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3.3.1 Space truncation errors. Computational phase 
speed. Second and fourth order schemes. 
 
It is convenient to separate the truncation errors in a 
discretized model into space truncation errors and time 
truncation errors. For explicit finite difference models, the 
errors introduced by space truncation tend to dominate the 
total forecast errors because for “weather waves” the time 
step and the Courant number used are much smaller than 
would be required to physically resolve the frequency. Let’s 
neglect for the moment time truncation errors and consider 

the wave equation 
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If instead of the closest neighboring points j+1, j-1, we use 
the points j+2, j-2, so instead of !x  we have 2!x : 
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(2) 
This is also a second order scheme, but the second order 
truncation errors are 4 times as large. We can now eliminate 
from (1) and (2) the term AΔx2, and obtain 
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Now (3) is a fourth order approximation of the space 
derivative. So  
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is a fourth order FDE.  
 
Assume solutions of the form  
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where c ' is the computational phase speed, and '! the 
computational frequency, so  
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(4) and (5) we find that for second order differences,  
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and for fourth order differences,  
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Note that (7) and (8) imply that the phase speed is always 
underestimated by space finite differences.  
 
For the smallest possible wavelength, L=2Δx, kΔx=π, the 
computational phase speed is zero for both 2nd and 4th order 
differences: the shortest waves don't move at all! (Fig.3.7)  
 
 
 
 
 
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch3_3SpaceDiscretizationCreated on October 10, 2006 5:29 PMfinal version 

31 

 
For L=4Δx, kΔx=π/2, a much more accurate approximation is 
obtained with 4th order than with 2nd order differences: 

cccc 85.0',64.0'
42
== , and the 4th order advantage becomes 

even better for longer waves: for L=8Δx, 
cccc 99.0',90.0'

42
== . 
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We can also compute the computational group velocity 
'/ k!" "  where  
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 for 2nd order differences. Then,  
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for second order differences. Therefore, for the shortest 
waves, L=2Δx, kΔx=π, with both second and fourth order 
differences the energy moves in the opposite direction as the 
real group velocity (equal to the phase speed c): cg ' = !c

g .  
 
Fig. 3.7 shows the computational phase speed and group 
velocity for 2nd and 4th order differences. As a result of the 
negative group velocity, space centered FDE’s of the wave 
equation tend to leave a trail of short-wave computational 
noise upstream of where the real perturbation should be. 
This problem is greatly reduced using more recent schemes 
such as those of Takacs (1985) and Smolarkiewicz and 
Grawoski (1990). 
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 Fig. 3.7: Ratio of the computational to the physical phase 
speed c '/ cand group velocity cg '/ cg for a simple wave 
equation, neglecting time truncation errors, for second order, 
fourth order explicit and implicit and spectral schemes. 
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A second type of 4th order finite difference scheme, known 
as compact or implicit 4th order scheme, can be obtained 
by again making use of  
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Now we replace the third derivative 

 
U

xxx in the truncation 
error for the centered differences by its finite difference 
approximation (second derivative of the first derivative): 
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The new 4th order scheme becomes 
 

x

UU
UUU

jj

xjxjxj
!

"
=++

"+

"+

2
64

11

11        (11)   

  
 
It is called “compact” because it involves only the point j and 
its closest neighbors, and “implicit” because (11) results in a 
system of (tridiagonal) equations for the x-derivative, rather 
than an explicit estimate as (4) or (5). 
 
Exercise: Show that with this scheme, the finite difference 
space derivative for a Fourier component with wave number 
k is given by 
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The computational phase speed is therefore  
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For L=4Δx, kΔx=π/2, the phase speed is c'I4=0.955c, 
considerably better even than the regular 4th order 
differences phase speed.  
 
The group velocity for this scheme,  
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is already positive for L=4Δx (Fig.3.7).  
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For implicit schemes where one is already solving a tri-
diagonal equation, this compact 4th order scheme, which has 
accuracy equivalent to linear finite elements, is very accurate 
and involves little additional computational cost. The 
compact scheme is similar to Galerkin finite element 
approximation to space derivatives (Durran, 1999).    
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3.3.2: Galerkin and Spectral space representation 
 
The use of spatial finite differences, as we saw in the 
previous section, introduces errors in the space derivatives, 
resulting in a computational phase speed slower than the 
true phase speed, especially for short waves.  
 
The Galerkin approach to ameliorate this problem is to 
perform the space discretization using a sum of basis 
functions  
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Then, the residual (truncation error)    R(U )  
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u
F u

t

!
+ =

!   

 

is required to be orthogonal to the basis functions ( )x! .   
 
 
The space derivatives are computed directly from the known 
( ) /d x dx! .  
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This procedure leads to a set of ordinary differential 

equations for the coefficients ( )
k
A t .  

 
If the basis functions chosen for the discretization are 
orthogonal and satisfy the boundary conditions, the 
derivation becomes simpler. The use of local basis functions 

(e.g., ( )
i
x! a piecewise linear function equal to 1 at a grid 

point i and zero at the neighboring points) gives rise to the 
finite element method, with accuracy similar to that of the 
compact (implicit) 4th order scheme.  
 
 
 
 
 
 
 
 
Another popular type of Galerkin approach is the use of a 
global spectral expansion for the space discretization, 
which allows computing the space derivatives analytically 
rather than numerically. In one dimension, periodic boundary 
conditions suggest the use of complex Fourier series as a 
basis.  
 
 
Consider JM grid points in a periodic domain of length L, and 
scale x by multiplying it by (2π/L). If we use discrete complex 
Fourier series truncated to include wavenumbers up to K, 
the spectral representation is:   
 

j j-1 j+1 

Local linear basis function  

!
j
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Alternatively, (14) can be written using real Fourier series as 
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There are 2K+1 distinct real coefficients that are determined 
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Here we have used the orthogonality property 
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If JM=2K+1, the grid representation (left hand side of (14)) 
and the spectral representation (right hand side of (14)) 
contain the same number of degrees of freedom, and the 
same information.  

Then, in the wave equation x

U
c

t
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, we can 

discretize U in space as in (14) and compute the space 
derivative analytically: 
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If we neglect the time discretization errors, as before, and 

assume solutions of the form 
)'(),( tcxik

AetxU
!

= , we 
find that c'=c, i.e., the computational phase speed I a 
spectral method is equal to the true speed (Fig.3.7). The 
space discretization based on a spectral representation is 
extremely accurate (the space truncation errors are of 
"infinite" order). This is because the space derivatives are 
computed analytically, not numerically, as done in finite 
differences.  
 

If the PDE is nonlinear, for example 
!U

!t
= "U

!U

!x
, then 

both the grid-point ("physical space") representation and the 
spectral representation are very useful:  
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The derivatives 
!U

!x are computed efficiently and accurately 

in spectral space, whereas nonlinear products U
!U

!x
are 

computed efficiently in physical space.   
 
This is the so-called transform method used for spectral 
models: the space derivative is computed in spectral space, 
then U is transformed back into grid space, and the product 

j

j

U
U

x

!" #
$ %!& ' is computed locally in grid space.  

 
We will see later that in order to avoid nonlinear instability 
introduced by aliasing of wavenumbers beyond K that 
appear in quadratic terms, the grid representation requires 
about 3/2 as many points as the minimum number of points 
required for a linear transform (JM=2K+1). For this reason 
the new values of U at time (n+1)Δt are usually stored in 
their spectral representation, which is more compact. 
 
We can use von Neuman’s criterion to determine the 
maximum time step allowed for stability using, for example, 
the leap-frog time scheme. The FDE is 
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Assuming solutions for the wave equation of the form 

U e
n n ikx
= ! , we obtain that the amplification factor is 

! = " ± "ikc t k c t# #1
2 2 2

,  
 

In order to have | |! " 1  we need to satisfy the stability 
condition . 
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Since the highest wavenumber present corresponds to 
L=2Δx, the stability criterion for spectral models is therefore 

c!t
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Recall that for second order differences the stability criterion 

was 

c!t

!x
" 1

 

 
So, the stability criterion is more restrictive for spectral 
models than for finite difference models, but this is 
compensated by the fact that the accuracy, especially for 
shorter waves, is much higher, and therefore fewer short 
waves need to be included (Fig.3.7). 
 
 
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch3_3SpaceDiscretizationCreated on October 10, 2006 5:29 PMfinal version 

43 

The basis functions used in spectral methods are usually the 
eigensolutions of the Laplace equation. In a rectangular 
domain, they are sines and cosines (e.g., the Regional 
Spectral Model, Juang et al, 1999). On a circular plate, one 
would instead use Bessel functions. 
  
Global atmospheric models use as basis functions 
spherical harmonics, which are the eigenfunctions of the 
Laplace equation on the sphere: 
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 (21) 
 
The spherical harmonics are products of Fourier series in 
longitude and associated Legendre polynomials in latitude: 
 

Y
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m
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n

m
(µ)eim! ,   (22) 

 

where  µ = sin(!)  m is the zonal wavenumber and n is 
the “total” wavenumber in spherical coordinates (as 
suggested by the Laplace equation). Pn

m are the associated 
Legendre polynomials in x=cos θ, where 

! = " / 2 #$ θ=π/2-ϕ is the colatitude.  For example, the 
P0

0=1; P1
0=cosθ; P1

1=sinθ; P2
0=1/2 (3cos2θ-1); 

P2
1=3sinθcosθ; P2

1=3sin2θ;… 
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Using "triangular" truncation 
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the spatial resolution is uniform throughout the sphere. This 
has a major advantage over finite differences based on a 
latitude-longitude grid, where the convergence of the 
meridians at the poles requires very small time steps.  
 
Although there are solutions for this “pole problem” for finite 
differences, the natural approach to solve the pole problem 
for global models is the use of spherical harmonics. 
Williamson and Laprise (1998) provide a comprehensive 
description of numerical methods for global models. 
 
Fig. 3.8a (reproduced from Williamson and Laprise, 1998) 
shows the shape of three spherical harmonics with total 
wavenumber n=6, and zonal wavenumber m=0, 3 and 6. 
Note that the distance between neighboring maxima and 
minima is similar for the 3 harmonics, and is associated with 
the “total” (2-dimensional) wavenumber n. 
 
Fig. 3.8b and c (also reproduced from Williamson and 
Laprise, 1998) show that the amplitude of the Legendre 
polynomials for high zonal wavenumbers are indeed 
suppressed near the poles. This suppression eliminates the 
need for small time steps due to the convergence of the 
meridians in the poles, which are not singular points spectral 
models. 
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Fig. 3.8. Illustration of the characteristics of spherical 
harmonics, from Williamson and Laprise (1998). A) Depiction 
of three spherical harmonics with total wave number n=6. 
Left, zonal wave number m=0; center, m=3; right, m=6. Note 
that n is associated with the total wavelength (twice the 
distance between a maximum and a minimum), which is the 
same for the three figures. 
B) and C) Amplitude of Legendre polynomials for different 
combinations of m and n showing how high zonal wave 
numbers are suppressed near the poles, so that the 
horizontal resolution is uniform when using a spectral 
representation with triangular truncation. 
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