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ABSTRACT

The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully
suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortu-
nately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two
concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over
the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin
filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog
scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical
accuracy for amplitude errors by two orders, yielding third-order accuracy. Themodified filter could easily be
incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should
deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit
the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.

1. Introduction

From a functional perspective, the task of predicting
future weather and climate may be reduced to the fol-
lowing iterative procedure. First, given the state of the
atmosphere, ocean, and other Earth-system components
at any time (the input), use the governing equations to
compute the state at a slightly later time (the output).
Then, repeat the loop as many times as required, always
using the previous output as the next input.
The above prediction framework presents three main

challenges, each of which potentially degrades the reli-
ability of the forecast. First, Earth observations, which
always contain measurement errors, are required to
serve as the initial state. Second, the vast array of active
physical processes and interactions is incompletely
known and imperfectly represented in the spatially
truncated governing equations. Third, the discrete
stepping from one time level to the next is merely an
approximation to the exact time-continuous evolution.

This paper presents a possible avenue for progress with
the third of these three challenges, which has received
scant attention compared to the extensive research ef-
forts devoted to the first two.
Pfeffer et al. (1992) have assessed the sensitivity of

an atmospheric general circulation model to the time
stepping, for fixed spatial discretization and physical
parameterizations. They find that two different meth-
ods of time discretization—the leapfrog and Matsuno
schemes—result in significant quantitative differences
in the simulated climate. For example, the leapfrog
scheme gives much more precipitation over the western
tropical Pacific Ocean and less precipitation over the
western North Atlantic Ocean. Therefore, time step-
ping appears to be an important contributor to model
error.
Many different time-stepping methods have been pro-

posed, including the leapfrog scheme (or centered
difference scheme), the Matsuno scheme (e.g., Pfeffer
et al. 1992), the Adams–Bashforth family of schemes
(e.g., Durran 1991) and the Runge–Kutta family of
schemes (e.g., Kar 2006). The leapfrog scheme has
emerged as the method of choice in weather and climate
models, despite related disciplines choosing differently
(e.g., Runge–Kutta schemes are widely used in com-
putational fluid dynamics but hardly ever used in nu-
merical weather prediction) and despite evidence that
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other methods may be superior (e.g., the third-order
Adams–Bashforth scheme is more accurate; Durran
1991). The leapfrog scheme is used so widely in weather
and climate models probably because it is easy to im-
plement, computationally inexpensive, and has low run-
time storage requirements. Indeed, today’s widespread
use of the leapfrog scheme in general circulation models
is perhaps merely a legacy of computer memory having
been such a severe constraint when themodels were first
developed.
A major problem with the leapfrog scheme is that it

admits spurious computational modes (e.g., Mesinger
and Arakawa 1976; Haltiner andWilliams 1980; Durran
1999). In general, a differential equation that is first order
in time has one degree of freedom, but an n-time-level
numerical approximation to it constitutes an (n 2 1)th-
order difference equation with n2 1 degrees of freedom.
Of these n 2 1 modes, one is the physical mode and the
remaining n2 2 are computational modes. The leapfrog
is a three-time-level scheme, so one computational mode
arises in it, in addition to the physical mode, because a
second-order difference equation is used to approximate
a first-order differential equation. The computational
mode (or parasitic mode) is manifest as a spurious oscil-
lation between even and odd time steps, which is referred
to as time splitting.
One possible solution to time splitting is to periodi-

cally reinitialize the leapfrog scheme by applying a
single step of a two-time-level scheme, which does not
admit any computational modes. For example, Pfeffer
et al. (1992) apply a single Matsuno step after every 11
leapfrog steps. This approach does not remove the
computational mode, but merely resets its amplitude to
zero periodically so that it never becomes large enough
to be problematic.
The far more widely used solution to time splitting is

to apply a time filter during the time-stepping procedure.
Robert (1966) designed such a filter for the leapfrog
scheme and Asselin (1972) showed that it selectively
suppresses the computational mode but leaves the
physical mode relatively undamped at low frequencies.
The filter is now referred to as the Robert filter, the
Asselin filter, or the Robert–Asselin filter. The behavior
of the filter has been investigated not only for simple
equation sets, with no space dependence, but also for
the shallow-water equations (Schlesinger et al. 1983)
and the hydrostatic primitive equations (Cordero and
Staniforth 2004).
As testament to the filter’s success, Asselin (1972)1

has been cited over 450 times according to one citation

database, mostly in journals of meteorology and the
atmospheric sciences (around 300 citations) but also in
journals of oceanography (around 100 citations) and
fluid mechanics (around 50 citations). Examples include
the use of the filter in models of regional climate (e.g.,
Caya and Laprise 1999), palaeoclimate (e.g., Fraedrich
et al. 2005), ocean circulation (e.g., Griffies et al. 2001),
geophysical fluid dynamics (e.g., Ford 1994; Bartello
2002), rotating laboratory fluids (e.g., Williams et al.
2009), and the atmosphere of Mars (e.g., Hartogh et al.
2005). André Robert’s contributions to numerical
modeling, including the time filter, have been reviewed
by Staniforth (1997) following a memorial symposium
held at the University of Québec in 1994.
Currently, the Robert–Asselin filter is used in

d operational numerical weather prediction models,
including the Mesoscale Model (MSM) of the Japan
Meteorological Agency (JMA), the global model of
the Australian Bureau of Meteorology (BOM) and
Research Centre (BMRC), the global model (GME)
and regional model (COSMO-EU) of Deutscher
Wetterdienst (DWD), and the Royal Netherlands
Meteorological Institute (KNMI) model;

d atmospheric general circulation models for climate
simulation, including the ECHAM5 model of the
Max-Planck-Institut für Meteorologie (MPI-M) and
the Community Atmosphere Model (CAM) of the
National Center for Atmospheric Research (NCAR);

d ocean general circulation models, including Océan
Parallélisé (OPA), the Nucleus for European Mod-
eling of the Ocean (NEMO), the oceans of Met Office
Hadley Centre climate models [i.e., the Hadley Cen-
tre Coupled Climate Model version 3 (HadCM3),
the Hadley Centre Global Environmental Model
(HadGEM), the High Resolution Global Environ-
mental Model (HiGEM), and the Fast Met Office
U.K. Universities Simulator (FAMOUS)], the Hybrid
Coordinate Ocean Model (HYCOM), and (as an
option) the Geophysical Fluid Dynamics Laboratory
(GFDL) Modular Ocean Model (MOM); and

d models of the fluids in rotating annulus laboratory
experiments, including the Quasi-Geostrophic Model
for Investigating Rotating fluids Experiments
(QUAGMIRE) and the Met Office/Oxford Rotating
Annulus Laboratory Simulation (MORALS).

Despite its unquestioned success, the Robert–Asselin-
filtered leapfrog scheme suffers from two related prob-
lems. First, in addition to suppressing the computational
mode, the scheme also weakly suppresses the physical
mode. Therefore, physical quantities (e.g., energy) that
are conserved by the time-continuous equations are not
necessarily conserved by the time-discretized equations1 Robert (1966) predates the standard citation databases.
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when the filter is activated. The damping and noncon-
servation may be benign for sufficiently short integra-
tions, but possibly not for longer ones.
Second, the Robert–Asselin filter severely degrades

the leapfrog scheme’s numerical accuracy, measured as
the rate at which the error tends to zero as the time step
is progressively refined. Specifically, a numerical scheme
is defined to be nth-order accurate if, after a given time
interval, the difference between the numerical solution
of the time-discretized equations with time step Dt, and
the exact solution of the time-continuous equations,
scales as (Dt)n as Dt / 0. Higher-order schemes are
generally preferred to lower-order schemes, because
they may permit the use of longer time steps with no loss
of accuracy, reducing the computational expense of a
given simulation. The Robert–Asselin-filtered leapfrog
scheme is only first-order accurate for amplitude errors
(although higher-order contributions may dominate for
very small values of the filter parameter).
Because the Robert–Asselin filter is used so widely,

simple-to-implement modifications that deliver more
faithful simulations are very attractive. The author
proposes such a modification in this paper. When used
in conjunction with the leapfrog scheme, the modifica-
tion vastly reduces the impacts on the physical mode
and increases the numerical accuracy for amplitude
errors by two orders, yielding third-order accuracy.
Section 2 motivates the modified filter from a geometrical
perspective. Section 3 derives analytically the amplifi-
cation factor and numerical accuracy for the modified
filtered leapfrog scheme, and compares them with the
corresponding results for the standard Robert–Asselin-

filtered leapfrog scheme. Section 4 concludes the paper
with a summary and discussion.

2. The Robert–Asselin filter and
proposed modification

The standard Robert–Asselin filter, and the modified
filter proposed in this paper, are illustrated graphically
in Fig. 1. Suppose that the values of a dependent vari-
able, x, are given at three successive and equally spaced
times, tn21, tn, and tn11. Then, from a geometrical per-
spective, the standard filter (Fig. 1a) operates by moving
the inner point, with coordinates [tn, xn], a fraction n
toward the midpoint, [tn, (xn21 1 xn11)/2], of the two
outer points. Therefore, the displacement of the inner
point under the influence of the filter is

d5 (n/2)(xn!1 ! 2xn 1 xn11). (1)

The filter parameter, n, is usually chosen to be O(0.01–
0.2).
Two relevant properties of the three points are their

mean,

Mn5
xn!11xn1xn1 1

3
, (2)

and curvature,

Cn;xn!1!2xn1xn11. (3)

By displacing xn through the amount d, the standard
Robert–Asselin filter reduces the magnitude of the

FIG. 1. Graphical comparison of the operation of (a) the standard Robert–Asselin filter and (b) the modified
family of filters proposed in this paper. Points at three consecutive time levels are shown (marked with times signs)
and a straight line is drawn between the two outer points (dashed). The standard filter moves the inner
point through a displacement d, defined by (1). The modified filter moves the inner and right outer points through
displacements ad and (a 2 1)d, respectively, where 0 # a # 1. For the configuration of three points shown,
d . 0.
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curvature of the three points, |Cn|. When used in con-
junction with the leapfrog scheme, this feature of the
filter strongly suppresses the computational mode, as
desired. But, crucially, the application of the filter does
not conserve the three-time-level mean, Mn. The theo-
retical analysis of section 3 will show that, when used
in conjunction with the leapfrog scheme, it is this fea-
ture of the filter that severely degrades the numerical
accuracy.
In an attempt to include the possibility of conserving

the three-time-level mean, the modified filter proposed
in this paper (Fig. 1b) acts on the right outer point as
well as the inner point. Specifically, for any a satisfying
0 # a # 1, the modified filter displaces xn through the
amount ad and xn11 through the amount (a 2 1)d,
where d is given by (1). All members of this family of
modified filters reduce the magnitude of the curvature
of the three points, jCnj, with a controlling the relative
contributions to the reduction from the displacements
of the inner and right outer points. The special case
a 5 1 yields the standard Robert–Asselin filter dis-
cussed above, which displaces the inner point only. The
special case a 5 0 displaces the right outer point only.
The special case a 5 1/2 will be of particular interest in
this paper, because it displaces the inner and right outer
points equally and oppositely, conserving the three-
time-level mean, Mn.
Before embarking upon the theoretical analysis, we

briefly demonstrate the improvement that may be
achieved by the proposed modification, when used in
conjunction with the leapfrog scheme. We numerically
integrate the equations of simple harmonic motion,

dX

dt
5 ! vY and (4)

dY

dt
51vX, (5)

by alternately applying a leapfrog step and the modified
filter with either (in two separate integrations) a 5 1
(i.e., the standard Robert–Asselin filter) or a5 1/2. The
numerical solutions so obtained are compared with each
other, and with the exact solution, in Fig. 2, at the pa-
rameter values given in the caption. Amplitude errors
are clearlymuch smaller with themodified filter than with
the standard filter. One consequence is that X2 1 Y2,
which is conserved by the continuous equations and
corresponds to the energy of the oscillation, decreases
by 89% using the standard filter, but is approximately
conserved using the modified filter, between the be-
ginning and end of the integration shown in the figure.

3. Theoretical analysis

Amplitude and phase errors of time-stepping schemes
are traditionally examined by analyzing solutions to the
oscillation equation (e.g., Durran 1999), which, for the
complex variable F(t), is

dF

dt
5 ivF, (6)

where i 5
ffiffiffiffiffiffiffi
!1

p
and v is a given (real) angular fre-

quency. Equation (6) is related to (4) and (5) by F 5
X 1 iY. Using the modified filter proposed in section 2
to control the computational mode, the leapfrog scheme
for (6), with time step Dt, is

F(t1Dt) 5 F(t ! Dt)1 2ivDtF(t), (7)

FIG. 2. Two numerical solutions to (4) and (5) with v 5 1 rad s21, both obtained using the leapfrog
scheme with Dt 5 0.2 s. The computational mode is controlled using either the standard Robert–Asselin
filter (with a 5 1 and n 5 0.2) or the modified filter proposed in this paper (with a 5 1/2 and n 5 0.2). A
single two-time-level forward step is used to initiate the leapfrog scheme. The initial condition is X 5 1,
Y 5 0, for which the exact solution (also plotted) is X 5 cosvt and Y 5 sinvt.
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F(t)5F(t)1
na

2
[F(t ! Dt)! 2F(t)1F(t1Dt)], (8)

and

F(t1Dt)5F(t1Dt)! n(1! a)

2
[F(t ! Dt)! 2F(t)

1F(t1Dt)]. (9)

In this three-stage method, (7) implements the basic
leapfrog scheme and (8) and (9) implement the modi-
fied filter, with 0 # a # 1. Here F denotes a provisional
value, obtained by applying (7) during the current time
step; F denotes another (singly filtered) provisional
value, obtained by applying (9) during the current time
step; and F denotes the definitive (doubly filtered) value,
obtained by applying (8) during the next time step. The
occurrence of filtered values on the right sides of (7)–(9)
makes the scheme recursive: F is overwritten with F as
soon as it is calculated, and so is F with F.

It follows from (8) and (9) that the unfiltered, singly
filtered, and doubly filtered values share a common
complex amplification factor A, defined by

A5
F(t1Dt)

F(t)
5

F(t1Dt)

F(t)
5

F(t1Dt)

F(t)
. (10)

Rewriting (7)–(9) with function evaluations at time
t only, using (10), yields three equations in the three
unknowns: A, F(t)/F(t), and F(t)/F(t). Solving for A
gives

A2! n1 2 1! n(1! a)

2

" #
ivDt

$ %
A1 n ! 11 naivDt5 0,

(11)

from which the numerical amplification factor is found
to be

Assuming 1 2 n/2 . 0, and taking the output of the
square root operator to be the branch with nonnegative
real part, then the positive sign (A1) corresponds to the
physical mode and the negative sign (A2) to the com-
putational mode. For the special case a 5 1, (12) re-
duces to the amplification factor derived by Asselin
(1972) for the standard Robert–Asselin-filtered leap-
frog scheme, as expected. The exact solution to (6) is
F(t)5 F(0) exp(ivt), from which the exact amplification
factor is found to be

Aexact(vDt)5 exp(ivDt), (13)

for comparison with (12).
Figure 3 compares the amplification factor for the

numerical solution, in the three cases a5 0, a5 ½, and
a 5 1, with the amplification factor for the exact solu-
tion. The exact amplification factor (Fig. 3a) lies on the
unit circle in the first quadrant and rotates anticlockwise
as vDt increases from 0 to 1. The numerical amplifica-
tion factors for the physical mode (Figs. 3b–d) also ro-
tate anticlockwise in the first quadrant, but depart
slightly from the unit circle as vDt increases from 0. The
growing radii for a5 0 (Fig. 3b) and a5½ (Fig. 3c), and

the shrinking radius for a 5 1 (Fig. 3d), correspond
respectively to an artificial amplification and suppres-
sion of the physical mode. The numerical amplification
factors for the computational mode (Figs. 3b–d) rotate
clockwise in the second quadrant as vDt increases from
0 to 1. They each remain inside the unit circle, corre-
sponding to a suppression of the computational mode,
as desired.
As suggested by Fig. 3, the standard Robert–Asselin

filter (a 5 1) behaves qualitatively differently from all
other filters in the modified family (a 6¼ 1). Only the
standard filter (Fig. 3d), exhibits a point in the complex
plane at which the amplification factors for the physical
and computational modes meet. The singularity occurs
because a 5 1 is the only case for which the imaginary
term within the square root of (12) vanishes, allowing
A1 5A2 at vDt5 12 n/2. For all other values of a, the
presence of the imaginary term ensures that there is no
value of vDt for which A1 5 A2, and the singular be-
havior of the standard Robert–Asselin filter is avoided.
Figure 4 shows in more detail how the magnitudes

of the amplification factors depend upon vDt. The qual-
itatively different behavior between the cases a 6¼ 1
and a 5 1 is clearly visible. The singularity for the case

A6(a, n,vDt) 5
n

2
1 1! n(1! a)

2

" #
ivDt

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! n

2

& '2
! 1! n(1! a)

2

" #2
(vDt)2 1 n 1! n

2

& '
(1! a)ivDt

s

.

(12)
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a 5 1 (Fig. 4c), which renders the curves non-
differentiable at vDt 5 1 2 n/2, is replaced for the cases
a 5 0 (Fig. 4a) and a 5 ½ (Fig. 4b) with a smooth tran-
sition from the small vDt regime to the large vDt regime.
The consequence for the physical mode (A1) is that, for
the case a 5 1 only, jA1j 2 1 changes sign as vDt in-
creases from 0 to 1, corresponding to a transition from
artificial suppression to artificial amplification. The con-
sequence for the computational mode (A2) is that, for the

case a5 1 compared to the casesa 6¼ 1, the suppression is
much less uniform as vDt increases from 0 to 1.
Figure 5 shows an enlarged view of how, as vDt / 0,

the magnitudes of the numerical amplification factors
for the physical mode approach the magnitude of the
exact amplification factor. The limiting value, unity,
appears to be approached much more rapidly for the
case a 5 ½ than for the cases a 5 0 and a 5 1, sug-
gesting a higher numerical accuracy. To confirm this

FIG. 3. Trajectories through the complex plane traced out by various amplification factors for the
oscillation equation, (6), as vDt increases from 0 to 1. The plots compare (a) the exact amplification
factor, given by (13), with (b)–(d) the numerical amplification factors for the modified filtered leapfrog
scheme, given by (12). The filter parameters are (b)a5 0 and n5 0.2, (c)a5 1/2 and n5 0.2, and (d)a5 1 and
n 5 0.2. The case a5 1, shown in (d), corresponds to the standard Robert–Asselin filter. In (b)–(d), solid
lines denote the physical mode (A1) and dashed lines denote the computational mode (A2). The unit
circle, centered at the origin, is drawn in gray for reference.

FIG. 4. Magnitudes of various amplification factors for the oscillation equation, (6), plotted as functions of vDt. The plots compare the
magnitude of the exact amplification factor, given by (13) to be unity, with the magnitudes of the numerical amplification factors for the
modified filtered leapfrog scheme, given by (12). The filter parameters are (a) a5 0, (b) a5 ½, and (c) a5 1, with various values of n in
each case. The case a5 1, shown in (c), corresponds to the standard Robert–Asselin filter. Solid lines denote the physical mode (A1) and
dashed lines denote the computational mode (A2).
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suggestion, we Taylor expand the square root in (12) to
obtain, for the physical mode,

A1(a, n,vDt)5 !
‘

n50
cn(a, n)(ivDt)

n. (14)

The coefficients, cn(a, n), of the terms in the series ex-
pansion are real. The first few are given by

c0 5 1, (15)

c1 5 1, (16)

c2 5
1! n(1! a)

2(1! n/2)
, (17)

c3 5! n(1! a)[1! n(1! a)]

4(1! n/2)2
, and (18)

c4 5! 1! 2n(1! a)1 n3(1! a)3

8(1! n/2)3
. (19)

It follows from (13) and (14) that

A1

(( ((! Aexact

(( ((5 A1

(( ((! 15
1

2
(1! 2c2)(vDt)

2

1
1

8
(!11 4c2 ! 8c31 8c4)(vDt)

41 # # #:

(20)

For the special case a 5 1, which corresponds to the
standard Robert–Asselin filter, the coefficient of the

quadratic term in (20) is negative, yielding jA1j 2 1
; 2(vDt)2 as vDt / 0, in agreement with the
leading-order behavior shown in Fig. 5. Hence, the am-
plitude error per time step varies as (Dt)2 and the am-
plitude error per unit time varies as Dt. Therefore, the
numerical scheme with a 5 1 is first-order accurate for
amplitude errors and unconditionally stable. Alterna-
tively, for the special case a 5 0, the coefficient of
the quadratic term in (20) is positive, yielding jA1j 2 1
; 1(vDt)2 as vDt / 0, also in agreement with the
leading-order behavior shown in Fig. 5. Therefore, the
numerical scheme with a 5 0 is first-order accurate for
amplitude errors and unconditionally unstable.
In contrast, for the special case a 5 ½, the coefficient

of the quadratic term in (20) vanishes and the coeffi-
cient of the quartic term is positive, yielding jA1j 2 1
; 1(vDt)4 as vDt / 0, in agreement with the
leading-order behavior shown in Fig. 5. Hence, the am-
plitude error per time step varies as (Dt)4 and the am-
plitude error per unit time varies as (Dt)3. Therefore, the
numerical scheme with a 5 ½ is third-order accurate for
amplitude errors and unconditionally unstable. In sum-
mary, the filter that conserves the three-time-level mean
gives a numerical scheme that is two orders more accurate
for amplitude errors than the standard Robert–Asselin
filter. The increased accuracymay be exploited, by using it
either to decrease the error for a given time step, or to
increase the time step without increasing the error.
The unconditional instability of the case a 5 ½ may

be avoided by instead choosing a U½, which almost
conserves the three-time-level mean. The resulting filter
is effectively a weighted blend of the third-order filter
with a 5 ½ and the first-order filter with a 5 1, the
weighting of the latter being comparatively tiny. For this
case, the coefficient of the quadratic term in (20) is
negative, but very small, and the coefficient of the
quartic term is positive. The negative quadratic term
dominates for small vDt and the positive quartic term
dominates for larger vDt, in agreement with the be-
havior shown in Fig. 5 for the case a 5 0.53. Therefore,
the numerical scheme with a U½ is conditionally stable.
The finite stable range, for which jA1j # 1, may be es-
timated from (20) by approximating the quartic term (but
not the quadratic term) by its value when a 5 ½, to give

0 # vDt #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 a! 1

2

) *
1! n

2

) *s

, (21)

or, for n $ 1,

0 # vDt #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 a! 1

2

) *s

. (22)

FIG. 5. Magnitudes of various amplification factors for the os-
cillation equation, (6), plotted as functions ofvDt. The curves show
how, as vDt / 0, the magnitudes of the numerical amplification
factors for the physical mode of the modified filtered leapfrog
scheme, given by (12), approach the magnitude of the exact
amplification factor, given by (13) to be unity. The filter parame-
ters are a5 0, a5½, a5 0.53, and a5 1, with n5 0.2 in each case.
The case a 5 1 corresponds to the standard Robert–Asselin filter.
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These approximate formulas for the finite stable range
work well. For example, for the casea5 0.53 and n5 0.2,
(21) gives 0 # vDt # 0.46, which is in good agreement
with Fig. 5.
The numerical scheme with a U½ is strictly only

first-order accurate for amplitude errors. However, it is
clear from Fig. 5 that the error for the case a 5 0.53 is
much smaller than the error of the first-order scheme
with a 5 1. Indeed, the error for the case a 2 ½ $ 1 is
comparable in magnitude to the error of the third-order
scheme with a 5 ½ across much of the finite stable
range. Therefore, for practical purposes, the numerical
scheme with aU½ is as good as third-order accurate for
amplitude errors.
Turning finally to consider phase errors, it follows

from (13) and (14) that

arg(A1)! arg(Aexact)5 arg(A1)! vDt

5 c2 ! c3 !
1

3

) *
(vDt)3 1 # # #:

(23)

For all cases of a and n in the practical range, the co-
efficient of the cubic term in (23) is positive, yielding
arg(A1)2 vDt;1(vDt)3 as vDt/ 0. Hence, the phase
error per time step varies as (Dt)3 and the phase error
per unit time varies as (Dt)2. Therefore, all numerical
schemes in the modified family are second-order accu-
rate for phase errors.
Table 1 summarizes the conservation, stability, and

accuracy properties of the modified filter, when used in
conjunction with the leapfrog scheme, for various values
of a.

4. Summary and discussion

In the decades that have elapsed since the first general
circulation models were developed, there have been
major advances in the Earth observation systems from
which initial conditions are derived, and in techniques

for parameterizing unresolved physical processes. These
advances have helped to improve the fidelity of weather
and climate simulations. However, many general circu-
lation models still use the same Robert–Asselin-filtered
leapfrog time-stepping scheme as when they were first
developed, despite evidence that time stepping appears to
be an important contributor to model error.
This paper proposes a simple modification to the

Robert–Asselin filter. The modified filter displaces the
state at the future time slice as well as the current time
slice. The modification yields a generalized family of
filters, with a parameter controlling the relative sizes of
the two displacements. The standard Robert–Asselin
filter is a special case.
The behavior of the family of modified filters, when

used in conjunction with the leapfrog scheme, is ana-
lyzed. The standard Robert–Asselin filter is shown to
behave qualitatively differently from all other filters in
the family. Each filter reduces the magnitude of the
curvature at the three time slices operated upon, sup-
pressing the computational mode. For the physical
mode, each filter yields second-order accuracy for phase
errors. But only the filter that conserves the three-time-
level mean yields third-order accuracy for amplitude
errors, whereas all other filters in the family (including
the standard Robert–Asselin filter) yield only first-order
accuracy. The filter that conserves the three-time-level
mean yields an unconditionally unstable scheme, but
conditional stability is recovered by adding a tiny amount
of the standard Robert–Asselin filter, to yield a scheme
that is as good as third-order accurate.
The modified filter proposed in this paper could im-

prove weather and climate models. For example, it may
permit the use of longer time steps with no loss of ac-
curacy, reducing the computational expense of a given
simulation. Alternatively, if the time step cannot be
lengthened because it is constrained more strongly by
other conditions (e.g., the CFL criterion) than by ac-
curacy requirements, then the modified filter may per-
mit an increase in accuracy at almost no additional
computational expense. The modified filter would be
extremely easy to implement in an existing computer
model: the Robert–Asselin-filtered leapfrog routine
could be upgraded by changing only a few lines of code.
There may be a slight increase in the computational
expense—the standard scheme is a two-stage method
and the modified scheme is a three-stage method—but
no extra function evaluations are required.
There are alternative methods for controlling the

computational mode of the leapfrog scheme, which do
not involve the application of a time filter. Kurihara
(1965) proposed the leapfrog–trapezoidal method, which
consists of obtaining a provisional value by applying a

TABLE 1. Summary of the conservation, stability, and accuracy
properties of the modified filter proposed in this paper, when used
in conjunction with the leapfrog scheme. The case a 5 1 corre-
sponds to the standard Robert–Asselin filter.

a

Conserves
three-time-level

mean? Stability

Order of accuracy

Amplitude Phase

0 No Unconditionally
unstable

1 2

½ Yes Unconditionally
unstable

3 2

U½ Almost Conditionally stable ’3 2
1 No Unconditionally

stable
1 2
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leapfrog predictor and then improving it by recursively
applying a corrector. Being a predictor–corrector
method, however, this scheme is iterative and poten-
tially computationally demanding. Magazenkov (1980)
proposed the alternate application, from one time step
to the next, of a leapfrog step and a second-order
Adams–Bashforth step. The need to execute a different
algorithm at even- and odd-numbered time steps is
cumbersome, however. In contrast, the modified filtered
leapfrog scheme proposed in this paper is noniterative
and nonalternating, yet still suppresses the computa-
tional mode and achieves third-order numerical accur-
acy for amplitude errors.
Déqué and Cariolle (1986) have shown that, despite

the demonstrated ability of the standard Robert–Asselin
filter to stabilize numerical solutions to atmospheric
motion equations for certain combinations of temporal
differencing and physical processes, in some other cases
even a very weak filter may lead to an instability that
can only be suppressed by a severe reduction of the time
step. It remains to be seen whether the modified filter
proposed in this paper also exhibits this unexpected
behavior. Finally, it is possible that the modified filter
could also improve the Robert–Asselin-filtered Adams–
Bashforth schemes (e.g., Tandon 1987), but the explo-
ration of this possibility is left for future work.

Acknowledgments. The author is funded through a
Fellowship from the U.K. Natural Environment Re-
search Council (NE/D009138/1). This study was sup-
ported in part by the National Science Foundation
(PHY05-51164) and by a travel grant from the Royal
Astronomical Society. The suggestions of two anony-
mous reviewers are gratefully acknowledged. The car-
bon footprint of this study—due to international air
travel and office power consumption—is estimated by
the author to be 3100 kg of CO2.

REFERENCES

Asselin, R., 1972: Frequency filter for time integrations.Mon.Wea.
Rev., 100, 487–490.

Bartello, P., 2002: A comparison of time discretization schemes for
two-timescale problems in geophysical fluid dynamics.
J. Comput. Phys., 179, 268–285.

Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian
regional climate model: The Canadian RCM.Mon.Wea. Rev.,
127, 341–362.

Cordero, E., and A. Staniforth, 2004: A problem with the
Robert–Asselin time filter for three-time-level semi-implicit

semi-Lagrangian discretizations. Mon. Wea. Rev., 132, 600–
610.
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Staniforth, A., 1997: André Robert (1929–1993): His pioneering
contributions to numerical modeling. Numerical Methods in
Atmospheric and Oceanic Modelling: The André J. Robert
Memorial Volume,C. A. Lin, R. Laprise, and H. Ritchie, Eds.,
NRC Research Press, 25–54.

Tandon, M., 1987: Robert’s recursive frequency filter: A re-
examination. Meteor. Atmos. Phys., 37, 48–59.

Williams, P. D., T. W. N. Haine, P. L. Read, S. R. Lewis, and
Y. H. Yamazaki, 2009: QUAGMIRE v1.3: A quasi-geostrophic
model for investigating rotating fluids experiments. Geosci.
Model Dev., 2, 13–32.

2546 MONTHLY WEATHER REV IEW VOLUME 137


