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Definition 

§  Event: set, class, or group of possible uncertain outcomes 
q  A compound event can be decomposed into two or more 

(sub) events 
q  An elementary event cannot be decomposed 

§  Sample space (event space), S 
q  The set of all possible elementary events 

§  MECE (Mutually Exclusive & Collectively Exhaustive) 
q  Mutually Exclusive: no more than one of the events can 

occur 
q  Collectively Exhaustive: at least one of the events will 

occur 
! A set of MECE events completely fills a sample space 



Probability Axioms 

§  P(A) ≥ 0 
§  P(S) = 1 
§  If (E1      E2)=0, i.e., if E1 and E2 exclusive,  
    then P(E1      E2)=P(E1)+P(E2) 
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Probability 

§  Probability ~ Frequency 
q  P(E) =  
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Conditional Probability 

§  Probability of E1 given that E2 has happened 

§  Independent Event 
q  The occurrence or nonoccurrence of one does not affect 

the probability of the other 
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Exercise 

§  From the Penn State station data for Jan. 1980, 
compute the probability of precipitation, of 
T>32F, conditional probability of precipitation if 
T>32F, and conditional probability of 
precipitation tomorrow if it is raining today 

§  Prove graphically the DeMorgan Laws: 

!! P (A∪B)c}{ = P Ac ∩Bc} ;{ P (A∩B)c}{ = P Ac ∪Bc}{



Total Probability 

§  MECE events, {Ei}, i=1, …, I 
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Bayes’ Theorem 

§  Bayes’ theorem is used to “invert” conditional 
probabilities 
q  If P(E1|E2) is known, Bayes’ Theorem may be used to 

compute P(E2|E1). 

q  Combines prior information with new information 
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Multiplicative law 

Law of total probability 



Example of Bayesian Reasoning 

§  Relationship between precipitation over SE US 
and El Nino 
q  Precipitation Events: E1(above), E2(normal), E3(below) 

are MECE 
q  El Nino Event: A 
q  Prior information (from past statistics) 

ü  P(E1)=P(E2)=P(E3)=33% 
ü  P(A|E 1)=40%; P(A|E 2)=20%; P(A|E 3)=0% 
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Example of Bayesian Reasoning 

§  Total probability of A 

§  NEW information: El Nino is happening! 
Probability of above normal precipitation? 
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Probability Density Function when 
we have two observations, T1 and T2 
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Precision=inverse of     
 
Precision of T=  
Precision of T1 + Precision of T2: 

The weights are  proportional to the error 
variance of the other obs.: 

With Gaussian errors, the best estimate of T is the weighted 
average of T1 and T2: 

σ 2



If we have a forecast Tf (prior info.) 
and then an observation To 
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The analysis Ta is more 
accurate than both the forecast 
Tf   and the observation To ! 

The optimal analysis Ta is 
the best estimate of the truth 
(it has minimum errors): 

These are the formulas used in data assimilation! 



Now let’s use a Bayesian approach 
for Data Assimilation 

P(T |To ) = P(T |Tf )P(To |T ) / P(To )Bayes theorem 

“The posterior probability of the true temperature T given the 
prior information Tf , and after receiving the new observation 
To , is given by the prior probability of T (based on the forecast 
Tf  ) multiplied by the likelihood of T given the observation To, 
normalized by the total probability of obtaining a measurement 
To.” 
 
The likelihood of T given the observation To is the same as the 
probability of observing To  given a true temperature T 
(Edwards, 1984). This formula can be briefly read as: 
 
“posterior = prior . likelihood /normalization” 



The Bayesian approach for Data Assim 
is very general (not just Gaussians) 

 
If we assume Gaussianity, the Bayes theorem leads to the 
Variational approach: 
P(T |To ) = P(T |Tf )P(To |T ) / P(To ) =
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Since we want to maximize the probability of T, and Tcli, the  
climatological temperature probability distribution does not 
depend on T, the maximization can be written as the 
minimization of the exponent: 



The Bayesian approach for Data Assim 
is very general (not just Gaussians) 

 
From Bayes theorem, we minimize -the exponent, a cost 
function  J that measures the squared distance between the 
optimal temperature T that we are seeking and the prior 
forecast, and with the new observation, both normalized by their 
error variances: 

Although the variational formulation looks very different from 
the classical formulation shown before, for Gaussian errors, 
both give the same solution. However, the Bayesian approach 
can be used with any probability distributions and allows the 
implementation of efficient “particle filters” (e.g., Penny and 
Miyoshi, 2016, Poterjoy, 2016). 
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