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METO 630 Class Notes  (Eugenia Kalnay) 
 
Review of Probability, Wilks, Chapter 2   
 
Events: elementary and compound, E 
Sample space: space of all possible events, S 
MECE: Mutually exclusive and collectively exhausting events 
Probability Axioms:  
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Recall threat score: 
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Conditional Probability: “probability of E1 given that E2 has happened” 
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Independent events:    
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 i.e., the probability of E1 happening is independent of whether E2 
happened (e.g., the probability of a summer storm is independent 
from the phases of the moon). 
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Exercise: From the Penn State station data for January 1980, 
compute the probability of precipitation, of T>32F, conditional 
probability of pp if T>32F, and conditional probability of pp tomorrow 
if it is raining today. 
Exercise: Prove graphically the DeMorgan Laws: 
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Total probability:   
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Bayes Theorem: It “inverts” the probability 
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Combines prior information with new information 
 
Example of Bayesian reasoning:  
Relationship between pp over SE US and El Niño 
 
Precip. Events: E1(above), E2(normal), E3(below) are MECE. A is El 
Niño 
 
Prior information (from past statistics): 
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Total probability of A: 
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                                Bayes, new information: El Niño is happening!! 

A 

E1 E2 E3 



 3 

What is the probability of above normal precipitation? 
Note the clear interpretation from the figure: once you                                    
know A is true, the prob. of E1 is 2/3.  
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Example of Bayesian use in variational data assimilation: 
 
Prior knowledge (measurement or forecast) 
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Note that the total probability of a measurement 
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climatological average  T is independent of T. 
 
We choose as our best estimate of the true temperature T the value 
that maximizes (over T) the probability
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or minimize (over T) the cost function used in 3D-Var:  
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