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Example 2: Leap-frog scheme for the wave equation. 
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This is the most popular of all schemes used for hyperbolic 
equations: centered in space, centered in time. It requires 
one computation of the time derivative per time step 
(compared to 4 computations for Runge Kutta). 
 
It is easy to see that the Leap-frog scheme is consistent, and 
the local truncation error is of second order in space and 
time (exercise). 
 
Stability: We use the von Neumann criterion, with an 

amplification factor !
p

n

:    
 

Assume Uj

n
= Zp

n
e
ipj

p

! = A"p

n
e
ipj

p

!  

Replace in the FDE 
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p

n+1 " !
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2#t
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ip " e" ip )
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from which we get a quadratic equation for !p  
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!
p

2
+ 2iµ sin p!

p
"1 = 0       

 
Because we have three, not two, time levels ρn+1 , ρn and ρn-1 
we have two solutions for the amplification factor ρ: 
 

!
p
= ("iµ sin p) ± ("µ2

sin
2
p +1)      

 
 
Since the last term in the quadratic equation is –1, and this is 
the product of the roots, the term inside the root 
( sin )! +µ 2 2 1p  must be real, since otherwise the roots 
would be purely imaginary, and one of them would be larger 
than one, which violates the stability criterion. In order for 
(!µ2

(sin p)
2
+1)  to be real for all p, we must have µ2≤1.  

The stability condition for the leap-frog scheme becomes 
 
1 / 1c t x! " # # "        

 

Question: What is the most unstable p =
2!"x

L
? Which 

wavelength will start blowing up faster? 
 
 
We can actually find the exact solution of the Leap Frog FDE 

as well as of the PDE. Recall that the PDE 
!

!

!

!

u

t
c
u

x
+ = 0 has 

plane wave solutions of the form 
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u = A
k
e

ik ( x!ct )

k

" = A
k
e

i(kx!# t )

k

" , since the exact solution 

is of the form u(x,t)=u(x-ct,0).  
 
 
The Frequency Dispersion Relationship kc! = gives the 
exact frequency of the PDE for every wavenumber k. 
 
 
By analogy we try to find solutions of the FDE of the form 

( )i pj n

pA e
!" , where θ=νΔt represents the computational 

frequency !  multiplied by Δt (the computational frequency 
! is in general different than the exact frequency ! ). 

Replacing ( )i pj n

pA e
!"

 in the FDE 
U U

t
c
U U

x

j

n

j

n

j

n

j

n+ !

+ !
!

+
!

=

1 1

1 1

2 2
0

" "
 

and dividing by ( )i pj n
e

!" , we get  
 
( ) ( )e e e e

i i ip ip! !
! + ! =

" " µ 0  or  
 
sin sin! µ= p   the FDR for the Leap-Frog scheme. 
 
Because sin sin( )! " != # , the two solutions for the finite 
difference FDR are 
 
! µ

! " µ

1

2

=

= #

arcsin( sin )

arcsin( sin )

p

p
    

 
Replacing into the FDR, and assuming that the initial 
amplitude for the wavenumber p is 1, we obtain that the 
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solution of the FDE is a sum of two terms corresponding to 

1
! and 2

!  respectively: 
 
Uj

n
= Ape

i( pj!"n)
+ (1! Ap )e

i( pj+"n)
(!1)

n

  
 
where ! µ= arcsin( sin )p , and ei! = 1  
 
(Shorter derivation: when we assume solutions of the form 

  
!

p
e

i( pj"#n)

, and plug into FDE.  The amplification factor is 
2 2

cos sin sin 1 sin
i

e i i p p
!" ! ! µ µ#

= = # = # ± # , i.e., 
psinsin µ! = , with two solutions as indicated above). 

 
Of the two terms in the solution,  
 
U A e A ej

n

p

i pj n

p

i pj n n
= + ! !

! +( ) ( )( ) ( )" "1 1  
 
the first one is the “legitimate” solution, which approximates 
the PDE solution.  
 
Note that the second term changes sign every time step, and 
it moves in the wrong direction: this unphysical term is called 
“computational mode”. It arises because the leapfrog 
scheme has three time levels, rather than two, giving rise to 
an additional spurious solution.  
 
Although the LF scheme is simple and accurate, its 3-time 
level character gives rise to two problems that need to be 
dealt with: 
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The first is that the LF needs a special initial step to get to 
the first time level U1 from the initial conditions U0, before the 
LF can be started (schematic Fig. 3.5).  This could be done 
in several simple ways: 
 
a) Simply set U1= U0. Since  u u u t

t

1 0
= + +! ... , this 

introduces errors of order O(Δt), and is not recommended. 
 
b) Use for the first time step a forward time scheme 
(exercise 5: show that this scheme is unstable for hyperbolic 
equations). The forward scheme has truncation errors of 
order O(Δt), but since the time step is only used once, its 
contribution to the global error gets multiplied by Δt, so that 
the total error is still of O(Δt)2. For the same reason, the 
computational instability is not a significant problem. 
Alternatively, use an Euler-backwards (Matsuno) scheme for 
the first time step (see Table 1). 
 
c) Use half (or a quarter, eighth, etc.) of the initial time step 
for the forward time step (Fig. 3.5), followed by LF time 
steps. This will halve (or reduce by a quarter, eighth, etc.) 
the error introduced in the unstable first step. 
 
Fig. 3.5 : Schematic of the Leap-Frog scheme with a half 
time step starting step. 
 
 
 
 
 
 
 
 
 

Δt 
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For nonlinear problems, the leap-frog scheme has a 
tendency to increase the amplitude of the computational 
mode with time, separating the space dependence in a 
checkerboard fashion between the even and odd time steps. 
This can be solved by restarting every 50 steps or so, or by 
applying a Robert-Asselin time filter. 
 
 
Robert-Asselin time filter (Robert, 1969, Asselin, 1972): 
 
In order to get rid of the 2Δt computational mode, we would 
like to apply a weak time smoother to the solution 
 
U U U U U

n n n n n
= + ! +

+ !
" ( )1 12  

 
This smoother would reduce the amplitude of different 

frequencies !  by a factor 2(1 4 sin )
2

t!
"

#
$ . The computational 

mode, whose period is 2Δt would be reduced by (1-4α) every 
time step.  
 
However, this smoother would require to keep in memory 
three copies of the field, U

n+1
,U

n
,U

n!1

 in order to compute 
U

n . Robert proposed a clever solution: 
 
After the Leap-Frog scheme is used to obtain the solution at 
t=(n+1)Δt, the time filter is slightly modified: 
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U U U U U
n n n n n
= + ! +

+ !
" ( )1 12     

 
and the smoothed solution Un replaces the solution at time 
n, so that only two copies of the current field have to be 
saved in memory, like in the original Leap-Frog.  
 
 
Because the field at t=(n-1)Δt is replaced by the already 
filtered value, the filter introduces a slight distortion of the 
centered filter (Asselin, 1977). This filter is widely used with 
the Leap-Frog scheme, with α of the order of 1%. 
 
 

Example 3: 
!

!
"
!

!

u

t

u

x
bu= +

2

2       

 
 
This is the heat or diffusion equation with a “source of 
growth“ bu. 
 

FDE: 
U U

t

U U U

x
bU

j

n

j

n

j

n

j
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j

n
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1 1

2

2
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Exercise 8: Show that the amplification factor is  
 

!
"

= # + $ +1
4

1
2

%

%
% %

t

x
b t O t( )      

 

Therefore the stability criterion is still 
!"

"

t

x
2
1 2# / , as we 

obtained with the criterion of the maximum.  
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Exercise 9: Explain physically why the term bΔt does not 
influence the stability criterion. 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4: An implicit scheme 
 

PDE: 
!

!

!

!

u

t
c
u

x
+ = 0  

 
 
 
 
 
 
 
 
FDE: 

  

U
j

n+1
!U

j

n

"t
+ c

(U
j+1

n
!U

j!1

n ) + (U
j+1

n+1
!U

j!1

n+1)

2"x
= 0  

No extrapolation even for very fast c 
 
 
 

tn+1 

tn 

t 

j j+1 
j-1 x 
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Another implicit FDE 

1 1 1 1

1 1 1 1( ) (1 )( )
0

2

n n n n n n n n

j j j j j j j jU U U U U U U U
c

t x

! !
+ + + +

+ + + +
" + " " + " "

+ =
# #

  

 
 
The factor α determines the weight of the “old” time values 
compared to the “new” time values in the RHS of the FDE. 
 
Using the von Neumann method, we replace 

( )n n ipj i pj n

jU A e Ae
!" #

= = . 
 
Note that the scheme is centered in time (if α=1/2) at the 

point
1/ 2

1/ 2

n

jU
+

! . For this reason, we multiply by / 2ip
e
! , and 

obtain the amplification factor: 
 

cos 2 sin
2 2

cos 2 (1 )sin
2 2

p p
i

p p
i

µ!
"

µ !

#
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+ #
        

 

or | |
tan

( ) tan

!
µ "

µ "

2

2 2 2

2 2 2

1 4
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+

+ #
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p        
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This implies that ρ≤1 if α≤0.5, i.e., if the new values are 
given at least as much weight as the old values in computing 
the RHS. In this case there is no restriction on the size 
that Δt can take! This result (absolute stability, independent 
of the Courant number) is typical of implicit time schemes.  
 
In the schematic Fig. 3.6 we show that in an implicit scheme, 
a point at the new time level is influenced by all the values at 
the new level, which avoids extrapolation, and therefore is 
absolutely stable.  
 
Note also that if ! < 05.  (more weight is given to the new 
values than the old ones) the implicit time scheme reduces 
the amplitude of the solution: it is an example of a damping 
scheme. This property is useful to solve some problems 
such as spuriously growing mountain waves in semi-
Lagrangian schemes. 
 
 
Fig. 3.6: Schematic of an implicit scheme. The dot 
represents the value being updated and the stars the values 
that influence it. Note that with the implicit scheme there is 
no extrapolation, and therefore no limit to the size of ! t. 
 
 
 
 
 
 
 
 
 
 

tn+1 

tn 

t 

j j+1 
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In summary, if we consider a marching equation  
dU

dt
F U= ( )      

 
explicit methods such as the forward scheme  
U U

t
F U

n n

n

+
!

=

1

"
( )     

 or the leap-frog scheme 
 
U U

t
F U

n n

n

+ !
!

=

1 1

2"
( )     

 
are either conditionally stable (when there is a condition on 
the Courant number or the equivalent stability number for 
parabolic equations) or absolutely unstable.  
 
A fully implicit scheme  
 
U U

t
F U

n n

n

+

+!
=

1
1

"
( )     

and a centered implicit scheme (Crank-Nicholson)  
 
U U

t
F
U U

n n n n+ +
!

=
+

1 1

2"
( )    

 
are absolutely stable. The latter is centered in space and in 
time, so it also has second order truncation errors, so it is 
quite accurate, and it only has two time levels so it does not 
have a computational mode, so it is an attractive scheme.  
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch3_2_2LeapFrogTable.docCreated on October 3, 2007 8:53 AM 

12 

But, like all implicit schemes, it also has a great 
disadvantage. Since Un+1 appears on the left and on the right 
hand side, the solution for Un+1, unlike explicit schemes, 
requires in general solving a system of equations.  
 
If it involves only tridiagonal systems, this is not an obstacle, 
because there are fast methods to solve them. There are 
also methods, such as fractional steps (with each spatial 
direction solved successively), where one space dimension 
is considered at a time, that allow taking advantage of the 
large time steps allowed by implicit schemes without paying 
a large additional computational cost. (See scheme k in 
Table) 
 
Moreover, we will see in the next section that the possibility 
of using a time step with a Courant number much larger than 
1 in an implicit scheme does not imply that we will obtain 
accurate results economically. The implicit scheme 
maintains stability by slowing down the solutions, so that 
the slower waves do satisfy the CFL condition. For this 
reason implicit schemes are only useful for those modes 
(such as the Lamb wave or vertical sound waves) that are 
very fast but of little meteorological importance (semi-implicit 
schemes, next section). 
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Table 3.1 Time schemes for initial value problems 
dU/dt=F(U) (schemes a-i);  dU/dt=F1(U) +F2(U) (schemes j-
k).  
 

a) )(
2

11
n

nn

UF
t

UU
=

!

"
"+

 Leap-Frog (good for hyperbolic 

equations, unstable for parabolic equations) 
 

a') )(
2

11
n

nn

UF
t

UU
=

!

"
"+

; )2( 11 !+
+!"+=

nnnnn
UUUUU  

Leap-Frog smoothed with the Robert-Asselin 
time filter; α~1% 

b) )(
1

n

nn

UF
t

UU
=

!

"
+

 Euler (forward, good for diffusive terms, 

unstable for hyperbolic equations) 

c) )
2

(
11 ++

+
=

!

"
nnnn

UU
F

t

UU
 Crank-Nicholson or centered 

implicit 

c') 5.0);
2

)1(
(

11

<!
!"+!

=
#

" ++ nnnn
UU

F
t

UU  Implicit, slightly diffusive 

d) )( 1
1

+

+

=
!

" n

nn

UF
t

UU
 Fully implicit or backward, very diffusive 

e) )(
*

n

n

UF
t

UU
=

!

" ; )( *
1

UF
t

UU
nn

=
!

"
+

 Euler-backward or Matsuno: good 

for damping high frequency waves 
 

f) )(
*

n

n

UF
t

UU
=

!

"
; )

2
(

*1
UU

F
t

UU
nnn
+

=
!

"
+

Another predictor-

corrector scheme (Heun) 
 

g) 
1

13 1
( )
2 2

n n

n nU U
F U U

t

+

!!
= !

"
 Adams-Bashford (second order in 

time). 
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h) 

)(
2/

*2/1
n

nn

UF
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=

!

"
+

;

)(
2/

*2/1
**2/1

+

+

=
!

" n

nn

UF
t

UU

;

)( **2/1
*1

+

+

=
!

" n

nn

UF
t

UU
 

)]()(2)(2)([
6

1 *1**2/1*2/1
1

+++

+

+++=
!

" nnnn

nn

UFUFUFUF
t

UU
  

Runge-Kutta (fourth order), widely used for higher time accuracy (but 
expensive: 4 time derivatives, need to save 
many fields) 

 
 
 

i) 

)/(1);/(1

*

/))(*(*

/1;0

tNbbtNaa

UUU

bUFaUU

tba

nn

n

!"#!"#

+#

+#

!==

     N-times       

 
Lorenz' N-cycle, N=multiple of 4; Nth order  
Cheaper than Runge-Kutta but doesn’t work so well… 
 
 
 

j) )
2

()(
2

11

21

11 !+!+
+

+=
"

!
nn

n

nn
UU

FUF
t

UU

 

Semi-implicit 
 

k) *)();( 2

*1

1

*

UF
t

UU
UF

t

UU
n

n

n

=
!

"
=

!

"
+

  

Fractional steps 
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Note: Easy tests for hyperbolic and parabolic equations 
 
1) It is easy to check the properties of these time schemes 
when applied to hyperbolic equations by testing them with a 
simple harmonic equation: 
 
U

i U
t

!
"

= #
"

  

 

with solution ( ) (0) i t
U t U e

!"
= .  

 
After one time step, the exact solution is 
(( 1) ) ( ) i t

U n t U n t e
!" #

+ # = #   
 
which indicates that the exact magnification factor is i t

e
!" # . 

 

Example: forward scheme: 
U

n+1 !Un

"t
= !i#Un

, U
n+1

= $Un

 

 

Therefore ! = 1" i#$t  absolutely unstable for wave 
equations! 
 
 
When we test a time scheme, we allow for space truncation 
errors that determine the value of the computational 
frequency ! , depending on the specific space 
discretization. For example, if we were using second order 
centered differences in space, and assume 

  
U

j
= A(t)eik!xj  
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c

U
j+1

!U
j!1

2"x
= A(t)eik"xj eik"x

! e! ik"x

2"x
=U

j
i
sin k"x

"x
c  

 
Comparing this with the true derivative 

 
 

c
!U

!x
= iUk"xc  we see that the computational speed for 

second order differences is 
 

sin k x
c

x
!

"
=

"
, for a spectral scheme, kc! = .  

 
For the fully implicit time scheme d), 

U
n+1

!U
n

"t
= F(U

n+1
) = !i#U

n+1

 

 

the amplification factor is 2

1 1

1 1 ( )

i t

i t t

!

! !

" #
=

+ # + #
.  

 
Since the exact amplification factor has an amplitude equal 
to one, this shows that the implicit scheme is dissipative; 
similarly, comparing the imaginary components of the exact 
and approximate amplification factors, it is clear that the 
implicit solution is slowed down by a factor of about 

2

1

1 ( )t!+ "
. 

 
 
2) Equations with damping terms (such as the parabolic 
equation) can also be simply represented by the equation: 
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U
U

t
µ

!
= "

!
  

 
 
Here µ can be considered as the computational rate of 
damping. For example, for the diffusion equation, using 

centered differences in space, 2

2

4
sin

( ) 2

k x

x

!
µ

"
=

"
. 

 
Exercise 11: show that the leap-frog scheme is unstable for 
a damping term. 
 
Exercise 12: write a numerically stable scheme for the 
equation with both wave-like and damping terms 

( )
U

i U
t

! µ
"

= # +
"

 using a 3-time level scheme. 

 
Exercise 13: Show that for a wave equation the forward time 
scheme with centered differences in space is absolutely 
unstable. Note that this scheme shows that the 
“extrapolation” rule is a necessary but not a sufficient 
condition for stability of wave equations. 
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3.2.5 Semi-implicit schemes 
 
Consider the shallow water equations that we discussed in 
Section 2.4.1: 
 
!u

!t
+ u

!u

!x
+ v

!u

!y
= "

!#

!x
+ fv

!v

!t
+ u

!v

!x
+ v

!v

!y
= "

!#

!y
" fu

!#

!t
+ u

!#

!x
+ v

!#

!y
= "$(

!u

!x
+
!v

!y
) " # " $( )(

!u

!x
+
!v

!y
)

 

 
 
As indicated in that section, the phase speed of IGW is given 
by 

c
k

U
f

k
U mIGW

IGW
= = ± + ! ±
"

2

2
300# / sec , and the terms that 

give rise to the fast gravity waves are underlined. This 

means that the Courant number µ =
c t

x

IGW
!

!
 is dominated by 

the speed of external gravity waves (equivalent to the Lamb 
waves, horizontal sound waves), and an explicit scheme 
would therefore require a time step an order of magnitude 
smaller than that required for advection. For this reason, 
Robert (1969) introduced the use of semi-implicit schemes to 
slow down the gravity waves. We write such a scheme using 
the compact finite difference notation for differences and 
averages: 
 

! x
i i

x

i i

f
f f

x

f f f

=
"

= +

+ "

+ "

1 2 1 2

1 2 1 2 2

/ /

/ /( ) /

#       
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and similarly for differences in y or t. With this notation, 
assuming uniform resolution, 
 

! !2
1 1

2

1 1

2

2

x x

x i i

x

i i

f f
f f

x

f f f

= =
"

= +

+ "

+ "

#

( ) /
      

 
Using this compact finite difference notation we can write the 
Leap-Frog semi-implicit SWE as  
 
!
2tu + u!2xu + v!2yu = "!

2x#
2t
+ fv

!
2tv + u!2xv + v!2yv = "!

2y#
2t " fu

!
2t# + u!

2x# + v!
2y# = "$(!

2xu + !2yv)
2t

" # " $( )(!2xu + !2yv)

  

 
Everything that does not have a time average involves only 
terms evaluated explicitly at the n-th time step. We can 
rewrite the FDEs as 
 
u u

t
R

v v

t
R

t
u u v v R

n n

x

n n

u

n n

y

n n

v

n n

x

n n

y

n n

+ !
+ !

+ !
+ !

+ !
+ ! + !

!
=! + +

!
=! + +

!
=! + + + +

1 1

2

1 1

1 1

2

1 1

1 1

2

1 1

2

1 1

2
2

2
2

2
2 2
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where  the "R" terms are the "rest" of the terms evaluated at 
the center time n t! . For example, 
R fv u u v uu x y= ! !" "

2 2 , and similarly for Rv and R! . 
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From these three equations we can eliminate u v
n n+ +1 1
, , and 

obtain an elliptic equation for !
n+1

: 
 

2 2 1 2 2 1

2 2 2 2 2 22 2

1 1

2 2 ,

1 1
[ ] [ ] 2[ ]

1 2

n n

x y x y x u y v

n n n

x y i j

R R
t t

u v R F
t t

!

" " ! " " ! " "

" "

+ #

# #

+ # = # + + + +
$% $%

& '+ + # =( )% $%

  

 
 
Note that the rhs of this elliptic equation is evaluated at t=nΔt 
or (n-1)Δt, so it is known. Solving this elliptic equation 

provides !
n+1

, and once it is known, it can be plugged and 
solved for ( , )u v

n n+ +1 1 . 
 
The elliptic operator in brackets in the lhs is a FD equivalent 
to ( )! "

2 2
# ,   

 

2, 2, , 2 , 2 ,2

2 2 2 2

1
4(1 )

1
[ ]

4

i j i j i j i j i j

x y
t

! ! ! ! !
µ

" " !
+ # + #+ + + # +

+ # =
$% %

  

 
 where we have assumed for simplicity that ! ! !x y= = , 

and µ
2

2

2
=
!"

"

t

 is the square of the Courant number for 

gravity waves.  
 

Since µ 2
2

2
1= >>

!"

"

t

, the semi-implicit scheme distorts the 

GW solution, slowing the GW down until they satisfy the von 
Neumann criterion. This is an acceptable distortion since we 
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are interested in the slower "weather-like" processes and 
since the slower modes satisfy the CFL (von Neumann) 
stability criterion, and they are written explicitly, they are not 
slowed down or distorted in a significant way. 
 
In the same way that the terms giving rise to gravity waves 
can be written semi-implicitly, the terms giving rise to sound 
waves can also be written semi-implicitly (Robert, 1993). 
They are the 3-dimensional divergence in the continuity 
equation (sections 2.3.2, 2.3.3). This has allowed the use of 
non-hydrostatic models without the use of the anelastic 
approximation or the hydrostatic approximation.  
 
André Robert (1993) created a model that can be considered 
the "ultimate" atmospheric model. It treats the terms 
generating sound waves (anelastic terms, i.e., 3-dimensional 
divergence), and the terms generating gravity waves 
(pressure gradient and horizontal divergence) semi-implicitly, 
and it uses a 3-dimensional semi-Lagrangian scheme for all 
advection terms. This model, denoted "Mesoscale 
Compressible Community" (MCC) is a "universal" model 
designed so that it can tackle accurately atmospheric 
problems from planetary scale through mesoscale, 
convective and smaller (Laprise et al, 1997).  
 
There is another approach followed by major non-hydrostatic 
models (e.g., MM5 and ARPS): the use of fractional steps 
(see Table 3.1, scheme k), with the sound waves terms 
integrated with small time steps. In addition, the ARPS 
model uses a semi-implicit scheme for vertically propagating 
sound waves (Xue et al, 1995). 
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Exercise 14: Consider the diffusion equation 
2

2

u u

t x
!

" "
=

" "
 

with initial conditions u x=  for 0.5x !  and 1u x= !  for 
0.5x ! . 1) Compute the first 2 time steps using an explicit 

scheme (forward in time, centered in space) with 5 points 

between 0and 1x x= = , and a time step such that 2( )

t
r

x

!"
=

"
 

is equal to 0.1,0.5,1.0r = . Repeat using Crank-
Nicholson’s scheme. 
 


