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3.2 Initial value problems: numerical solution – Finite 
differences - Truncation errors, consistency, stability 
and convergence – Criteria for computational stability –
Explicit and implicit time schemes –Table of time 
schemes 
 
Hyperbolic and parabolic PDEs are initial value (IV) or 
marching problems: The solution is obtained by using the 
known initial values and marching or advancing in time.  
 
If boundary values are necessary, they are called “mixed 
initial-boundary value problems”.  
 
Again, the simplest prototypes of these IV problems are: 
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wave or advection (hyperbolic) equation, with solution  
 
( , ) ( ,0)u x t u x ct= ! , showing that the information moves 

along the characteristics x-ct=const,  
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the diffusion equation, a parabolic equation. 
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Finite difference method:  
 
We take discrete values for x and t: xj=jΔx, tn=nΔt.  
 
The solution of the finite difference equation is also defined 
at the discrete points (jΔx, nΔt): U U j x n tj

n
= ( , )! ! .  

 
We will use small u to denote the solution of the PDE 
(continuous) and capital U to denote the solution of the Finite 
Difference Equation (FDE), a discrete solution. 
 

Consider again the advection equation 
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Suppose that we choose to approximate this PDE with the 
following FDE (called “upstream scheme”): 
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   (2.3) 

 
Note that both differences are non-centered with respect to 
the point (jΔx, nΔt). 
 
We should now ask two fundamental questions: 
 
1) Is this FDE consistent with the PDE? 
 
2) For any given time t>0, will the solution U of the FDE 
converge to u as Δx→0, Δt→0? 
 
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch3_2_1FiniteDifferences.docCreated on September 26, 2007 9:05 AM 

3 

Let’s clarify the questions:  
 
1) We say that the FDE is consistent with PDE if, in the 
limit when Δx→0, Δt→0 the FDE coincides with the PDE.  
 
Obviously, this is a first requirement that the FDE should 
fulfill if its solutions are going to be good approximations of 
the solutions of the PDE.  
 
The difference between the PDE and the FDE is the 
discretization error or local (in space and time) truncation 
error.  
 
Consistency is rather simple to verify:  
 
Substitute U by u in the FDE, and evaluate all terms using a 
Taylor series expansion centered on the point (j,n), and then 
subtract the PDE from the FDE. 
 
If the difference (or local truncation error ! ) goes to zero as 
Δx→0, Δt→0, then the FDE is consistent with the PDE. 
 
Example: We verify the consistency of  
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+ c
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= 0  

 
by performing a Taylor series expansion around the point xj, 
tn: 
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Replace in the FDE 
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 the Taylor series (2.1) 
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When we subtract the PDE  
 
(u

t
+ cu

x
)
j

n
= 0  

 
we get the (local) truncation error 
 

higher order terms 0( ) 0( )
2 2

tt xx

t x
u cu t x!

" "
= # + = " + "

  (2.3)   
 

So that 
0, 0

lim 0
t x

!
" # " #

# .  

 
Therefore the FDE is consistent.  
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Note that both the time and the space truncation errors are 
of first order, because the finite differences are uncentered in 
both space and in time (not centered around around xj, tn).  
 
Truncation errors for centered differences are second order, 
and therefore centered differences are more accurate than 
uncentered differences.  
 
See schematic Fig. 3.2a and the leapfrog scheme, based on 
centered differences in space and in time, later in this 
section.  
 
Fig. 3.2a: Schematic of centered 1 1( / ) ( ) /(2 )

n n n
u t u u t

+ !
" " # ! $ , 

forward 1( / ) ( ) /
n n n

u t u u t
+

! ! " # $  and backward 
1( / ) ( ) /

n n n
u t u u t

!
" " # ! $  finite differences estimating the time 

derivative /u t! !  at time n
t n t= ! . The three estimates are 

consistent with /u t! ! since they all converge to /u t! !  as 
0t! " . However, the slope calculated from centered 

differences is much closer to the exact derivative because its 
truncation errors are second order.  

exact  

centered  

u(t)  

t  n n-1 n+1 

backward  

forward  
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The second question, convergence, i.e., whether 
U j x n t u x t( , ) ( , )! ! "  
 when j x x n t t x t! ! ! !" " " ", , ,0 0   
 
is of evident practical importance, but can only be answered 
after considering another problem, that of computational 
stability.  
 

Consider again the advection equation 
!

!
= "

!

!

u

t
c
u

x
, which 

has the solution ( , ) ( ,0)u x t u x ct= ! , shown 
schematically in Fig. 3.2b (the initial shape of u translates 
with velocity c).  
 
Fig. 3.2b: Schematic of the solution of the wave equation 
moving along the characteristic 
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The upstream FDE  
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can be written as 
 

1

1(1 )n n n

j j jU U Uµ µ+

!
= ! +      (2.4) 

    
 

where 

c t

x
µ

!
=

!  is the Courant number. 
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Assume that 0 < µ =
c!t

!x
< 1 ,  as in Fig. 3.3a.  

 
 
 
 
 
 
 
 
 
 
 

Then 
1

1(1 )n n n

j j jU U Uµ µ+

!
= ! +  shows that  the FDE 

solution at the new time level Uj
n+1 is interpolated between 

the values Uj
n and Uj-1

n  (where the stars are).  
 
 
In this case the advection scheme works the way it should, 
because we know the true solution is in between those 
values (moving along the characteristic).  
 

However, if this condition is not satisfied, and µ = >
c t

x

!

!
1  

(as in Fig. 3.3b) or if  
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µ = <
c t

x

!

!
0  (as in Fig. 3.3c),  

 
 
 
 
 
 
 
then the value of Uj

n+1 is extrapolated from the values Uj
n and 

Uj-1
n.   

 
 
The problem with extrapolation is that the maximum absolute 
value of the solution Uj

n increases with each time step.  
 
Taking absolute values of  

1

1(1 )n n n

j j jU U Uµ µ+

!
= ! +   

 

and lettingU U
n

j j

n
= max | | , we get 
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11 µ µ ,   so that 
 
U U
n n+

! " +
1 1{| | | |}µ µ  
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 if and only if 0 1! !µ . 
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If the condition 0 1! !µ  is not satisfied, then the solution is 
not bounded and it grows with n.  
 
If we let ! !t x, " 0  with µ=const, it only makes things 
worse, because then n!" .  
 
In practice, if the condition 0 1! !µ  is not satisfied, the FDE 
“blows up” in a few time steps, faster for nonlinear problems.   
 
We define now computational stability: we say that an FDE 
is computationally stable if the solution of the FDE at a fixed 
time t=nΔt remains bounded as Δt→0. 
 
We can now state the fundamental Lax-Richtmyer 
theorem: “Given a properly posed linear initial value 
problem, and a finite difference scheme that satisfies the 
consistency condition, then the stability of the FDE is the 
necessary and sufficient condition for convergence”. 
 
The theorem is useful because it allows us to establish 
convergence by examining separately the easier questions 
of consistency and stability.  
 
We are interested in convergence not because we want to 
let ! !t x, " 0 , but because we want to make sure that if 
! !t x,  are small, then the errors u j x n t U j

n( , )! ! "  
(accumulated or global truncation errors at a finite time) 
are acceptably small. 
 
To determine the necessary condition for stability of the FDE 
(2) we used the “criterion of the maximum” method.  
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We can also use the “criterion of the maximum”  to study the 
stability condition of the following FDE which approximates 
the parabolic diffusion equation 
!
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     (2.5) 

 
 
The verification of consistency is immediate. Note that, 
because the differences are centered in space but forward in 
time, the truncation error is first order in space and second 

order in time 
2( ) ( )O t O x! + ! . 

 
We can write (2.5) as  
 
U

j

n+1
= µU

j+1

n
+ (1! 2µ)U

j

n
+ µU

j!1
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where µ !=
"

"

t

x
2 .  

 
If we take absolute values, and let U U

n

j j

n
= max | | , we get 

 

  U
n+1

!{| µ | + |1" 2µ | + | µ |}U n

    (2.6) 
 
If all the terms inside the absolute values are positive, we 

can drop them, and get   U
n+1

!U
n . 
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So we obtain a condition 0 1 2! !µ / to insure that the 
solution remains bounded as n→∞, i.e., as the necessary 
condition for stability of the FDE. 
 
Exercise 2: The condition on the wave equation 0 1! !µ  for 
the upstream FDE is interpreted as “the time step should be 
chosen so that a signal cannot travel more than one grid size 
in one time step.” Give a physical interpretation of the 
stability condition and the equivalent “Courant number” 

µ != "
#

#

t

x
2
1 2/  for the diffusion equation. 

 
Unfortunately, the criterion of the maximum, which is 
intuitively very clear, can only be applied in very few cases.  
 
In most FDE some coefficients of the equations analogous to 
(2.6) are negative, and the criterion cannot be applied. 
 
Another stability criterion that has much wider application is 
the von Neumann stability criterion:  
 
Assume that the boundary conditions allow expansion of the 
solution of the FDE in an appropriate set of eigenfunctions.  
 
For simplicity we will assume an expansion into Fourier 
series (e.g., periodic BC): 
 

( , ) i
U x t Z e=!

k x

k

k

i

   (2.7) 

The space variable, x, and the wave number k can be 
multidimensional, e.g., 1 2 3( , , )x x x=x , 1 2 3( , , )k k k=k . The 
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dependent variable U can also be a vector for a system of 
equations. 
 

Let j
x j x= !  (or 1 1 2 2 3 3( , , )

j
j x j x j x= ! ! !x ).  

 
We define  p  as the discrete wave number for the finite 

differences space:  
  
p = k!x =

2"!x

L
.  

 p  is non-dimensional and varies between zero (for infinitely 
long waves) and ! (for the shortest wave   L = 2!x ) 
 
For multidimensional problems,    p = (k

1
!x

1
,k

2
!x

2
,k

3
!x

3
) .  

 
Let t n t

n
= ! . 

 
Then the Fourier expansion is 
 
U Z ej

n

p

n ipj

p

=!      (2.8) 

 
(where for multiple dimensions 1 1 2 2 3 3

p j p j p j= + +p ji ). 
 
When we substitute this Fourier expansion into a linear FDE, 
we obtain a system of equations for each wavenumber p 
 
Z G Zp

n

p p

n+
=

1

 
 
Gp is an “amplification matrix” that, when applied to the p 
Fourier component of the solution at time nΔt  “advances“ it 
to the time (n+1)Δt.  
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Gp  depends on p, Δt and Δx.   
 
If we know the initial conditions 
 
U Z ej p

ipj

p

0 0
=!      (2.9), 

then the solution of the FDE is  
 
Zp

n
= (Gp )

n
Zp

0

     (2.10). 
 
since we can plug it back into 
 

U
j

n
= Z

p

n
e
ipj

p

! and compute the solution. 

 
Therefore, stability, i.e., boundedness of the solution for any 
permissible initial condition at any fixed time, is guaranteed if 

the matrix Gp( )
n

 is bounded for all p when Δt→0 and n→∞.   
 
 

So, for some norm, we must have Gp( )
n

< M  for all p, as 

n→∞.  
 
 

If ! Gp( ) = maxi "i  is the spectral radius of G, i.e., the 
maximum eigenvalue of G, then it can be shown that for any 
norm, 
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! Gp( )"
#

$
%
n

& Gp
"# $%

n

& Gp

n

    (2.11) 
 
 
 
Then a necessary condition for stability of an FDE, and 
therefore a necessary condition for convergence, is that 
 

CONST

0,
lim [ ( )] finiten

t n t t

G e!
" # " #

= =
 (2.12) 

 
Then 
 
 

  
! (G) " ! (G)n#

$
%
&

1/ n

" e

CONST

n = e

CONST 't

t ( 1+
CONST 't

t

 
 
Or  
 
! ( ) ( )G O t" +1 #     (2.13),  
 
 
So, the von Neumann necessary condition for computational 
stability states that the maximum eigenvalue of the 

amplification matrix should be !max " 1+O(#t) . 
 
Note: The term O(Δt) allows bounded growth with time if this 
growth is “legitimate”, i.e., if it arises from a physical 
instability present in the PDE. If the exact solution grows with 
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time, then the FDE cannot both satisfy  ! (G) " 1  and be 
consistent with the PDE. However, in practice we just check 

that !max " 1 . 
 
Note: Sufficient conditions are very complicated, and are 
known only for special cases. In practice it is generally 
observed that eliminating the equal sign in (2.13) is enough 
to ensure computational stability. 
 
Note: In principle this method can also be used to study the 
stability of the boundary conditions, if they are appropriately 
included in the amplification matrix. In practice this is 
complicated, and computational stability of the BC is usually 
obtained by ensuring well-posedness, and testing the 
stability experimentally.  
 
For simple canonical equations the von Neumann criterion 
can be simplified by assuming solutions with an 

amplification factor !p  rather than a matrix.  
 

The solution for the amplification factor !p  then coincides 
with the eigenvalues of the amplification matrix, and the von 
Neumann stability criterion is ! " 1 . 
 
 
Example of von Neumann’s stability criterion:  

PDE: 
!

!

!

!

u

t
c
u

x
+ = 0  

 

FDE: 
U U

t
c
U U

x

j

n

j

n

j

n

j

n+

!
!

+
!

=

1

1

0
" "

    (upstream scheme)  
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We studied already the consistency, and used the criterion 
of the maximum to get a sufficient condition for stability.  
Let’s apply now the von Neumann criterion: 
 

Assume 
Uj

n
= Zp

n
e
ipj

p

! = A "p( )
n

e
ipj

p

!  

 
We replace in the FDE, cancel out the common factor  
Ae

ipj
 and obtain 

 

 
  

!
p( )

n+1

" !
p( )

n

#t
+ c

!
p( )

n

(1" e
" ip )

#x
= 0,   for all p   

 
so that at every step the solution gets amplified by a factor 
!
p
= 1" µ(1" e" ip )#$ %&  

The amplification factor !p  is the 1x1 amplification matrix 

G , so !p = " (G) , and the stability condition is !p
" 1  

for all wave numbers p.   
 
We need to estimate the maximum value of the spectral 
radius (or amplification factor in this case): 
  
!
p
= 1" µ(1" e" ip ) = 1" µ(1" cos p + i sin p)  or 

 

!
p

2

= (1" µ(1" cos p))2 + µ2
sin

2
p     
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We make use of the trigonometrical relationships 

cos cos sin , sin sin cosp
p p

p
p p

= ! =
2 2

2 2
2

2 2      

and obtain  

!
p

2

= 1" 4µ(1" µ)sin2
p

2    

 
 
Recall that the non-dimensional wavenumber  p  varies 
between zero (for infinitely long waves) and ! (for the 
shortest wave   L = 2!x ). The maximum value of 

sin
2
p

2
= 1 is for  p = !  (  L = 2!x ).  

 
µ µ( )1! , is a parabola whose maximum value is 0.25 
when µ=0.5. So the amplification factor squared will remain 
less or equal to 1 as long as 0≤µ≤1.  
 
This coincides with the condition we obtained from the 
criterion of the maximum (and also with the notion that we 
should not extrapolate but interpolate the new values at time 
level t=(n+1)Δt, cf. schematic Fig. 3.3). 
 

It is important to note that the amplification factor !p  
indicates how much the amplitude of each wavenumber p 
will decrease or increase with each time step. The upstream 
scheme decreases the amplitude of all Fourier wave 

components of the solution, since, if 0<µ<1, !p <1.   
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This is therefore a very dissipative FDE: it has strong 
“numerical diffusion.” Fig. 3.4 shows the decrease in 
amplitude when using the upstream scheme after one time 
step and after 100 time steps for each wavenumber p , using 
a Courant number µ=0.5, a reasonable practical choice.  
 
Since its truncation errors are large (of first order), the 
upstream is in general not recommended except for special 
situations (e.g., for outflow boundary conditions, or when 
modified in such a way that the dissipation rate becomes 
lower). 
 
An alternative, less damping scheme known as Matsuno or 
Euler-backward, frequently used in combination with the 
Leap-Frog scheme is also shown. (Note that a “downstream” 
scheme (Fig. 3.3c) is unstable). 
 
Matsuno scheme (a.k.a. Euler-backward), a predictor-
corrector scheme: 
 
U

j

*
!U

j

n

"t
+ c

U
j+1

n
!U

j!1

n

2"x
= 0   predictor step (forward-centered) 

 
U

j

n+1
!U

j

n

"t
+ c

U
j+1

*
!U

j!1

*

2"x
= 0  corrector step 

 

Exercise: calculate the amplification factor !p
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Fig. 3.4: Amplification factor of wave components of the 
wave equation using either the “upstream” FDE, and the 
Matsuno or Euler-backward schemes with µ=0.5. L is the 
wavelength in units of x! . 
 
  
 
 
 
 


