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Contents (part 1)Contents (part 1)
• Forecasting the weather - we are really getting better!
• Why: Better obs? Better models? Better data
assimilation?
• Intro to data assim: a toy scalar example 1, we
measure with two thermometers, and we want an
accurate temperature.
• Another toy example 2, we measure radiance but we
want an accurate temperature: we will derive OI/KF,
3D-Var, 4D-Var and EnKF for the toy model.



Contents (part 2)Contents (part 2)
• Review of toy example 1
• Another toy example 2, we measure radiance but we
want an accurate temperature:
• We derive Optimal Interpolation/Kalman Filter
(sequential algorithms) for the toy model.
• 3D-Var, 4D-Var (variational algorithms) and EnKF for
the toy model.
• We compare the toy equations and the real equations
• An example from JMA comparing 4D-Var and LETKF



Typical 6-hour analysis cycle

Bayes interpretation: a forecast (the “prior”), is combined with the
new observations, to create the Analysis (IC) (the “posterior”)



Intro. to data assim: toy exampleIntro. to data assim: toy example  1 summary1 summary
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 If the statistics of the errors are exact, and if the coefficients
are optimal, then the "precision" of the analysis (defined as
the inverse of the variance) is the sum of the precisions of
the measurements.

A forecast and an observation optimally combined (analysis):

Now we are going to see a second toy example of data
assimilation including remote sensing.

The importance of these toy examples is that the equations
are identical to those obtained with big models and many obs.
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Intro. to Intro. to remote sensingremote sensing and data and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

 
y = h(T ) ! !T

4



Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature
T (t

i+1) = m T (t
i
)[ ];   

e.g., T (t
i+1) = T (t

i
) + !t SW heating+LW cooling[ ]

 
y = h(T ) ! !T
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Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature

• We will derive the data assim eqs (KF and Var) for this toy
system (easy to understand!)
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Intro. to remote sensing and dataIntro. to remote sensing and data
assimilation: toy example 2assimilation: toy example 2

• Assume we have an object, a stone in space
• We want to estimate its temperature T (oK) accurately but we
measure the radiance y (W/m2) that it emits. We have an obs.
model, e.g.:

• We also have a forecast model for the temperature

• We will derive the data assim eqs (OI/KF and Var) for this toy
system (easy to understand!)
• Will compare the toy and the real huge vector/matrix
equations: they are exactly the same!

T (t
i+1) = m T (t

i
)[ ];   

e.g., T (t
i+1) = T (t
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) + !t SW heating+LW cooling[ ]

 
y = h(T ) ! !T
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Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:



Toy temperature data assimilation, measure radiance

We have a forecast Tb (prior) and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )

The new information (or innovation) is the
observational increment:

The final formula is very similar to that in toy model 1:

Ta = Tb + w(yo ! h(Tb ))
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Toy temperature data assimilation, measure radiance
Summary for Optimal Interpolation/Kalman Filter (sequential):

Ta = Tb + w(yo ! h(Tb ))

with w = !
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The analysis error is obtained from squaring
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It can also be written as
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From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

J(Ta ) =
(Ta ! Tb )
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

This analysis temperature Ta is closest to both the
forecast Tb and the observation yo and maximizes the
likelihood of Ta~Ttruth given the information we have.

It is easier to find the analysis increment Ta-Tb that
minimizes the cost function  J

J(Ta ) =
(Ta ! Tb )
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From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

The cost function comes from a maximum likelihood analysis: 

J(Ta ) =
(Ta ! Tb )
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From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

Likelihood of Ttruth given Tb: 
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From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:

Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
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yo ! h(Tb )Innovation:

Likelihood of Ttruth given Tb: 
1

2!"
b

exp
T
truth

# T
b( )
2

2"
b

2

$

%
&
&

'

(
)
)

Likelihood of h(Ttruth) given yo: 1

2!" o

exp #
h(Ttruth ) # yo( )

2

2" o

2

$

%
&
&

'

(
)
)

J(Ta ) =
(Ta ! Tb )

2

2" b

2
+
(h(Ta ) ! yo )

2

2" o

2



From a 3D-Var point of view,
we want to find a Ta  that
minimizes the cost function J:
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
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Minimizing the cost function maximizes the likelihood of the 
estimate of truth



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J.
This maximizes the likelihood of
Ta~Ttruth given both Tb and yo

2J
min

=
(Ta ! Tb )

2

" b

2
+
(h(Ta ) ! yo )

2

" o

2

Toy temperature data assimilation, variational approach

Again, we have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:



From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J.

So that from

To find the minimum we use an
incremental approach: find           :

(Ta ! Tb )
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:
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From a 3D-Var point of view,
we want to find (Ta -Tb) that
minimizes the cost function J.

So that from

To find the minimum we use an
incremental approach: find           :

(Ta ! Tb )
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

J(Ta ) =
(Ta ! Tb )
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3D-Var: Ta minimizes the distance to both
the background and the observations
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

Ta = Tb + w(yo ! h(Tb ))
3D-Var
solution



3D-Var: Ta minimizes the distance to both
the background and the observations
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

Ta = Tb + w(yo ! h(Tb ))
3D-Var
solution

This variational solution looks different but is the same as the one obtained
before with Kalman filter (a sequential approach, like Optimal Interpolation,
Lorenc 86)):
KF/OI
solution

Ta = Tb + w(yo ! h(Tb )) with w
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3D-Var: Ta minimizes the distance to both
the background and the observations
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Toy temperature data assimilation, variational approach

We have a forecast Tb and a radiance obs yo = h(Tt ) + !
0

yo ! h(Tb )Innovation:

Ta = Tb + w(yo ! h(Tb ))
3D-Var
solution

This variational solution is the same as the one obtained before with Kalman
filter (a sequential approach, like Optimal Interpolation, Lorenc 86)):
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Show that the 3d-Var and the OI/KF weights are the same:
both methods find the same optimal solution!



Typical 6-hour analysis cycle

Forecast phase, followed by Analysis phase

Typical 6-hour analysis cycle



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ti to ti+1: T
b
(t
i+1
) = m T

a
(t
i
)[ ]

So that we can predict the forecast error variance

Forecast error: !
b
(t
i+1
) = T

b
(t
i+1
) " T

t
(t
i+1
) =

m T
a
(t
i
)[ ]" m T

t
(t
i
)[ ] + !

m
(t
i+1
) = M!

a
(t
i
) + !

m
(t
i+1
)

! b

2
(ti+1) = M

2
! a

2
(ti ) +Qi; Qi = "m

2
(ti+1)

(The forecast error variance comes from the analysis and model errors)



Toy temperature analysis cycle (Kalman Filter)

Forecasting phase, from ti to ti+1: T
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So that we can predict the forecast error variance

Now we can compute the optimal weight (KF or Var, whichever form is
more convenient, since they are equivalent):

Forecast error: !
b
(t
i+1
) = T

b
(t
i+1
) " T

t
(t
i+1
) =

m T
a
(t
i
)[ ]" m T

t
(t
i
)[ ] + !

m
(t
i+1
) = M!

a
(t
i
) + !

m
(t
i+1
)

! b

2
(ti+1) = M

2
! a

2
(ti ) +Qi; Qi = "m

2
(ti+1)

w = !
b

2
H (!

o

2
+ H!

b

2
H )

"1
= !

b

"2
+ H!

o

"2
H( )

"1

H!
o

"2
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Toy temperature analysis cycle (Kalman Filter)

Analysis phase: we use the new observation

Ta (ti+1) = Tb (ti+1) + wi+1 yo(ti+1) ! h Tb (ti+1)( )"# $%

we get

We also need the compute the new analysis error variance:
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Summary of toy Analysis Cycle (for a scalar)

“We use the model to forecast Tb and to
update the forecast error variance from t
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Interpretation…



Summary of toy Analysis Cycle (for a scalar)

Ta = Tb + w yo ! h Tb( )"# $%

“We use the model to forecast Tb and to
update the forecast error variance from t
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i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal weight:
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Summary of toy Analysis Cycle (for a scalar)

Ta = Tb + w yo ! h Tb( )"# $%

“We use the model to forecast Tb and to
update the forecast error variance from t
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innovation (difference between the observation and the first
guess) multiplied by the optimal weight:
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“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance.                     ensures that the magnitudes and units
are correct.”

H = !h / !T

!
b

2
(t
i+1
) = M

2 !
a

2
(t
i
)"# $% M = !m / !T



Summary of toy Analysis Cycle (for a scalar)
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“The optimal weight is the background error variance divided
by the sum of the observation and the background error
variance.                     ensures that the magnitudes and units
are correct.”

H = !h / !T

Note that the larger the background error variance, the
larger the correction to the first guess.



Summary of toy Analysis Cycle (for a scalar)
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The analysis error variance is given by

“The analysis error variance is reduced from the background
error by a factor (1 -  scaled optimal weight)”



Summary of toy system equations (cont.)
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This can also be written as
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“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis error variance is reduced from the background
error by a factor (1 -  scaled optimal weight)”



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-109!



Equations for toy and real huge systems

These statements are important because they hold true for
data assimilation systems in very large multidimensional
problems (e.g., NWP).

We have to replace scalars (obs, forecasts) by vectors

Instead of model, analysis and observational scalars, we
have 3-dimensional vectors of sizes of the order of 107-109!

Tb ! xb; Ta ! xa; yo ! yo;

and their error variances by error covariances:
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Interpretation of the NWP system of equations
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Interpretation of the NWP system of equations
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At t
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“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”
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Interpretation of the NWP system of equations

x
a
= x
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“We use the model to forecast from t
i

to t
i+1
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) = M x
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)[ ]

At t
i+1

“The analysis is obtained by adding to the background the
innovation (difference between the observation and the first
guess) multiplied by the optimal Kalman gain (weight) matrix”

K = BH
T
(R +HBH
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)
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“The optimal weight is the background error covariance divided by
the sum of the observation and the background error covariance.

ensures that the magnitudes and units are correct.
The larger the background error variance, the larger the correction
to the first guess.”

H = !H / !x

”



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1
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Forecast phase:



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1
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”

Forecast phase:

“We use the linear tangent model and its adjoint to
forecast B”

B(t
i+1
) =M A(t

i
)[ ]MT



Interpretation of the NWP system of equations

“We use the model to forecast from t
i

to t
i+1

x
b
(t
i+1
) = M x

a
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i
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”

Forecast phase:

“We use the linear tangent model and its adjoint to
forecast B”

B(t
i+1
) =M A(t

i
)[ ]MT

“However, this step is so horrendously expensive that it
makes Kalman Filter completely unfeasible”.

“Ensemble Kalman Filter solves this problem by estimating
B using an ensemble of forecasts.”



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

This can also be written as

A
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“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”



Summary of NWP equations (cont.)

A = I !KH( )B

The analysis error covariance is given by

This can also be written as

A
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“The analysis precision is given by the sum of the background
and observation precisions”

“The analysis covariance is reduced from the background
covariance by a factor (I -  scaled optimal gain)”
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“The variational approach and the sequential approach are
solving the same problem, with the same K, but only KF (or
EnKF) provide an estimate of the analysis error covariance”
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It seems like a simple change, but it is not! (e.g., adjoint)It seems like a simple change, but it is not! (e.g., adjoint)
What is B? It should be tunedWhat is B? It should be tuned……



Ensemble Transform Kalman FilterEnsemble Transform Kalman Filter
(EnKF)(EnKF)

Forecast step:

Analysis step:

The new analysis error covariance in the ensemble space is (Hunt et al.
2007)

And the new ensemble perturbations are given by (transform)
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Comparisons of 4-D Var and LETKF at JMA
T. Miyoshi and Y. Sato

• 4D-Var and EnKF are the two advanced, feasible methods

• http://4dvarenkf.cima.fcen.uba.ar/ Workshop in Buenos Aires

• At JMA, Takemasa Miyoshi has performed comparisons of
the Local Ensemble Transform Kalman Filter (Hunt et al.,
2007) with their operational 4D-Var

• Comparisons are made for August 2004



Comparison of 4D-Var and LETKF at JMA
T. Miyoshi and Y. Sato
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Comparison of LETKF and 4D-Var at JMA
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Comparison of 4-D Var and LETKF at JMA
18th typhoon in 2004, IC 12Z 8 August 2004

T. Miyoshi and Y. Sato

  

operational LETKF



Comparison of 4-D Var and LETKF at JMA
RMS error statistics for all typhoons in August 2004

T. Miyoshi and Y. Sato

Operational 4D-Var LETKF
 



EnKF mean analysis
vs. 4D-Var Bnmc

4D-Var Benkf
vs. 4D-Var Bnmc
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Buehner et al., 2008: Forecast Results – 120h NH



EnKF mean analysis
vs. 4D-Var Bnmc

4D-Var Benkf
vs. 4D-Var Bnmc

stddev & bias 
relative to 
radiosondes
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Buehner et al., 2008: Forecast Results – 120h SH



Whitaker: Comparison of T190, 64 members EnKF with
T382 operational GSI, same observations



Summary
• Data assimilation methods have contributed much to the

improvements in NWP.
• A toy example is easy to understand, and the equations

are the same for a realistic system
• Kalman Filter (too costly) and 4D-Var (complicated) solve

the same problem (if model is linear and we use long
assimilation windows)

• Ensemble Kalman Filter is feasible and simple
• It is starting to catch up with operational 4D-Var
• EnKF can also estimate observational errors online
• Important problems: estimate and correct model errors &

obs. errors, optimal obs. types and locations, tuning
additive/multiplicative inflation, parameters estimation,…
– Tellus: 4D-Var or EnKF? Tellus 2007
– Papers posted in “Weather Chaos UMD”
– Workshop in Buenos Aires Nov ’08: http://4dvarenkf.cima.fcen.uba.ar/


