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Evolution in Statistics

Objects Simple, linear or quasi-linear, si Complex, nonlinear, multi-disciplinary,
Studied’ disciplinary, low-dimensional sys high-dimensional systems

[ | 1 1
>
' 1900 — 1949 ' 1950 — 1999 ' 2000-... T (years)

Tools Simple, linear or quasi-linear, _ _ _ _
Used: low-dimensional framework of classij Complex, nonlinear, high-dimensional
statistics (Fischer, about 1930) framework... (NNs)
Teach at the — Under Construction!
University! J/

 Problems for Classical * New Paradigm under

. ) Construction:
Paradigm: L
] ] _ — Is still quite fragmentary
— Nonlinearity & Complexity — Has many different names and
— High Dimensionality - gurus
Curse of Dimensionality — NNs are one of the tools

developed inside this paradigm
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Statistical Inference:
A Generic Problem

Problem:

Information exists in the form of finite sets of values of
several related variables (sample or training set) —
part of the population:

N = {(X1! X35 weny Xn)p! Zp}p=1,2 ..... N
— X4, X, ...y, X, - iNdependent variables (accurate),
— Z -response variable (may contain observation

errors g)
We want to find responses 2’  for another set of
independent variables X’ = {(x 15 X2 veey X)) Ya=1,m

N'eg X
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Regression Analysis (1):
General Solution and Its Limitations

Sir Ronald A. Fisher ~ 1930

REGRESSION FUNCTION
z = f(X), for all X
INDUCTION

lll-posed problem DEDUCTION

Well-posed problem

DATA: TrainingSet '} DATA: Another Set
{(X15 X2 vus X)) or Zp}p=12...N (X1 X3y vy X ') g=1,2,...m
TRANSDUCTION Zg =1X)
SVM

Find mathematical function f which describes this relationship:
1. Identify the unknown function f
2. Imitate or emulate the unknown function f

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"



Regression Analysis (2):
A Generic Solution

The effect of independent variables on the response
iIs expressed mathematically by the regression or
response function f:

Yy =R X4 X5, .cey Xp; @4, @y, ...y Q)
 y-dependent variable
* Ay a8y -y Ay - regression parameters (unknown!)
 f-the form is usually assumed to be known
 Regression model for observed response variable:
z=y+&e=1f{x;, Xy ..., X,; Ay, Ay, ..., Ag) + €
€ - error in observed value z
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Regression Models (1):
Maximum Likelihood

Fischer suggested to determine unknown regression
parameters {a;}., ,maximizing the functional:

L(a)= i_]n[p(zp _yp)l where v, = f Not always!!! }

here p(¢g) is the probability density functi

In a case when p(¢) is a normal distribution

p(z—y)=a-exp(- E=)

. . . O
the maximum likelihood => least squares
L(a) = iln{a-exp(—%)} =A4-B-Y (z,-y,)

of errors ¢;

N
max L = min ) (z,-y,)’
p=1
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Regression Models (2):
Method of Least Squares

* To find unknown regression parameters {a}.;, .,
the method of least squares can be applied:

N N
E(a,,a,,...,a,) = 2 (z, - yp)2 :z [z, - f((xl,...,xn)p;azl,azz,...,aq)]2
p=1 p=1

* E(a,...,ag) - error function = the sum of squared
deviations.

» To estimate {a}.,, , => minimize E => solve the

,,,,,

system of equations:

%o =12
0-)ai =V, I=1 9“’9q

« Linear and nonlinear cases.
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Regression Models (3):
Examples of Linear Regressions

Simple Linear Regression:
Z=a,+a,x;+¢&
* Multiple Linear Regression:
Z=a,ta,; x,ta, x,+ +g—a0+2ax + £
+ Generalized Linear Regressmn .
z=a,+a,f,(x,)+a,fy(x,)+..+g= ao+2af(X)+€

— Polynomial regression, (x) X', e
O 1Tree
Z=a, + d, X+ d, X2 + dj X3+ ... +¢ parameters

— Trigonometric regression, f(x) = cos(ix)
Zz=a,+a,cos(x)+a,cos(2x)+..+¢
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Regression Models (4):
Examples of Nonlinear Regressions

Response Transformation Regression:
G(z) =a,+a,x, +¢
Example:
Z = exp(a, + a,; x,)
G(z) =In(z) =a, + a, x,
. . . . Free
Projection-Pursuit Regression: ' noniinear

parameters

Example: k :
z=ay,+ ), a,tanh(b, + ), Q ,x,)+ €
j=1 i=1
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NN Tutorial:

Introduction to Artificial NNs

NNs as Continuous Input/Output Mappings

— Continuous Mappings: definition and some
examples

— NN Building Blocks: neurons, activation
functions, layers

— Some Important Theorems
* NN Training
 Major Advantages of NNs
« Some Problems of Nonlinear Approaches
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Mapping

Generalization of Function

 Mapping: A
in vector

spaces N” and R" that associates each

vector X of a vector space 9i"with a
vector Y In another vector space )" .

A yl :fl(xnxzrﬂaxn)

Y =F(X)
Vo = (X5 X5 50005 X))

X ={X,3 X,y 50009 X, },€ R" +#

Y = {ylayzrﬂaym}ae SKm)

V= T (X5 X, geees X, )
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Mapping Y = F(X): examples

Time series prediction:
X={x, Xp.1y X2y -y Xi.}, - LAg vector
Y = {X;.1, X412 -y Xgumy} - Prediction vector
(Weigend & Gershenfeld, “Time series prediction”, 1994)
Calculation of precipitation climatology:
X ={Cloud parameters, Atmospheric parameters}
Y = {Precipitation climatology}
(Kondragunta & Gruber, 1998)
Retrieving surface wind speed over the ocean from satellite data (SSM/I):
X = {SSM/I brightness temperatures}
Y={W, V,L, SST}
(Krasnopolsky, et al., 1999; operational since 1998)
Calculation of long wave atmospheric radiation:

X = {Temperature, moisture, O,;, CO,, cloud parameters profiles, surface fluxes,
etc.}

Y = {Heating rates profile, radiation fluxes}
(Krasnopolsky et al., 2005)
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NN - Continuous Input to Output Mapping

Multilayer Perceptron: Feed Forward, Fully Connected

Nonlinear
X ron
Lo Neurons

x, _Neuron

Linear Part iNonIinear Pa

Layer

Y=FNN()()~<

Jacobian !

=0+ 2 b)) =

= tanh(b,,+ Y b, - x,)
i=1

k n
=a, +Z{aqj -tanh(b, +Z{bﬁ -x,); g=12,...m
j= i=
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Some Popular Activation Functions

Sigmoid, (1 + exp(-x))”

1.0 1.5
a. ok
oo Oo.e
-5 0.4
—1.0 : 0.z
—-1.5 ] a0
- -4 -2 Lo T 4 B - -4 -2 L Z 4 B
X X
Hard Limiter Ramp Function
1.5 ] 1.5 ]
10f —— — — 1 1.0
0.5 0.5
0.0 0.0
—0.5 —0.5
o ———— - —10
—-1.5 ] —-1.5
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X X
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NN as a Universal Tool for Approximation of

Continuous & Almost Continuous Mappings
Some Basic Theorems:

> Any function or mapping Z = F (X), continuous on
a compact subset, can be approximately
represented by a p (p [¥] 3) layer NN in the sense
of uniform convergence (e.g., Chen & Chen, 1995;

Blum and Li, 1991, Hornik, 1991; Funahashi, 1989,
etc.)

> The error bounds for the uniform approximation
on compact sets (Attali & Pages, 1997):

1Z -Y1| = IF (X) - Fyn (X)]] ~ C/k
k -number of neurons in the hidden layer

C — does not depend on n (avoiding Curse of
Dimensionality!)

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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NN training (1)

For the mapping Z = F (X) create a training set - set
of matchups {X, Z},-, \, where X;is input vector
and Z; - desired output vector

Introduce an error or c]?st function Eé
E(a,b) =|Z- Y| = X |Z = Fyy(X)

i=1
where Y = F,,(X) is neural network

Minimize the cost function: min{E(a,b)} and find
optimal weights (a,, b,)

Notation: W = {a, b} - all weights.
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NN Training (2)

One Training lteration

X

Training Set Z

3/6/2013

Z§

Desired
Output

Error )
Ej U‘Z;YH Yes
= f<@ > >Elld
[No/ Training

Weight Adjustments
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Backpropagation (BP) Training Algorithm

 BP is a simplified steepest descent:

oF
AW ==

where W - any weight, E - error function,

n - learning rate, and AW - weight increment

« Derivative can be calculated analytically:
oE Al oF,, (X))
—=-2Y [Z.—F,,(X)] :

N 21,[ i~ Fw (X))] e
 Weight adjustment after r-th iteration:
W+l =W+ AW

« BP training algorithm is robust but slow
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Generic Neural Network
FORTRAN Code:

DATA W1/...[, W2/.../, B1/.../, B2/.../, Al...[, Bl.../ ! Task specific part
' —

DO K =1,0UT
b o . J
DO 1 =1, HID : :

’ = NN Out .

X1(I) = tanh(sum(X * W1(:,I) + B1(I)) : : pUt :
ENDDO ! I

n

L}

II‘ ygEER LN
e® es®

et
““““
as®
.

X2(K) = tanh(sum(W2(:,K)*X1) + B2(K))
Y(K) = A(K) * X2(K) + B(K)

XY = A(K) * (1. -X2(K) * X2(K)) g assnsanansd =
DO J= 1, IN e
DUM = sum((1. -X1 * X1) * W1(J,:) * W2(:,K))
DYDX(K,J) = DUM * XY
ENDDO ! J
'
ENDDO ! K
3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 20



Major Advantages of NNs :

YY ¥ ¥YY

-
-

NNs are very generic, accurate and convenient
mathematical (statistical) models which are able to emulate
numerical model components, which are complicated
nonlinear input/output relationships (continuous or almost
continuous mappings ).

NNs avoid Curse of Dimensionality

NNs are robust with respect to random noise and fault-
tolerant.

NNs are analytically differentiable (training, error and
sensitivity analyses): almost free Jacobian!

NNs emulations are accurate and fast but NO FREE LUNCH!

Training is complicated and time consuming nonlinear
optimization task; however, training should be done only
once for a particular application!

Possibility of online adjustment
NNs are well-suited for parallel and vector processing
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NNs & Nonlinear Regressions: Limitations (1)

* Flexibility and Interpolation:

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 22




NNs & Nonlinear Regressions: Limitations (2)

* Consistency of estimators: a is a consistent
estimator of parameter A, if a — A as the size
of the sample n — N, where N is the size of
the population.

 For NNs and Nonlinear Regressions
consistency can be usually “proven” only
numerically.

« Additional independent data sets are
required for test (demonstrating consistency
of estimates).
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ARTIFICIAL NEURAL NETWORKS:
BRIEF HISTORY

e 1943 - McCulloch and Pitts introduced a model of the neuron
Modeling the single neuron

« 1962 - Rosenblat introduced the one layer "perceptrons”, the
model neurons, connected up in a simple fashion.

1969 - Minsky and Papert published the book which practically

“closed the field”
3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 24




ARTIFICIAL NEURAL NETWORKS:
BRIEF HISTORY

* 1986 - Rumelhart and McClelland proposed the
"multilayer perceptron” (MLP) and showed that it is a
perfect application for parallel distributed processing.

The multilayer perceptron

o, Outputs
PNGIL SN

den Ia

Input layer Output layer

 From the end of the 80's there has been explosive
growth in applying NNs to various problems in
different fields of science and technology
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Atmospheric and Oceanic NN Applications

« Satellite Meteorology and Oceanography
— Classification Algorithms
— Pattern Recognition, Feature Extraction Algorithms
— Change Detection & Feature Tracking Algorithms
— Fast Forward Models for Direct Assimilation
— Accurate Transfer Functions (Retrieval Algorithms)
* Predictions
— Geophysical time series
— Regional climate
— Time dependent processes
* NN Ensembles
— Fast NN ensemble
— Multi-model NN ensemble
— NN Stochastic Physics

« Fast NN Model Physics

« Data Fusion & Data Mining

» Interpolation, Extrapolation & Downscaling
* Nonlinear Multivariate Statistical Analysis
 Hydrological Applications

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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Developing Fast NN Emulations for
Parameterizations of Model Physics

Atmospheric Long & Short Wave Radiations

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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General Circulation Model

The set of conservation laws (mass, energy, momentum, water vapor,
ozone, etc.)

* First Priciples/Prediction 3-D Equations on the Sphere:

Y D(y,x)=P(y,x)
— - a 3-D prognostic/dependent variable, e.g., temperature
— x -a 3-D independent variable: x, y, z & t
— D - dynamics (spectral or gridpoint)

— P - physics or parameterization of physical processes (1-D
vertical r.h.s. forcing)

o il

« Continuity Equation zZ - A= “

« Thermodynamic Equation 13-D Grig ! *?e'g’"
| |

+ Momentum Equations o L Lon

-
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General Circulation Model

Physics — P, represented by 1-D (vertical) parameterizations

 Major components of P={R, W, C, T, S}:
— R - radiation (long & short wave processes)
— W - convection, and large scale precipitation processes
— C -clouds
— T —turbulence
— S — surface model (land, ocean, ice — air interaction)

« Each component of P is a 1-D parameterization of
complicated set of multi-scale theoretical and
empirical physical process models simplified for
computational reasons

- P is the most time consuming part of GCMs!/
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Distribution of Total Climate Model Calculation Time

Current NCAR Climate Model

(T42 x L26): [

3

W

X 3.5

W

Near-Term Upcoming Climate

Models (estimated) : [¥] 1

1

4

3/6/2013
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Generic Situation in Numerical Models

Parameterizations of Physics are Mappings

3/6/2013

——>X1o——-g —_— Yy, —
— X5 ._..C‘I_E —_— Y, —
N
=
— X: —\m F B e
R
Q
£
©
-
©
—_'Xn°_"'n' —_— VY,

| GCM

Y=F(X
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Generic Solution — “NeuroPhysics”

Accurate and Fast NN Emulation for Physics Parameterizations

Learning from Data

GCM Origigfl Pafameserization

Training
Set ) (O 4 R 7). ¢

BrrrrrrrrrrrTTT T e . ?NNEmulgpos$

\% \
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NN for NCAR CAM Physics

CAM Long Wave Radiation

- Long Wave Radiative Transfer:

F'(p)=B(p)-&(p,.p)+ [ a(p,, p)-dB(p")

F'(p)=B(p,)— | ep. p")-dB(p)

B(p)=oc-T*(p) - the Stefan— Boltzman relation

[e o}

[4aB,(p")/dT (p")}-(A—7,(p, p"))-dv

o(p,p)= TTSYEIRTS
JBV(Pr)'(l—Tv(pt,p))dv
€(pt,p)= 0 B(p)

B,(p) —the Plank function

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"

Absorptivity & Emissivity (optical properties):

33



The Magic of NN Performance

Original
)(i Parameterization Y

I

> NN Emulation

X, Y

I

Input/Output Dependency: Y = F()()

a

Numerical Scheme for Solving Equation

Ny

[

Yanv = Fan(X)

NN Emulation of Input/Output Dependency:

FY(p)=Bp)-e(p,. )+ [ o, p)-dB(p)

FT(p) = B(p)— [ ap. p-dBp)

B(p)=oc -T*(p) — the Stefan — Boltzman relation

| taB, ")/ dT(p")}- (1 =7,(p, p))-dv
a(p,p)="*

dB(p)/dT(p)

|B.(p)-(=7,(p,. p))-dv
&(p,p)="= 5

B,(p) —the Plank function

Mathematical Regresent;tion of Physical Processes

Input/Output Dependency: {)(,, Y,}l =1,.N

3/6/2013
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Neural Networks for NCAR (NCEP) LW Radiation

NN characteristics

220 (612 for NCEP) Inputs:

— 10 Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & N,O mixing
ratios, pressure, cloudiness, emissivity

— Relevant surface characteristics: surface pressure, upward LW flux on a
surface - flwupcgs

33 (69 for NCEP) Outputs:
— Profile of heating rates (26)

— 7 LW radiation fluxes: fins, fint, flut, finsc, fintc, flutc, flwds
Hidden Layer: One layer with 50 to 300 neurons
Training: nonlinear optimization in the space with

dimensionality of 15,000 to 100,000

— Training Data Set: Subset of about 200,000 instantaneous profiles simulated by
CAM for the 1-st year

— Training time: about 1 to several days (SGI workstation)
— Training iterations: 1,500 to 8,000
Validation on Independent Data:

— Validation Data Set (independent data): about 200,000 instantaneous profiles
simulated by CAM for the 2-nd year
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Neural Networks for NCAR (NCEP) SW Radiation

NN characteristics

« 451 (650 NCEP) Inputs:

— 21 Profiles: specific humidity, ozone concentration, pressure, cloudiness,
aerosol mass mixing ratios, etc

— 7 Relevant surface characteristics
« 33 (73 NCEP) Outputs:

— Profile of heating rates (26)

— 7 LW radiation fluxes: fsns, fsnt, fsdc, sols, soll, solsd, solld
Hidden Layer: One layer with 50 to 200 neurons
Training: nonlinear optimization in the space with
dimensionality of 25,000 to 130,000

— Training Data Set: Subset of about 200,000 instantaneous profiles simulated by
CAM for the 1-st year

— Training time: about 1 to several days (SGI workstation)
— Training iterations: 1,500 to 8,000
Validation on Independent Data:

— Validation Data Set (independent data): about 100,000 instantaneous profiles
simulated by CAM for the 2-nd year
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NN Approximation Accuracy and Performance vs. Original
Parameterization (on an independent data set)

Parameter Model Bias RMSE | Mean W Performance
NASA | 1 104 | 032 | 152 | 1.46
M-D. Chou
LWR NCEP | 7.10% | 940 | -1.88 | 2.28 ) N 1f°°t
(K/day) iImes raster
NCAR | 3 105 | 028 | -1.40 | 1.98 150
W.D. Collins tlmes faster
W oons | 6-10% | 049 | 147 | 189 | . fzot
L. Lollin imes faster
SWR
(EK/day) | NcEP 21 40
AERmm2 | 1.10° | 0.21 145 | 1.96

times faster

3/6/2013
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Individual Profiles

ey [i [T T = R AL s
- ] Black — Original - N
» ] Parameterization ] :
S g Red — NN with 100 neurons] |
30 - - 0 Blue — NN with 150 neurons 30 =
° — 19 ol 1% 90 _]
= - 4% N 10o _
£ 1< B & ]
10 — ] 10 — —: 10 _:
0‘ O T 0: N o 0 TUTTRCTT CRCTRTERA FRRTARCTR FRCTTONS
0 2 4 6 8 0 2 4 6 0 1 2 3 4 5 6

CRin K/day CRin K/day CRin K/day

PRMSE = 0.18 & 0.10 K/day PRMSE = 0.11 & 0.06 K/day PRMSE = 0.05 & 0.04 K/day
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NCAR CAM-2: 50 YEAR EXPERIMENTS
NCEP CFS: 17 YEAR EXPERIMENTS

« CONTROL RUN: the standard NCAR CAM or
NCEP CFS versions with the original
Radiation (LWR and SWR)

NN RUN: the hybrid version of NCAR CAM or
NCEP CFS with NN emulation of the LWR &
SWR

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 39
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(b) LWR/NN U—WIND
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U—WIND

(e) (a—b
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NCAR CAM-2 Zonal Mean U
50 Year Average

(a)- Original LWR
Parameterization

(b)- NN Approximation

(c)- Difference (a) — (b),
contour 0.2 m/sec

all in m/sec
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NCAR—CAM 10 YEAR T

NCAR CAM-2 Zonal Mean
Temperature
50 Year Average

(a) ORIGINAL LWR T

1001
0

() -
2kt
.!:

(a)- Original LWR
Parameterization

(b)- NN Approximation

(c)- Difference (a) — (b),
contour 0.1/¥/K

(b) LWR/NN T

all in WK
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NCEP CFS SST - 17 year climate
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Application of the Neural Network Technique
to Develop a Nonlinear Multi-Model
Ensemble for Precipitations over ConUS

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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Calculating Ensemble Mean

« Conservative ensemble
EM=1/NV)i=1TNEpli

W. from a priori information
or from past data => linear regression

 |f data are available, we can relax assumption
of linearity

NEM=f (P)=NN(P)

3/6/201 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 45




Available data for precipitations over ConUS

* Precipitation forecasts available from 8
operational models:
— NCEP's mesoscale & global models (NAM & GFS)

— the Canadian Meteorological Center regional & global
models (CMC & CMCGLB)

— global models from the Deutscher Wetterdienst
(DWD)

— the European Centre for Medium-Range Weather
Forecasts (ECMWEF) global model

— the Japan Meteorological Agency (JMA) global model
— the UK Met Office (UKMQ) global model

* Also NCEP Climate Prediction Center (CPC)
precipitation analysis is available over ConUS.

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 46




Data & Products for Comparisons

* Forecasts:

— MEDLEY multi-model ensemble: simple average
of 8 models (24 hr forecasts)

— NN multi-model ensemble (experimental, 24 hr
forecast)

— Hydrometeorological Prediction Center (HPC)
human 24 hr forecast, produced by human
forecaster using models, satellite images, and
other available data

« Validation: CPC analysis over ConUS
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MEDLAY

Advantages: better placement of precipitation
areas

Disadvantages (because of simple linear

averaging) Motivation for NN developments: ;
« Smoothes, diffuse features, reduces
gradients
— High bias for low level precip — large areas of false
low precip

— Low bias in high level precip — highs smoothed
out and reduced
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24h Forecast Ending 07/24/2010 at 12Z

2.0 2.0
NAM 024h Forecast 2Z49nh Accum (mm) Endlng 2010072412 CPC 1/8 deg Analusls 249h Accum (mm) Endlng 20100724912

3/6/2013

MEDLEY

z.0
MEDLEY 024h Forecast 249nh Accum (mm) Endlng 2010072412

CPC analysis

_ Verifying
Ry
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A NN Multi-Model Ensemble

* Use past data (model forecasts and verifying
analysis data) to train NN

— For NN Inputs: precip amounts (8 model 24 hr
forecasts), lat, lon, and day of the year

— For NN output: CPC verification analysis for the
corresponding time

« Data for 2009 have been used for training
—a0+2a ¢(b]0+2b x) 3 n=12%k=7
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Sample NN forecast: example 1 (1)

Werifying CPC analysis

b ohy g,z@{r}g»
S AL

2.0
NAM 024h Forecast 249nh Accum (mm) Endlng 2010102412
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Sample NN forecast: example 1 (2)

deg Analusls
\ 1%
E jv
; | ‘ 4‘?
g

¥ BaAgP i

2.0
NNZ 024h Forecast 249nh Accum (mm) Endlng 2010102412

3/6/2013
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Sample NN forecast: example 2

z.0
NNZ 024h F

3/6/2013
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Sample NN forecast: example 3

2.0
NNZ 0249h Forecast

3/6/2013

z.0
24h Accum (mm) Endlng 2011010412 HFC 024h Forecast 249h Accum (mm) Endln

Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"

g 2011010412

54




Application of the Neural Network Technique
to Develop New NN Convection
Parameterization

3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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NN Parameterizations

 New NN parameterizations of model physics
can be developed based on:
— Observations
— Data simulated by first principle process models

(like cloud resolving models).

 Here NN serves as an interface transferring
information about sub-grid scale processes
from fine scale data or models (CRM) into
GCM (upscaling)
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NN convection parameterizations for climate models

based on learning from data.
Proof of Concept (POC) -1.

Prec., Tendencies, etc. //Reduce Resolution
» to~250 x 250 km

&(ﬁlwels

“Pseudo-
servations”

CRM

w I P
e NN
96 levels

oS BU!U!@

Reduce Resolutio
T&Q > to ~250 x 250 km

26 levels
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Proof of Concept - 2

Data (forcing and initialization): TOGA COARE
meteorological conditions

CRM: the SAM CRM (Khairoutdinov and Randall, 2003).

— Data from the archive provided by C. Bretherton and P. Rasch
(Blossey et al, 2006).

— Hourly data over 90 days

— Resolution 1 km over the domain of 256 x 256 km

— 96 vertical layers (0 — 28 km)

Resolution of “pseudo-observations” (averaged CRM data):
— Horizontal 256 x 256 km

— 26 vertical layers

NN inputs: only temperature and water vapor fields; a
limited training data set used for POC

NN outputs: precipitation & the tendencies T and q, i.e.
“apparent heat source” (Q1), “apparent moist
sink” (Q2), and cloud fractions (CLD)
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Vertical Levels

Proof of Concept - 4

25|_|I|||I‘||||‘IIII‘IIII‘IIII‘IIII‘_I
B Red - Data ]
20— Blue - NN ]
sl ]
ol— ]
5_
0] Il-u-l.lllllllllIIIIlIIIIIIIIIlIlIII_I
00 05 1.0 15 2.0 25 3.0
Q2 in Kday

Time averaged water vapor tendency
(expressed as the equivalent heating)
for the validation dataset.
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Q2 profiles (red) with the corresponding NN
generated profiles (blue). The profile rmse
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Proof of Concept - 3
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Precipitation rates for the validation dataset. Red — data, blue - NN
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How to Develop NNs:
An Outline of the Approach (1)

 Problem Analysis:
— Are traditional approaches unable to solve your problem?

- Atall
* With desired accuracy
* With desired speed, etc.

— Are NNs well-suited for solving your problem?

* Nonlinear mapping
» Classification
» Clusterization, etc.

— Do you have a first guess for NN architecture?

3/6/2013

* Number of inputs and outputs
* Number of hidden neurons

Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs"
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How to Develop NNs:
An Outline of the Approach (2)

 Data Analysis Y

— How noisy are your data?
« May change architecture
or even technique

— Do you have enough data?

— For selected architecture:
- 1) Statistics => N, > n,,
« 2) Geometry => N?, > 2n
o N1A < NA < N2A
* To represent all possible patterns => N,
N = max(N,, Np)
— Add for testset: N=N,,x(1+71); 7>0.5
— Add for validation: N= N x(1+r1+vVv); v>0.5
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How to Develop NNs:
An Outline of the Approach (3)

* Training
— Try different initializations

— If results are not satisfactory, then goto Data
Analysis or Problem Analysis

» Validation (must for any nonlinear tool!)
— Apply trained NN to independent validation data

— If statistics are not consistent with those for
training and test sets, go back to Training or Data
Analysis
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Conclusions

There is an obvious trend in scientific studies:
— From simple, linear, single-disciplinary, low dimensional
systems
— To complex, nonlinear, multi-disciplinary, high dimensional
systems
There is a corresponding trend in math & statistical
tools:
— From simple, linear, single-disciplinary, low dimensional
tools and models
— To complex, nonlinear, multi-disciplinary, high dimensional
tools and models
Complex, nonlinear tools have advantages &
limitations: learn how to use advantages & avoid
limitations!

Check your toolbox and follow the trend, otherwise
you may miss the train!
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