
ch2-4FilteringApprox.docCreated on August 22, 2006 3:48 PM 1 

Chapter 2.  The continuous equations  
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2. 4 Filtering approximations 
 
When we neglect the time derivative of one of the equations 
of motion, we convert it from a prognostic equation into a 
diagnostic equation, and eliminate one type of solution.  
 
Physically, we eliminate a restoring force that supports a 
certain type of wave.  
 
We call this a “filtering approximation”.  
 
Use of the quasi-geostrophic filtering approximation that 
eliminates both sound and gravity waves made possible the 
successful forecast of Charney et al (1950).  
 
Currently most global models and some regional models use 
the hydrostatic approximation, which filters sound waves. 
Eventually most models will avoid this approximation, not 
valid when horizontal scales are short. 
 
In this section we explore the effect of the filtering 
approximations.   
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2.4.1 Quasi-geostrophic approximation: 
 
With rotation, if we assume steady state solutions, and 
neglect all time derivatives (ν=0), we obtain from (3.19) the 
geostrophic mode, a non-trivial solution: 
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For the continuous perturbation equations (3.17) 
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this implies: 
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Cs  (pressure perturbations are proportional 

to density perturbations multiplied by the speed of sound 
squared. This is true whenever the hydrostatic equation is 
valid). 
 
This is the “ultimate” filtering approximation: it filters out 
sound waves, inertia and gravity oscillations.  
 
For large horizontal scales (as the weather waves ~ 
1000km) we have to include the effects of varying vertical 
planetary rotation, and the f-plane becomes a ! -plane: 

0
f f y!= + .  

 
When horizontal advection by the basic flow is included, the 
stationary geostrophic flow solution becomes quasi-
stationary (slowly varying).  
 
The waves corresponding to the geostrophic mode are 
Rossby-type waves with a frequency small compared with 
the Coriolis or inertial frequency 

5 6 1
/ 10 10 secUk k! " # # #$ # #! .  

 
Rossby waves are quasi-geostrophic )( 22 f<<! , 
hydrostatically balanced, and the flow is quasi-horizontal 
( * / * / )w H U L<< , and therefore quasi-nondivergent 
( . 0)

h
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Note that this type of quasi-geostrophic solution, 
fundamental for NWP, is still present in the general 
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equations of motion, and survives as a solution when we 
make either the anelastic or the hydrostatic approximation in 
order to filter out sound waves. 
 
2.4.2 Quasi-Boussinesq or anelastic approximation   (Ogura 
and Phillips, 1962):  
 
We now make the marker β=0 in (3.17)d.  
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other words, the 3D mass divergence is much smaller than 
its horizontal and vertical components. 
 
 
 
With this approximation, the equations become “anelastic”, 
i.e., they do not allow the presence of sound waves, which 
require 3D divergence and convergence for their 
propagation.  
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Consider the terms that are neglected in the FDR: 
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1) )( 2222 kcf s<<!" , i.e., the frequency of retained solutions 
is much smaller than that of sound waves, therefore this 
filters out also the Lamb waves, i.e., horizontally propagating 
sound waves.  
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In other words, the deep anelastic approximation is justified 
for a model for which the potential temperature does not 
change too much within the depth / 10RT g km! ! .  This is 
a reasonable approximation for the standard troposphere 
(not for deep flow into the stratosphere), since for the 
troposphere: 1.0~300/30~/

00
KK!!" . 

For models that are so shallow that not only 0 0
/ 1! !" << , 
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continuity equation, and assume 3
. ' 0! =v , not just 

3
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In this case we treat the atmosphere as if it was an 
incompressible fluid. This approximation is only accurate for 
very shallow atmospheric models (less than 1km depth), but 
very appropriate for ocean models, since water is well 
approximated as an incompressible fluid. 
 
Fig. 2.4.1 shows schematically the FDR when we make the 
anelastic approximation. From (3.17), and letting β=0, we 
can derive the frequency of inertia-gravity waves with this 
approximation: 
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Fig. 2.4.1: Schematic of the frequencies of small perturbations in 
an isothermal resting atmosphere when the quasi-Boussinesq or 
anelastic approximation is made ( 0)! = .  
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From (1.2) we see that, for internal (n2>0) inertia gravity 
waves, 

2 2 2f N!< < , the frequency ! is between the 
Coriolis and Brunt-Vaisala frequencies.  
 
 
 
Note from Fig. 2.4.1 that for these waves, 

0/,0/
2222
<!!>!! nbutk "" .  This implies (since 

we can assume without loss of generality that k>0), that the 
horizontal group velocity for gravity waves k!! /"  has the 
same sign as the phase velocity (gravity waves energy 
moves in the same direction as the phase speed in the 
horizontal). In the vertical the opposite is true: if the group 
velocity is upwards, which happens for example when 
gravity waves are generated by mountain forcing, the phase 
velocity is downwards. 
 
Because the anelastic equation filters out acoustic internal 
waves (as well as the Lamb wave) it is widely used for 
problems in which the hydrostatic approximation cannot be 
made, as is the case for convection. For example, the ARPS 
model is based on deep anelastic equations.  
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2.4.3 Hydrostatic approximation 
 

If we neglect the vertical acceleration tw !! /*  in the 
vertical momentum equation (3.17)c 
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This FDR has two solutions, the horizontally propagating 
external sound wave (Lamb wave) solution, which 
unfortunately is retained: 
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Exercise: derive (1.5) from (1.4). 
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Fig. 2.4.2 shows the relationship between frequency, and 
horizontal and vertical wave numbers with the hydrostatic 
equation. 
 
When are we justified in making the hydrostatic 
approximation? By taking α=0, we neglected the vertical 
acceleration compared to ρ’/ρ0g, the buoyancy within the 
fluid.  
 
Note that it is not enough to find dw/dt <<g to make the 
hydrostatic approximation: the vertical acceleration is small 
compared to gravity even for strong vertical motions, as in a 
cumulus cloud.  
 
It can be shown by scale analysis that the hydrostatic 
approximation is valid as long as we are dealing with shallow 
flow (H/L<<1) (exercise). For quasi-geostrophic flow, the 
condition for hydrostatic balance is valid even if H/L~1 
(homework).   
 
This implies that the hydrostatic approximation is very 
accurate for models with grid sizes of the order of 100km or 
larger, and still quite acceptable for quasi-geostrophic flow, 
even when the horizontal grid size of the model approaches 
10km.  
 
However, the hydrostatic equation is not valid for models 
with grid sizes of the order of 10 km or less that attempt to 
resolve explicitly cumulus convection. Fig. 2.4.2 shows that 
for high frequencies N! ! or larger, or small horizontal 
scales the hydrostatic approximation distorts the original 
FDR (compare with Fig. 2.3.3). 
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We now summarize in Table 2.1 the characteristics of the 
different types of waves and the approximations that can be 
used to filter them out. (adapted from Zhang, pers. comm., 
1996) 
 
Type of 
wave 
(typical 
amplitude) 

Phase speed Restoring 
force 

Filtering 
approximatio
ns 

Acoustic 
(less than 
0.1hPa, 
noise level) 

RT!  
(330m/sec) 

Compression Hydrostatic 
Anelastic 
Quasi-
geostrophic 

External 
gravity 
(if initial 
conditions 
are not 
balanced, 
10hPa) 

gH  
(320m/sec for 
H=10km) 

Gravity No free 
surface at the 
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bottom, or no 
net column 
mass 
convergence 

Internal 
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(0.1-1hPa) 

2 2
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speed~ 
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Variation of f 
with latitude 
( ! effect) 
d

v
dt

!
"= #  

Constant f 
( 0)! =  

  


