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Contents (1)

* Forecasting the weather - we are really getting better!

* Why: Better obs? Better models? Better data
assimilation? It's all three together!

* Intro to data assim: a toy scalar example 1, we
measure with two thermometers, and we want an
accurate temperature.

* Another toy example 2, we measure radiance but we
want an accurate temperature: we derive Ol/KF, 3D-
Var, 4D-Var and EnKF for the toy model.




Contents (2)

* Review of toy example 1

* Another toy example 2, we measure radiance but we
want an accurate temperature:

 We derive OI/KF, 3D-Var, 4D-Var and EnKF for the
toy model.

« Comparison of the toy and the real equations
* An example from JMA comparing 4D-Var and LETKF
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Typical 6-hour analysis cycle.

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



The observing system a few years ago...

Geo-stationary Polar-orbiting satellites
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Now we have even more satellite data...



Typical distribution of the observing systems in a 6 hour period:
a real mess: different units, locations, times
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Typical distribution of the observing systems in a 6 hour period:
a real mess: different units, locations, times
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Model grid points (uniformly distributed) and observations
(randomly distributed). For the grid point / only observations
within a radius of influence may be considered




Some statistics of NWP...

Permanent verifications of the forecast:

ECMWF FORECAST VERIFICATION 12UTC
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Some comparisons...

ECMWEF scores compared to other major global centre:

R.m.s. error (hPa) of surface-pressure forecasts for three and five days ahead
e ECMWF UK USA JAPAN
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We are getting better... (NCEP observational increments)
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Comparisons of Northern and Southern Hemispheres

Anomaly correlation (%) of 500hPa height forecasts

—— Northern hemisphere —— Southern hemisphere
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Satellite radiances are essential in the SH
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More and more satellite radiances...

number of data used per day (millions)
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Intro. to data assimilation: toy example 1

* We want to measure the temperature in this
room, and we have two thermometers that
measure with errors: T =T +¢,

I,=T +¢&,
 We assume that the errors are unbiased:

g =&=0

that we know their variances e’ =o; € =0,
and the errors of the two thermometers are
uncorrelated: €&, =0

The question is: how can we estimate the true
temperature optimally? We call this optimal
estimate the “analysis of the temperature”



Intro. to data assimilation: toy example 1

* We try to estimate the analysis from a linear
combination of the observations:

I =al +a,T,

and assume tha_tthe analysis errors are unbiased:
1, =1,
This implies that @, +a, =1



Intro. to data assimilation: toy example 1

* We try to estimate the analysis from a linear
combination of the observations:

I =al +a,T,

and assume that the analysis errors are unbiased:
T,=T,
This implies that @, +a, =1

I’ will be the best estimate of1, if the coefficients 41> %,
are chosen to minimize the mean squared error of 7 :

0; =(T,~T,)" =la(T, ~T,)+ (- a))T, - T,)




Intro. to data assimilation: toy example 1

* Replacing 4, =1—gq,
the minimization of 0'2 with respectto g, gives

0: =T, ~ T =la (T, =)+ (- )T, ~T)[



Intro. to data assimilation: toy example 1

* Replacing a, =1-aq,
the minimization of (72 with respectto d; gives

0: =T, ~ T =la (T, =)+ (- )T, ~T)[

2 2
J0” __ 9 __ 6
=0 = a = ; 4= + 52
aal O, +0, 0, v 0,
1/0°? /o2
or a, 1 a, 2

“1/ot+l/ol * 1/6’+1/0?

The first formula says that the weight of obs 1 is given by the variance
of obs 2 divided by the total error.

The second formula says that the weights of the observations are
proportional to the "precision" or accuracy of the measurements
(defined as the inverse of the variances of the observational errors).



Intro. to data assim: toy example 1 summary

Two measurements and an optimal linear combination (analysis):
— Optimal coefficients (min ¢ >
T =aT,+a,T, p (min-o,%)
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Intro. to data assim: toy example 1 summary

Two measurements and an optimal linear combination (analysis):
— Optimal coefficients (min ¢ >
T =aT,+a,T, p (min-o,%)
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Intro. to data assim: toy example 1 summary

Two measurements and an optimal linear combination (analysis):
— Optimal coefficients (min ¢ >
T =aT,+a,T, p (min-o,%)
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Now assume that T,=T, (forecast) and T,=T, (observation). Then

I =al,+aT =T +a,(T, —T,)



Intro. to data assim: toy example 1 summary

Two measurements and an optimal linear combination (analysis):
— Optimal coefficients (min ¢ >
T =aT,+a,T, p (min-o,%)
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Now assume that T,=T, (forecast) and T,=T, (observation). Then

I =aT,+a,T =T +a,(T,—T,) or

62

Tasz:G pe: (T, —-T,)=T, +w(T, —T,)

This is the form that is always used in analyses...




Intro. to data assim: toy example 1 summary

A forecast and an observation optimally combined (analysis):

o, 1 1 1
T =T, + (T ~T,) with —=—+—

’ o, +0. o. oO©, O,

a

o

If the statistics of the errors are exact, and if the coefficients
are optimal, then the "precision"” of the analysis (defined as
the inverse of the variance) is the sum of the precisions of
the measurements.

Now we are going to see a second toy example of data
assimilation including remote sensing,.

The importance of these toy examples is that the equations
are identical to those obtained with big models and many obs.




Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.q.: y=hT)~ oT*




Intro. to remote sensing and data
assimilation: toy example 2

* Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.
model, e.q.: y=wT)~oT*

* We also have a forecast model for the temperature
T(t.,)=m|T()l;
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|



Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.9.:  y=n(T)~oT"

* We also have a forecast model for the temperature
T(t.,)=m|T()l;
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|

« We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)



Intro. to remote sensing and data
assimilation: toy example 2

 Assume we have an object, a stone in space

« We want to estimate its temperature T (°K) accurately but we
measure the radiance y (W/m?) that it emits. We have an obs.

model, e.g.:  y=T)~oT*

* We also have a forecast model for the temperature

T(t.)=m|T@)];
e.g.,T(t,,,)=T(t,)+ At|SW heating+LW cooling|

* We will derive the data assim eqs (OI/KF and Var) for this toy
system (easy to understand!)

« Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:
2

Yo = h(Tb)

The final formula used has the same formas 7,=7,+———(1,-T,)

I,=T,+w(y, —h(T,))

> 2 2 77 \-1
with the optimal weight w =0, H (0, + Ho, H)

o

Where does H come from?



Toy temperature data assimilation, measure radiance

We have a forecast T, (prior) and a radiance obs Y, = /(1)) + &,

The new information (or innovation) is the
observational increment:

y, —h(T,)

We assume that the obs. and model errors are Gaussian

The innovation can be written in terms of errors:
y, —h(T,))=h(T,)+€,—h(Tl,)=€,+h(T,)—h(T,)=€¢,— He,

where H =0h/dT includes changes of units
and observation model nonlinearity, e.g., h(T)=oT"



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /(T,)+ &,

y,—h(Tl,)=¢,— HE,



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /(T,)+ &,

y,—h(Tl,)=¢,— HE,

From an OI/KF (sequential) point of view:
T =T, +w(y,—h(T,))=T,+w(e,— Hg,)

or E =& +w(E,—HE))

Now, the analysis error variance (over many cases) is

22
, — 0

a



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /(T,)+ &,

y,—h(Tl,)=¢,— HE,

From an OI/KF (sequential) point of view:
T =T, +w(y,—h(T,))=T,+w(e,— Hg,)
or E =& +w(E,—HE))

2

In OI/KF we choose w to minimize the analysis error: 82 =0,

We compute GZ=G§+W2(G§+HGZH)—2WG§H

assuming that &€, .€, are uncorrelated



Toy temperature data assimilation, measure radiance

We have a forecast T, and a radiance obs Y, = /(T,)+ &,

y,—h(Tl,)=¢,— HE,

From an OI/KF (sequential) point of view:
T =T, +w(y,—h(T,))=T,+w(e,— Hg,)

or E =& +w(E,—HE))

2

In OI/KF we choose w to minimize the analysis error: 82 =0,

o:=o0,+w (0. +Ho,H)-2wo, H

2
rom 9%a _g  weobtan w=0.H(c +Ho H)
ow



Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:
T =T +w(y, —h(T,)=T, +w(e, —Heg,)
with  w=0,H(c. +0,H")"

Note that the scaled weight 11//{ is between 0 and 1

f o’:>>0,H> T,=T,=T,

1
f o’<<o,H® T,=T,+ E[h(];)— WT,)|=T,
The analysis interpolates between the background and the

observation, giving more weights to smaller error variances.



Toy temperature data assimilation, measure radiance

Repeat: from an OI/KF point of view the analysis (posterior) is:
T =T +w(y —h(T,))=T, +w(g,— Heg,)

with v =o H(o. +0,H")"

Subtracting Tt from both sides we obtain

E =& +w(E,—HE))

Squaring the analysis error and averaging over many cases, we obtain
2 2
o, =(-wH)o,
which can also be written as 1 ( 1 H° ]

o



Toy temperature data assimilation, measure radiance
Summary for Ol/KF (sequential):

T =T, +w(y —h(T))) analysis

with w= szH(Gg + cf]fH2 )" optimal weight

The analysis error is computed from

o.=(1-wH)o,;

which can also be written as

| (1 sz o
S— + analysis precision=

sz 03 forecast precision + observation precision



Toy temperature data assimilation, variational approach

We have a forecast T, and a radiance obs Y, = /(T,)+ &,

Innovation: Yo ™ h(Tb)
From a 3D-Var point of view, T —TYY (WT )=V )
we want to find a T, that ](Ta)=( ), +( () 2)’0)

2
minimizes the cost function J: 2(719 260




Summary part 1

Data assimilation methods have contributed much
to the improvements in NWP.

A toy example is easy to understand, and the
equations are the same as in a realistic huge
system

Observation operator: model variables =>
observed variables

We assume no bias, no error correlation
Analysis = forecast +optimal weight x (innovation)

Optimal weight = forecast error variance/total error
variance

Precision = 1/error variance
Analysis precision=forecast precis. + obs. precis.



