time, and then the adjoint backwards in time, the first initial 
SV will grow by a factor !1

2  (see schematic Fig. 6.5), and the 
other initial SVs will grow or decay by their corresponding 

singular value squared
  
!

i

2

. In other words, the (initial) 
singular vectors vi are the eigenvectors of LTL with singular 

values  
!

i

2

. Conversely, if we apply the adjoint model first 
(integrate the adjoint model backwards from the final to the 
initial time), followed by the TLM (integrate forward to the 
final time), the final singular vectors ui will grow both 

backward and forward, by a total factor also equal to  
!

i

2

. In 
other words, the final SVs are the eigenvectors of LLT, and 
again they have eigenvalues equal to the square of the 
singular values of L.  Alternatively, once the initial singular 
vectors are obtained using, for example the Lanczos 
algorithm, the final singular vectors can be derived by 
integrating the TLM (equation (1.17)). 
 
 



Fig. 6.5: Schematic of the application of the TLM forward in 
time followed by the adjoint of the TLM to a sphere of 
perturbations of size 1 at the initial time. 
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Fig. 6.6: Schematic of the application of the adjoint of the 
TLM backward in time followed by the TLM forward to a 
sphere of perturbations of size 1 at the final time. 
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If we apply LTL repeatedly over the same 

interval  (t0
,t) , we obtain the leading initial SV, or first 

optimal vector.  
 
Additional leading SVs can be obtained by a 

generalization of the power method (Lanczos algorithm, 
Golub and Van Loan, 1989), which requires running the TLM 
and its adjoint about 3 times the number of SVs required. 
For example, to get the leading 30 SVs optimized for          
t1- t0=36 hours, the ECMWF performed 100 iterations, 
equivalent to running the TLM for about 300 days (Molteni et 
al, 1996).  
 

It is important to note that the adjoint model and the 
singular vectors are defined with respect to a given norm. So 
far we have used an Euclidean norm in which the weight 
matrix that defines the inner product is the identity matrix:  

y
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The leading (initial) singular vectors are the vectors of 

equal size,  with initial norm equal to one 
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that grow fastest during the optimization period (to, t1), i.e., 
the initial vectors that maximize the norm at the final time: 
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If we define a norm using any other weight matrix W 
applied to y, then the requirement that the initial 
perturbations be of equal size implies: 
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We can use a different norm to define the size of the 
perturbation to be maximized at the final time than the norm 
W used for the initial time (1.28). For example the final norm 
could be a projection operator P at the end of the interval. 
(At ECMWF the projection operator was 1 poleward of 30o 
and zero equatorward). 

 
 Then the function that we want to maximize is, instead 

of (1.27):  
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subject to the strong constraint (1.28). 
 

From calculus of variations, the maximum of (1.29) 
subject to the strong constraint (1.28) can be obtained by the 
unconstrained maximum of another function: 
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where the ! are the Lagrange multipliers multiplying the 
square brackets (equal to zero due to the constraint (1.28)). 
 
The unconstrained minimization of K is obtained by 
computing its gradient with respect to the control variable 
y(to ) and making it equal to zero. From the remark d) in 
section 5.4.1, we can compute this gradient as: 
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It is convenient, given the constraint (1.28), to change 
variables: 
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Then, (1.31) becomes 
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Therefore, the transformed vectors ŷ(to ) are the 

eigenvectors of the matrix    (W
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After the leading eigenvectors ŷ(to )  are obtained (using, for 
example, the Lanczos algorithm), the variables are 
transformed back to y(to ) using (1.32). The eigenvalues of 
this problem are the square of the singular values of the 

TLM:!i = "
i

2

.  
 

This allows great generality (as well as arbitrariness1) in 
the choice of initial norm and final projection operator. Errico 
and Vukicevic (1992), showed that the singular vectors are 
very sensitive to both the choice of norm and to the length of 
the optimization interval (the interval from t0 to t1). In another 
example, Palmer et al (1997) tested different weight matrices 
W defining the initial norm. They used "streamfunction", 
"enstrophy", "kinetic energy", and "total energy" norms, 
which measured, as the "initial size" the square of the 
perturbation streamfunction, vorticity, wind speed and 
weighted temperature, wind and surface pressure, 
respectively. They found that the use of different initial norms 
resulted in extremely different initial singular vectors, and 
concluded that the total energy was the norm of choice for 
ensemble forecasting. In 1995, ECMWF included in their 

                                                
1 Jon Ahlquist (2000, pers. communication) showed, given a linear 
operator L , a set of arbitrary vectors i

x , and a set of non-negative 

numbers i
!  arranged in decreasing order,  how to construct an inner 

product and a norm such the i
! and the i

x  are ith singular values and 
singular vectors of L. He pointed out that “Because anything not in 
the null space can be a singular vector, even the leading singular 
vector, one cannot assign a physical meaning to a singular vector 
simply because it is a singular vector. Any physical meaning must 
come from an additional aspect of the problem. Said in another way, 
nature evolves from initial conditions without knowing which inner 
products and norms the user wants to use.” 



ensemble system a projection operator P that measures only 
the growth of perturbations north of 300N, i.e., a matrix that 
multiplies variables that correspond to latitudes greater or 
equal to 30N by the number one, and by zero otherwise) 
(Buizza and Palmer, 1995).  

 
One could use any other pair of initial W and final P 

weights (norms) to answer the related question of forecast 
sensitivity. An example of a forecast sensitivity problem is: 
“What is the optimal (minimum size) initial perturbation 
(measured by the square of the change in surface pressure 
over the states of Oklahoma and Texas) that produces the 
maximum final change after a one day forecast (measured 
by the change in vorticity between surface and 500hPa over 
the eastern US)?” ECMWF has been routinely carrying out 
experiments to find out “What is the change in the initial 
conditions from 3 days ago that would lead to the best 
verification of today’s analysis?” (see Errico, 1997, Rabier et 
al, 1996, Pu et al, 1997a,b for more details). 
 
 
c) Lyapunov Vectors 
 
 

As we saw in section 6.2, if we start a set of 
perturbations on a sphere of very small size, it will evolve 
into an ellipsoid. The growth of the axis of the hyperellipsoid 
after a finite interval s is given by the singular 
values! i

(t
0
+ s) . The (global) Lyapunov exponents (LEs) 

describe the linear long-term growth of the hyperellipsoid: 
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i
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In other words, the LEs describe the long-term average 
exponential rate of stretching or contraction in the attractor. 
(We call the Lyapunov exponents “global” to distinguish 
them from the finite time or “local” LEs which are useful in 
predictability applications). There are as many LEs as the 
dimension of the model (number of independent variables or 
degrees of freedom). If the model has at least one 
!
i greater than zero, then the system can be called chaotic, 

i.e., there is exponential separation of trajectories. In other 
words, there is at least one direction of the ellipsoid that 
continues to be stretched, and therefore two trajectories will 
diverge in time and eventually become completely different. 
Conversely, a system with all negative LEs is stable, and will 
remain predictable at all times. The first LE can be estimated 
by running the TLM for a long time starting from any 
randomly chosen initial perturbation y(t0). During a long 
integration the growth rate of any random perturbation will 
converge to the first LE:  
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%&
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which is independent of the norm. In practice, the first LE is 
obtained by running the TLM for a long period from random 
initial conditions, and renormalizing the perturbation vector 
periodically in order to avoid computational overflow.  

 
When we are dealing with atmospheric predictions, we 

are not really interested in the global growth properties, 
which correspond to the atmosphere’s attractor 
(climatology), i.e., relevant average properties over many 
decades. Instead, in predictability problems we are 



interested in the growth rate of perturbations at a given time 
and space: we need to know the local stability properties in 
space and time, which are related to our ability to make 
skillful forecasts. We can define the leading Local Lyapunov 
Vector (LLV) at a certain time t, as the vector towards which 

all random perturbations    y(t ! s)  started a long time s 
before t will converge (Fig. 6.7). 
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Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading LLV 
 
 
 
 

trajectory 

random initial 

perturbations 

leading local 

Lyapunov vector 

 



Once a perturbation has converged to the leading LLV
   
l
1
(t) , 

the leading Local Lyapunov exponent can be computed from 
the rate of change of its norm. In practice, the local leading 
Lyapunov exponent, also known as finite time Lyapunov 
exponent, can be estimated over a finite period τ: 
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The argument of the logarithm is defined as the amplification 
rate A(t,τ). In practice, since we “live locally” in the 
atmosphere, it is the local (in time) instabilities (LLV) and 
growth rates that we are interested in.   
 

The first LLV is independent of the definition of 
norm, and represents the direction in which maximum 
sustainable growth (or minimum decay) can occur in a 
system without external forcing. In fact, after a finite 
transition period T takes place, every initial perturbation will 
turn in the direction of the leading Lyapunov vector at every 
point of the trajectory. This even includes the final singular 
vectors ui for a sufficiently long optimization interval.  

 
Trevisan and Legnani (1995) introduced the notion of 

the leading LLV. Additional LLVs can be obtained by 
Gramm-Schmidt orthogonalization, and this would seem to 
indicate that they are norm-dependent. However, Trevisan 
and Pancotti (1998) showed that it is also possible, at least 
in theory, to define additional LLVs (denoted characteristic 
vectors by Legras and Vautard,1996) without the use of 
norms. The Local Lyapunov Vectors are therefore a 
fundamental characteristic of dynamical systems. It should 



be noted that unfortunately, at this time, there is not a 
universally accepted nomenclature for LLVs. Legras and 
Vautard (1996) denote the LLVs as "Backward Lyapunov 
Vectors", since they were started an infinitely long time in the 
past. Unfortunately, this name is extremely confusing, since 
they represent forward evolution rather than backward 
evolution as this name would imply. The LLVs are also the 
final singular vectors optimized for an infinitely long time, i.e., 
the eigenvectors (valid at time t) of 

L(t ! T ,t)L
T
(t ! T ,t)  for T !" .  Similarly, 

Legras and Vautard define as "Forward Lyapunov Vectors" 
the initial singular vectors obtained from a very long 
backward integration with the adjoint of the model, i.e., they 
are the eigenvectors (valid at time t) of 

   L
T (t,t + T )L(t,t + T )  for very large T.  

 
Legras and Vautard (1996) showed (as did Trevisan 

and Pancotti, 1998) that a complete set of LLVs (which they 
denote characteristic Lyapunov vectors) can be defined 
from the intersection of the subspaces spanned by the 
“forward” and “backward” LVs. The (characteristic) Local 
Lyapunov vectors are therefore independent of the norm, 
and grow in time with a rate given by the local Lyapunov 
exponents. As such, they are a fundamental characteristic of 
dynamical systems. 
 

Several authors have shown for that the leading (first 
few) LLVs of low-dimensional dynamical systems span the 
attractor, i.e., they are parallel to the hypersurface in phase 
space that the dynamical system visits again and again 
("realistic solutions"). Leading Singular Vectors, on the other 
hand, have very different properties. They can grow much 
faster than the leading LLV, but are initially off the attractor: 



they point to areas in the phase space where solutions do 
not naturally take place (e.g., Legras and Vautard, 1996, 
Trevisan and Legnani, 1995, Trevisan and Pancotti, 1998, 
Pires et al, 1996), see also next section. 
 

For ensemble forecasting, Ehrendorfer and Tribbia 
(1997) showed that if V is the initial analysis error covariance 
(which unfortunately we don’t know and can only estimate, 
except within Ensemble Kalman Filter), then the initial 
singular vectors defined with the normW = V

!1/2 evolve into 
the eigenvectors of the evolved error covariance matrix. This 
implies that the leading singular vectors, defined using the 
initial error covariance, are optimal in describing the forecast 
errors at the end of the optimization period. The initial error 
covariance norm yields singular vectors quite different from 
those derived using the energy norm. Barkmeijer et al (1998) 
used the ECMWF estimated 3D-Var error covariance as 
initial norm (instead of the total energy norm) and obtained 
initial perturbations with structures closer to the bred vectors 
(i.e., leading local Lyapunov vectors) used at NCEP. 

 
 



 
 
 
 
 
 
 
 
 
                                                                                                                         
d) Simple examples of singular vectors and 
eigenvectors 
 
In order to get a more intuitive feeling of the relationship 
between singular vectors and Lyapunov vectors, we 
consider a simple linear model in 2-dimensions: 
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 (1.39) 
 
We compute the 2-dimensional tangent linear model (TLM), 
constant in time:   
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The propagation or evolution of any perturbation (difference 
between two solutions) over a time interval (t, t+T) is given 
by 
 

   !x(t + T ) = L!x(t)      (1.41) 
 
Note that the translation terms in (1.39) do not affect the 
perturbations. The eigenvectors of L (which for this simple 
constant TLM are also the Lyapunov vectors) are 
proportional to 
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eigenvalues 
!

1
= 2, !

2
= 0.5 , respectively, which in this 

case are the two Lyapunov numbers (their logarithms are the 
Lyapunov exponents).  
 
If we normalize them, so that they have unit length, the LVs 
are  
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The LVs are not orthogonal, they are separated by an angle 
of 153.4o (Fig. 6.8a). We will see that because they are not 
orthogonal it is possible to find linear combinations of the 
LVs that grow faster than the leading LV.  We will also see 
that the leading LV is the attractor of the system, since 
repeated applications of L to any perturbation makes it 

evolve towards  
l
1 . 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Applying first L and then its transpose LT we obtain the 
symmetric matrix  
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t=0 

v1 

l2 
l1 

v2 

t=T 
u1=Lv1 

.5l2 

2l1 
u2=Lv2 

t=2T 
Lu1 

Lu2 4l1 



whose eigenvectors are the initial singular vectors, and 
whose eigenvalues are the squares of the singular values. 
The initial SVs (eigenvectors of LTL) are  
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with eigenvalues 
!

1

2
= 13.17,!

2

2
= 0.076 . As indicated 

before, the singular values of  L are the square roots of the 

eigenvalues of  L
T
L , i.e., !1

= 3.63,!
2
= 0.275 . Note that 

this implies that during the optimization period (0,T) the 
leading singular vector grows almost twice as fast as the 
leading Lyapunov Vector (3.63 vs. 2). The angle that the 
leading initial SV has with respect to the leading LV is 
56.82o, whereas the second initial SV is perpendicular to the 
first one (Fig.6.8a).  
 
The final or evolved SVs at the end of the optimization 

period (0,T) are the eigenvectors of
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   (1.45) 
and after normalization, they are  
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Note again that the operators LTL and LLT are quite 

different, and the final SVs are different from the initial SVs, 



but they have the same singular 

values 
!

1

2
= 13.17,!

2

2
= 0.076 .  

 
Alternatively, the evolved SVs at the end of the 

optimization period can also be obtained by applying L to the 
initial SVs, which is computationally inexpensive. In this 

case, 
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as (1.46) but without normalization.   
 

The final leading SV has strongly rotated towards the 
leading LV: at the end of the optimization period the angle 
between the leading SV and the leading LV of only 6.6o (Fig. 
6.8b), and because the SVs have been optimized for this 
period, the final SVs are still orthogonal.   
 

To obtain the evolution of the SVs beyond the 
optimization period (0,T) we apply L again to the evolved SV 
valid at t=T and 
obtain

   

u
1
(t + 2T ) = Lu

1
(t + T ) =

8.46

0.31

!

"
#

$

%
& , u

2
(2T ) = Lu

2
(T ) =

'0.75

'0.14

!

"
#

$

%
& .  

 
During the interval (T,2T) the leading SV grows by a factor of 
just 2.33, not very different from the growth rate of the 
leading LV. At the end of this second period (Fig.6.8c) the 
angle with the leading LV is only 1.41o. The angle of the 
second evolved SV at time T, after applying the linear 
tangent model  L and the leading LV is also quite small 
(10.24o), and because it was further away from the attractor, 
the second singular vector (whose original, transient, 
singular value was 0.5), grows by a factor of 2.79. This 



example shows how quickly all perturbations, including all 
SVs, evolve towards the leading LV, which is the 
attractor of the system. It is particularly noteworthy that 
during the optimization period (0,T), the first SV grows very 
fast as it rotates towards the attractor, but once it gets close 
to the leading LV, its growth returns to the normal leading 
LV’s growth. 
 
Let us now choose as the tangent linear model another 

matrix
  

L =
2 30

0 0.5

!

"
#

$

%
& , with the same eigenvalues 2 and 0.5, 

i.e., with eigenvectors (LVs) that still grow at a rate of 2/T 
and 0.5/T respectively. However, now the angle between the 
first and the second LV is 177o, the LVs are almost 
antiparallel. In this case, the first singular vector grows by a 
factor of over 30 during the optimization period, but beyond 
the optimization period it essentially continues evolving like 
the leading LV.  
 

These results do not depend on the fact that one LV 
grows and the other decays. As a third example, we choose 

  

L =
2 3

0 1.5

!
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#

$

%
&  with two growing LVs with rates 2/T and 

1.5/T. The LVs are almost parallel, with an angle of 170o, 
and the leading SV grows during the optimization period by a 
factor of 3.83. Applying the TLM again to the evolved SVs 
we obtain that at time 2T the leading SV has grown by a 
factor of 2.9 and its angle with respect to the leading LV is 
1o. Because it is not decaying, the second LV is also part of 
the attractor, but only those perturbations that are exactly 
parallel to it will remain parallel, all others will move towards 
the first LV.   



 
These examples illustrate the fact that the fast growth 

of the singular vectors during the optimization period 
depends on the lack of orthogonality between LVs. A very 
fast “super-growth” of singular vectors is associated with the 
presence of almost parallel LVs, and it takes place when the 
initial SV, which is not in the attractor, rotates back towards 
the attractor. At the end of the optimization period, the 
leading SV tends to be much closer to the attractor, more 
parallel to the leading LV. The second (trailing) SV is also 
moving towards the leading LVs.  

 
Finally, we point out that this introductory discussion is 

appropriate for relatively low dimensional systems. For 
extremely high dimensional systems like the atmosphere, 
there may be multiple sets of Lyapunov exponents 
corresponding to different types of instabilities. For example, 
as pointed out by Toth and Kalnay (1993), convective 
instabilities have very fast growth but small amplitudes, 
whereas baroclinic instabilities have slower growth but much 
larger amplitudes, and each of these can lead to different 
types of Lyapunov vectors. If we are interested in the 
predictability characteristics associated with baroclinic 
instabilities, then the analysis of growth rates of 
infinitesimally small Lyapunov vectors over infinitely long 
times may not be appropriate for the problem (Lorenz, 
1996). In that case, it may be better to consider the finite 
amplitude, finite time extension of Lyapunov vectors 
introduced by Toth and Kalnay (1993, 1997) as bred vectors 
(BVs). Bred vectors are discussed in section 6.5.1.  
 
 
 
 



Fig. 6.8: Schematic of the evolution of the two non-

orthogonal Lyapunov vectors (thin arrows   l1  and  
l

2 ), and the 
corresponding two initial Singular Vectors (thick arrows 
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(0) and  
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(0) ), optimized for the interval (0,T), for the 

tangent linear model 
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&  with eigenvalues 2 and 

0.5. a) Time t=0, showing the initial SVs   v1
(0)  and  

v
2
(0) , 

as well as the LVs   
l
1 and  

l
2 . b) Time t=T, evolved SVs, 
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(T ) = Lv

2
(0) at the end of the 

optimization period; the LVs have grown by a factor of 2 and 
0.5 respectively, whereas the leading SV has grown by 3.63. 
The second evolved SV has grown by 0.275, and is still 
orthogonal to the first SV. c) Time t=2T. Beyond the 
optimization period T, the evolved SVs 
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(T ) are not 

orthogonal and they approach the leading LV with similar 
growth rates.  
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A “ball” of perturbed initial conditions is followed with time.  
Errors in the initial conditions that are unstable (with “errors of the day”) 

grow much faster than if they are stable 

Predictability depends on the initial conditions (Palmer, 2002): 

stable unstable less stable 

Discuss SVs, LVs and BVs in this figure 



 

a) Initial volume: a small 
hypersphere 

b) Linear phase: a hyper ellipsoid 

c) Nonlinear phase: folding needs to 
take place in order for the solution 
to stay within the bounds  

d) Asymptotic evolution to a strange 
attractor of zero volume and fractal 
structure. All predictability is lost 


