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SWE in two dimensions
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 The term in brackets are the dominant terms for the geostrophic (2.5.1)
and the inertia gravity (2.5.1) wave dynamics.

These terms are computed in different ways depending on the type of grid
we use.

The advective terms are less affected by the choice of alternative
(staggered) grids.

How to write the terms in brackets in differential (FDE) form??

(0.19)

3.3.5 Staggered grids



Un-staggered grid or Staggered grid??
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Difference computed
over a distance of 2d,
while in a staggered grid
it is over a distance of 1d

All the variables are at
the same location, so
easy to implement higher
order scheme.

 Un-staggered grid:
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Horizontal uncoupling in grid A
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 un-staggered grid A
 Geopotential height eq.

 Zonal wind eq.
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the geopotential height is not coupled with the wind at
the point (i,j)

U is not coupled with h at point (i,j) either



Un-staggered grid A
Advantage:

Because all variables are available at all the grid points, it is easy to
construct a higher order accuracy scheme.

Grid A tends to be favored by proponents of the philosophy
"accuracy is more important than conservation".

Disadvantage:

Its main disadvantage is that all differences occur on distances 2d

Neighboring points are not coupled for the pressure and
convergence terms. This can give rise in time to a horizontal
uncoupling (checkerboard pattern),
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 Staggered grid:
staggered grid happens
over a distance of 1d



Types of staggered grid:
1) staggered grid C
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1) staggered grid C
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1) staggered grid C

Advantage:

The convergence and pressure terms are computed over a
distance of only 1d, equivalent to doubling the resolution of grid A

Disadvantage:

The Coriolis acceleration terms, on the other hand, requires
horizontal averaging, making the inertia gravity waves (related with
Coriolis force) less accurate

This makes the grid C less attractive for situations in which the
length of the Rossby radius of deformation                    is not large
compared to the grid size d.

/dR gH f=



2) Staggered grid B
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Staggered grid B

Advantage: unnecessary to do averaging to calculate Coriolis  force

Disadvantage: the minimum distance for horizontal differences is    ,
rather than      as in grid C,1d

2d
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 Zonal wind eq.
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 Geopotential height eq.



Staggered grid E

The distance is still     The NCEP Eta model is defined on a grid B
rotated by 45, denoted grid E by Arakawa and Lamb (1977),

 Only the index is different with grid B.
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3) Staggered grid D
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 With u, v exchanges the location, grid C becomes grid D.

Grid D has no particular merit;

 When staggered in time (as suggested by Eliassen), it becomes
ideal for atmospheric flow using the Leap-Frog Scheme (see Fig.
3.14)



4) The Eliassen Grid

Even time steps (n+1)Even time steps (n-1) Odd time steps (n)
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The Eliassen Grid
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 Geopotential height eq.

 Zonal wind eq.

Advantage: almost perfect, the divergence term and pressure gradient
are calculated over 1d.

However, it has not been adopted in any major model because of
complexity of time staggering… Should be tried?



Vertical differential equation
e.g. Quasi-Geostrophic equation
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How to write FDE for the terms in green?



Vertical staggering method

Lorenz grid
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Lorenz grid
 Problem: Allows the development of a spurious computational mode

 Reason: The existence of an extra degree of freedom in potential
temperature

Where does this extra freedom come from?
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Charney-Phillips grid
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Un-staggered vertical grid
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Introduce computational mode



3.3.6 Finite Volume methods

 
 
 
 
 
 

ij i+1/2,j
 

A D 

B C The basic idea: The governing equations are first
written in an integral form for a finite volume, and only
then they are discretized.

This is in contrast to the methods we have seen so
far, in which the equations in differential form are
discretized using finite differences or spectral methods
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Example: continuity equation and mass
weighted equation

where H is the normal flux of h across the walls, and n is the normal vector to the
wall.



Differential form
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The overbar indicates a suitable average over the grid volume or area

Any scheme based on these  finite-volume equations will conserve the
average mass and average mass weighted value of

! is any other variable: u, v, T

!



Characteristics of finite volume method

 There are a number of choices on how this average can be carried out over this
subgrid domain of each grid volume.

 one can assume that h or    are constant within the volume, or that they vary
linearly.

 A simple choice for the estimates of the average values at the center and at the
walls leads naturally to the quadratically conservative differences (3.3.4)

  

h
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= (hij + hi+1 j )(uij + ui+1 j ) / 4;

hu!
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Finite volume allows additional flexibility in the choice of discretization.

Example: semi-Lagrangian finite volume method: Lin and Rood (1996)

!

This approach has been adopted in several NCAR, NASA and DOE global
community models because of its conservation properties
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The boundaries of the grid volume are transported to the new time
step, rather than the centers of the volume as is done in the
conventional semi-Lagrangian schemes

It requires considerable care in the detailed formulation in order to
remain both conservative and maintain the shape of the transported
tracers. To learn detail, check Lin and Rood (1996)

 Advantages: Conservative, accurate and no constraint on time step
for advection!

Semi-Lagrangian method and semi-
Lagrangian finite volume method

Semi-Lagrangian method
Semi-Langrangian method
finite volume method



3.4 Boundary value problems

Elliptic equations are boundary value problems (3.1.1)

3.4.1 Introduction

!2u
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= 0( f (x, y))

U can be any variable.

To solve this equation, we need two boundary conditions, one on each x and
y boundary



Two examples of such problems arising in NWP.
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a) Finding the new stream function from the vorticity after the latter has
been updated to time (n+1)Δt. Enstrophy conserving numerical
scheme:

 Process

(3.4.1)
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For this particular scheme, after solving for     ,  we obtain
by averaging from the four surrounding corners
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After solving for         , we can obtain the streamfunction by solving the
elliptic equation (Laplace) valid at
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Example 2

b) Solving a semi-implicit elliptic equation for the heights also at (n+1) Δt
(section 3.2.5):
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Example 2

For example, if we use spherical harmonics on the globe, and make use of
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Suppose:  (4.5)

so that the solution for each spherical harmonic coefficient is given by :

 (4.6)

Directly solving the equation by spectral methods is easy:



3.4.2 Direct methods for linear system

A! = F
Soved by Gaussian elimination.

If the matrix A is fixed (e.g., independent of the time step), the LU
decomposition of A=LU

 solve LX=F

 followed by UΦ=X.

Direct methods involve solving equations like (3.4.2) or (3.4.3), which can be
written in matrix form as:

(3.4.7)



Direct method: e.g, double Sweep method

Problem: If the matrix is A tridiagonal, the direct problem is particularly easy to
solve. A tridiagonal problem can be written as:

a U b U c U dj j j j j j j! ++ + =1 1

with general boundary conditions
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Boundary condition:

Substitute into (3.4.8), obtain:

(3.4.12)

(3.4.11)

(3.4.10)

double Sweep method

Uj = !
cj

ajEj!1 + bj
U j+1 +

dj ! ajFj!1
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double Sweep method

So the method of solution is

U AU A0 1 1 2= + E A F A0 1 0 2= =,

E F j Jj j, , ,...= !1 1

U UJ J, !1
U E U FJ J J J! ! != +1 1 1

U BU BJ J= +!1 1 2

U j Jj , ,...= ! 2 1

a)use the lower BC to determine 

b) sweep forward using (4.12)  to obtain

c) determine  from 

 and the upper BC 

d) determine  using (3.4.10)

UJ !1 = EJ !1(B1UJ !1 + B2 ) + FJ !1



3.4.3 iterative methods to solve elliptic
equations

A! = F It can be written as:

! != " +( )I A F , or

! != +M F
   (3.4.13)

choosing an initial guess 0! then iterating (3.4.13)

Basic idea

Compared with the direct method, the iterative method may more
economical in memory requirements of a computer

Can solve sets of nonlinear equations.

The method converges if the spectral radius 1max)( <= iM !"



Jacobi simultaneous relaxation method

Suppose we are in iteration . Then
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Gauss-Seidel relaxation method
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Successive Over-relaxation method (SOR) 
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Summary of these three methods

• Relaxation method sets the residual equal to zero in one
of the equations, and then solves the value iteratively.

• Jacobi iteration only use the values from last iteration in
the right hand side of the equation

• Gauss-Seidel iteration use the values from the current
iteration after the values have updated

• Over-relaxation method over-corrects: make the
residuals have opposite sign with the last time (SOR)

Covergence speed (from slowest to fastest):
Jacobi  iteration; Gauss-Seidel iteration; Succesive Over

Relaxation (SOR)



Other iterative methods
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1. Alternating Direction Implicit (ADI)

Since each fractional step is implicit, large time steps can be used. And
since the solution of each fractional step involves only inverting
tridiagonal matrices, it can be performed very efficiently (see, e.g.,
Hageman and Young, 1981).



2. Multigrid methods

Reason to use multigrid: the iterative schemes depends on the number
of grid points, and is much faster for coarser grids

Procedure:

  Several steps of a basic method on the full grid are performed first
in order to smooth out the error

  Select a subset of the grid points, and the iterative method is used
to solve the problem on this coarse grid

  The coarse grid solution is interpolated back to the original grid

   The original method applied again for a few iterations.

 The method of descending through a sequence of coarser grids and
then ascending back to the full grid is known as a V-cycle. A W-cycle
results from visiting the coarse grid twice, with some smoothing steps
in between



3. Krylov subspace methods
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Krylov subspace is defined by:

m!
is the residual for arbitrary error

The approximate solution        lies in the space

Example: conjugate gradient method, Lanczos method, ),( 0rKF mm AA !" #

Other methods: GMRES, MINRES, ORTHODIR etc.


