
ch2-6-VerticalCoords.docCreated on August 23, 2006 1:35 PM 1 

Chapter 2.  The continuous equations  
 
2.6 Primitive equations and vertical coordinates 
 
As Charney (1951) foresaw, most NWP modelers went back 
to using the primitive equations, with the hydrostatic 
approximation, but without QG filtering, since it is only 

accurate to the order of the Rossby number 
 

! =
U

fL
! 0.1  in 

mid latitudes and much larger near the Equator.  
 
Quasi-geostrophic models are now reserved for simple 
problems where the main motivation is the understanding of 
atmospheric or ocean dynamics.  
 
So far we have used z as the vertical coordinate. When we 
make the hydrostatic approximation, as in the primitive 
equations, the use of pressure vertical coordinates becomes 
very advantageous.  
 
We can also use any arbitrary variable ( , , , )x y z t!  as 
vertical coordinate as long as it is a monotonic function of z 
(Kasahara, 1974).  
 
The most commonly used vertical coordinates are height z, 
pressure p, a normalized pressure σ (Phillips, 1957), 
potential temperature θ (Eliassen, 1949), and several kinds 
of hybrid coordinates (e.g., Simmons and Burridge, 1981, 
Johnson et al, 1993, Purser, pers. comm., Bleck and 
Benjamin (1993). 
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2.6.1 General vertical coordinates 
When we transform the vertical coordinate, then a variable 
( , , , )A x y z t  becomes ( , , ( , , , ), )A x y x y z t t! .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The horizontal coordinates and time remain the same.  
Let s represent x, y, or t. Let D be the value of A at point D.   
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Replacing (6.2) in (6.1), we get 
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From this relationship (for s=x,y) we can get an expression 
for the horizontal gradient of a scalar A in !  coordinates:  
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and for the horizontal divergence of a vector B: 
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The total derivative of ( , , , )A x y t! is given by 
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The horizontal pressure gradient is therefore 
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which becomes, using the hydrostatic equation 
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In summary the horizontal momentum equations become:  
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The continuity equation can be derived from the 
conservation of mass for an infinitesimal parcel: the 
hydrostatic equation indicates that the mass of a parcel per 
unit area is proportional to the increase in pressure from the 
top to the bottom of the parcel (Fig. 2.6.1b): 
 

!M = "!x!y!z = !x!y
!p

g
      (6.11) 

 
 
 
 
 
 
 
 
 
 
Fig. 2.6.1b: Schematic of a parcel of air in a hydrostatic 
system, where Δp is proportional to the change in mass per 
unit area. 
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The thermodynamic equation is as before  
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The kinematic lower boundary condition is that the surface of 
the earth is a material surface: the flow can only be parallel 
to it, not normal. This means that once a parcel touches the 
surface it is “stuck” to it. This can be expressed as 
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This kinematic BC is well defined although in practice it may 
not be accurate, as for example, when there is subgrid-scale 
orography.  
 
At the top, unfortunately, the BC is not so well defined: As 
z→∞, p→0, but in general there is no satisfactory way to 
express this condition for a finite vertical resolution model.  
 
 
 
Most models assume a simple condition of a “rigid top” (i.e., 
making the top surface a material surface) 

T
at

dt

d
!!

!
== 0       (6.15) 

 
but this is an artificial boundary condition that introduces 
spurious effects. For example, Kalnay and Toth (1996) 
showed that a rigid top introduces artificial “upside-down” 
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baroclinic instabilities in the NCEP global model, and similar 
observations were made by Hartmann et al  (1997) with the 
ECMWF model.   
 
 
If the top of the model is sufficiently high, and there is 
enough vertical resolution, the upward moving perturbations 
get damped in the model (as they do in nature), and the 
spurious interaction with the artificial top may remain small.  
 
 
Alternatively, radiation conditions enforcing the condition that 
energy can only propagate upwards can be used, but they 
are not simple to implement. 
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2.6.2 Pressure coordinates 
 
This coordinate is a natural choice for a hydrostatic 
atmosphere (Eliassen, 1949).  It greatly simplifies the 
equations of motion: the horizontal pressure gradient 
becomes irrotational, and the continuity equation becomes 
simply zero 3-dimensional divergence, a diagnostic linear 
equation. As a result the geostrophic wind relationship is 

also simpler: 
1
xg

f
!= "v k  

 
 
 
For this reason, rawinsonde measurements have been made 
in pressure coordinates since the early 1950’s. 
 

In pressure coordinates, 1!
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velocity in pressure coordinates is 
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=! . The primitive 
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and the thermodynamic equation (6.13) is unchanged. 
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The geostrophic and thermal wind relationships are 
especially simple in pressure coordinates: 
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On the other hand, the bottom boundary condition is not 
simple in pressure coordinates because the pressure 
surfaces intersect the surface:  
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This requires knowing the rate of change of s
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This complication of the surface boundary condition in 
pressure coordinates led Phillips (1957) to the invention of 
sigma coordinates (next subsection). 
 
Instead of the horizontal momentum equations, we can use 
the prognostic equations for the vorticity ζ and divergence δ, 
obtained by applying the operators . x!k and .!  to the 
momentum equations.  In pressure coordinates these 
equations are 
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2.6.3 Sigma and eta coordinates 
 
Because of the complication of the bottom BC, Phillips 
(1957) introduced “normalized pressure” or “sigma” 
coordinates, where /

s
p p! =  and ( , , )

s
p x y t is the surface 

pressure. These are by far the most widely used vertical 
coordinates. At the surface, 1! = , and at 0, 0p != = , so 
that the top and bottom BC are .0=!!  More generally, 
allowing for a top at a finite pressure constTp = ,  
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The continuity equation is 
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The surface pressure tendency equation is (homework, 
derive (6.25) and (6.26)): 
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Substituting back into the continuity equation, one can 
determine diagnostically !!  from the horizontal wind field v . 
 
Despite their popularity, sigma coordinates have a serious 
disadvantage: the pressure gradient becomes the difference 
between two terms which over orography are large and of 
opposite sign: 
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d
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In order to reduce the noisiness introduced by orography 
due to this effect, Mesinger (1984) introduced a step-
mountain coordinate denoted “eta” (used in the Eta model at 
NCEP, e.g., Mesinger et al, 1988, Janjic, 1990, Black, 1994): 
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The first factor is the standard sigma coordinate, the second 
is a scaled standard value of the pressure over orography. 
Mountains are defined as boxes, whose tops have to 
coincide with a model eta level (Fig. 2.6.2). As a result, the 
pressure surfaces are almost horizontal, and the pressure 
gradient is computed accurately. At NCEP, the Eta model 
has proven to be very skillful especially in predicting storms. 
 
Recently it has been replaced by the non-hydrostatic 
Weather and Forecast Model (NCEP version).  
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2.6.4 Isentropic coordinates 
 
The fact that under adiabatic motion, potential temperature is 
individually conserved suggested long ago that it could be 
used as a vertical coordinate. The main advantage, which 
makes it an almost ideal coordinate, is that “vertical” motion 
!!  is approximately zero in these coordinates (except for 
diabatic heating). This reduces finite difference errors in 
areas such as fronts, where pressure or z-coordinates tend 
to have large errors associate with poorly resolved vertical 
motion.  
 
Hydrostatic equation: from the definition of potential 
temperature, and using the hydrostatic and state equations, 
we get  
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If we define the Exner function pCR
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The horizontal pressure gradient becomes very simple, so 
that the momentum equation is  
d
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The continuity equation is 
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The potential vorticity is conserved for adiabatic, frictionless 
flow (Ertel’s theorem). This general property can be posed in 
its simplest formulation in isentropic coordinates: 
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similar to the shallow water equations potential vorticity.  
 
Although the isentropic coordinates have many advantages, 
they have also two main disadvantages: The first is that 
isentropic surfaces intersect the ground (as do other vertical 
coordinates except for sigma-type coordinates). In practice 
this implies that it is difficult to enforce strict conservation of 
mass, and this is important for long (climate) integrations.  
For this reason, hybrid sigma-theta coordinates have been 
used (e.g., Johnson et al, 1993). Other approaches have 
been those of Bleck and Benjamin (1993) for the operational 
RUC/MAPS model, and that of Arakawa and Konor (1996).   
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The second disadvantage is that only statically stable 
solutions are allowed, since the vertical coordinate has to 
vary monotonically with height. There are situations, e.g., 
over hot surfaces, where this is not true even at a grid-scale. 
Moreover, in regions of low static stability, the vertical 
resolution of isentropic coordinates can be low. 
 
 
 
 
 


