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Contents (1)Contents (1)
• Forecasting the weather - we are really getting better!
• Why: Better obs? Better models? Better data
assimilation? It’s all three together!
• Intro to data assim: a toy scalar example 1, we
measure with two thermometers, and we want an
accurate temperature.
• Another toy example 2, we measure radiance but we
want an accurate temperature: we derive OI/KF, 3D-
Var, 4D-Var and EnKF for the toy model.



Contents (2)Contents (2)
• Review of toy example 1
• Another toy example 2, we measure radiance but we
want an accurate temperature:
• We derive OI/KF, 3D-Var, 4D-Var and EnKF for the
toy model.
• Comparison of the toy and the real equations
• An example from JMA comparing 4D-Var and LETKF



Typical 6-hour analysis cycle

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



The observing system a few years ago…

Now we have even more satellite data…

Before
1979
only
raobs



Typical distribution of observations in +/- 3hours
Typical distribution of the observing systems in a 6 hour period:

a real mess: different units, locations, times



Typical distribution of observations in +/- 3hours
Typical distribution of the observing systems in a 6 hour period:

a real mess: different units, locations, times



Model grid points (uniformly distributed) and observations
(randomly distributed). For the grid point i only observations

within a radius of influence may be considered

i

k



Some statistics of NWP…



Some comparisons…
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We are getting better… (NCEP observational increments)



Comparisons of Northern and Southern Hemispheres



Satellite radiances are essential in the SH



More and more satellite radiances…



Intro. to data assimilation: toy exampleIntro. to data assimilation: toy example  11
• We want to measure the temperature in this
room, and we have two thermometers that
measure with errors:

• We assume that the errors are unbiased:

that we know their variances
and the errors of the two thermometers are
uncorrelated:
The question is: how can we estimate the true
temperature optimally? We call this optimal
estimate the “analysis of the temperature”
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Intro. to data assimilation: toy exampleIntro. to data assimilation: toy example  11

• We try to estimate the analysis from a linear
combination of the observations:

and assume that the analysis errors are unbiased:

This implies that
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• We try to estimate the analysis from a linear
combination of the observations:

and assume that the analysis errors are unbiased:

This implies that

    will be the best estimate of    if the coefficients
are chosen to minimize the mean squared error of     :
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• Replacing
the minimization of          with respect to         gives

!
a

2
= (T

a
" T

t
)
2
= [a

1
(T
1
" T

t
) + (1" a

1
)(T

2
" T

t
)]
2

a
2
= 1! a

1

!
a

2

a
1
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• Replacing
the minimization of          with respect to         gives

or

The first formula says that the weight of obs 1 is given by the variance
of obs 2 divided by the total error.
The second formula says that the weights of the observations are
proportional to the "precision" or accuracy of the measurements
(defined as the inverse of the variances of the observational errors).
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Intro. to data assim: toy exampleIntro. to data assim: toy example  1 1 summarysummary
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Two measurements and an optimal linear combination (analysis):
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Now assume that T1=Tb (forecast) and T2=To (observation). Then
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Now assume that T1=Tb (forecast) and T2=To (observation). Then

Two measurements and an optimal linear combination (analysis):
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This is the form that is always used in analyses…
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 If the statistics of the errors are exact, and if the coefficients
are optimal, then the "precision" of the analysis (defined as
the inverse of the variance) is the sum of the precisions of
the measurements.

A forecast and an observation optimally combined (analysis):

Now we are going to see a second toy example of data
assimilation including remote sensing.

The importance of these toy examples is that the equations
are identical to those obtained with big models and many obs.
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Intro. to Intro. to remote sensingremote sensing and data and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

 
y = h(T ) ! !T

4



Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature
T (t

i+1) = m T (t
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i
) + !t SW heating+LW cooling[ ]
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Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature

• We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)

T (t
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Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature

• We will derive the data assim eqs (OI/KF and Var) for this toy
system (easy to understand!)
• Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!

T (t
i+1) = m T (t

i
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e.g., T (t
i+1) = T (t
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Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:



Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:

The final formula used has the same form as

Ta = Tb + w(yo ! h(Tb ))
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Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:

yo ! h(Tb ) = h(Tt ) + "0 ! h(Tb ) = "
0
+ h(Tt ) ! h(Tb ) = "

0
! H"b

The innovation can be written in terms of errors:

H = !h / !Twhere                            includes changes of units
and observation model nonlinearity, e.g.,

We assume that the obs. and model errors are Gaussian

h(T ) = !T
4



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb ) = "
0
! H"b



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:

yo = h(Tt ) + !
0
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Now, the analysis error variance (over many cases) is



Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:
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Toy temperature data assimilation, measure radiance

We have a forecast Tb and a radiance obs

From an OI/KF (sequential) point of view:
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Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )
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The analysis interpolates between the background and the
observation, giving more weights to smaller error variances.



Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:

Ta = Tb + w(yo ! h(Tb )) = Tb + w("0 ! H"b )
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Toy temperature data assimilation, measure radiance
Summary for OI/KF (sequential):

Ta = Tb + w(yo ! h(Tb ))

with w = !
b

2
H (!

o

2
+!

b

2
H

2
)
"1

The analysis error is computed from

!
a

2
= (1" wH )!

b

2

which can also be written as

1

!
a

2
=

1

!
b

2
+
H

2

!
o

2

"

#$
%

&'

analysis

optimal weight

analysis precision=
forecast precision + observation precision



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

J(Ta ) =
(Ta ! Tb )
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2
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



Summary part 1Summary part 1

• Data assimilation methods have contributed much
to the improvements in NWP.

• A toy example is easy to understand, and the
equations are the same as in a realistic huge
system

• Observation operator: model variables =>
observed variables

• We assume no bias, no error correlation
• Analysis = forecast +optimal weight x (innovation)
• Optimal weight = forecast error variance/total error

variance
• Precision = 1/error variance
• Analysis precision=forecast precis. + obs. precis.


