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TIME SERIES (Chapter 8 of Wilks)

In meteorology, the order of a time series matters!

We will assume stationarity of the statistics of the time series. If there is
non-stationarity (e.g., there is a diurnal cycle, or an annual cycle) we will
subtract the climatological mean and standardize the

anomalies: z(¢) = %f;m. Otherwise, we can stratify the data (e.g., consider

all winters together as a single time series).
Time series can be analyzed in time or in frequency domains.

Time series models
Example of a simple time series model

X, —U=0¢(x —u)+E, . This is an autoregressive model of order 1
(AR(1)). Such model can be used to:
a) Fit the time series and derive some of its properties. Similar to fitting
a theoretical probability distribution to a sample.
b) To make a forecast: ?2,“ —U=0(x,—

For discrete time series, the equivalent of autoregressive models are Markov
chains.

Discrete time series (Markov chains)

We have a discrete number of states (e.g., 2 or 3 states). For example, rain:1,
no rain: 0. At a given time, the chain can remain in the same state or change
state (MECE).

Example: 2-state first order Markov chain

Py,

Poo C 0 1 P11

P1o
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For example: a periodic time series 0001110000

_

Transition probabilities: Py, = P (xt - 1] X, = 0) etc.

1 6 1 2
In the example above: p,, = ;; Py = 7; Py = E; P, = 3
Pyt Py =1
Note that both are MECEs.
Pty =1
) . . . no - P(XI+1 - O)
We can also define unconditional probabilities:
7= P(x,, =)
7 Do 1/3
7[0 = —= =
10 p,+p, 1/7+1/3
3 Puy 1/7

ST T1/7+1/3
p01+p10 +

These represent
probability to change to 0 (or 1)
probability to change

probability of being in state 0 (or 1)=

(See demonstration later)
We can also define

Persistence = lag-1 autocorrelation =7, = corr(x,,x,)

¥, = p,, — P,, = probability of being in 1 coming from 1, minus probability of
being in 1, coming from 0.

1 14-3 11

y =——— = —

173 7 T Z We can also compute itas = p, - p,:

6 1 _18-7 11

)y =———=—

'T7 3 21 21
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Note: persistence implies that p,, + p,, <1, p, +p,, 21, 1e., thereisa
stronger tendency to remain in a state than to change states
(p00+p11 >p01 +p10)'

o we get thatp < , and similarly p <7,
plO + pOl
(i.e., if there is persistence, the probability of transitioning into a state from

the other is smaller than the unconditional probability of being in that state).

Then from 7, =

Furthermore, p,=1-p, <n,=1-7m , 01T, < p,,.

In summary, if there is persistence, Py, ST, < P and P,y STy < Py, .

i n
Exercise: show that 7, =—20 ="

Pytpy, mTH

Proof of this:

n, /n n,n n .
n=—"tu o e UL -1 _since n, =n, because on

1 = =
Pyt Py My / ny+ 1y, / n gy, R,

the long run, there have to be as many changes from 0 to 1 as the other way
around.

Actually 7, = ™ is a more natural definition of unconditional probability,
I’l1 + I’ZO
so the proof really shows that 7, = —Pu_ a5 defined before.
pOl + plO

Exercise: compute r; from the lag-1 autocorrelation.

Hypothesis testing for the presence of persistence in the time series:
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Xn=0]x,=1
¥ =0 6 1 7 | Marginal
’ total
x=1| 1 2 )
7 3 10

Actual numbers from the series 001110000

Now the null hypothesis is that there is no persistence, so we create the table
corresponding to no persistence:

Xn=01]x,=1
x =0 4.9 21 7 | Marginal For example
: totals 7 7
x =1 2.1 0.9 3 49=nnr,n=—=x—=*10
7 3 10 10 10

So, to test whether a series really has » # 0 (and 1t’s not just sampling), we

can use the X*distribution with 1 degree of freedom, since the marginal
totals are given from the sample, so that given a single value on the table, the
others are determined.

Null hypothesis 7} = 0.  The hypothesis of independence (columns are
independent of the rows) is tested with

- ted)’
X' = ¢ Obser;ed #te);pec ed) (see note below), so that
expecte

classes

2 2 . 2 _ 2
_(6-497 (1-2.1)° (1-2.1 (2-09)
4.9 2.1 2.1 0.9

X? =2.74

Since the 5% X*for 1 d.o.fis 3.84, the persistence of the time series we
created is not significant at a 95% level: we could have obtained a size 10
sample with such apparent persistence even though the population has no
persistence with a probability greater than 5%.

Note: Reminder from class 3:
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An important use of the chi-square is to test goodness of fit:

If you have a histogram with n bins, and a number of observations O; and
expected number of observations E; (e.g., from a parametric distribution) in
each bin, then the goodness of fit of the pdf to the data can be estimated
using a chi-square test:

with n-1 degrees of freedom

% (0, - E.)
X2 — i i
2

l

The null hypothesis (that it is a good fit) is rejected at a 5% level of

. . X2 > 2 .
significance if X005.n-1y. The table above has 4 bins but only one
d.o.f.

The table above is known as contingency table.

Xn=0]x,=1
¥ =0 6 1 7 | Marginal
’ total
x=1] 1 2 )
7 3 10

We were checking whether the Markov chain has persistence, 1.e., whether
the value at #+1 is dependent on the value at «.

Example of a test of independence in a contingency table.

democrat | republican | independent
Women 68 56 32 156 Marginal
Men 52 72 20 144 totals
120 128 52 300

A test of independence checks whether the null hypothesis that political
affiliation is independent of gender is valid. The null hypothesis would
generate a table like

democrat | republican | independent

Women 62.40 66.56 27.04 156 Marginal

Men 57.6 61.44 |24.96 144 totals

120 128 52 300
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where, for example, the number of democratic women is obtained as “prob.
of being a woman™ prob. of being a democrat (gender independent)* number
of people surveyed” = (156*300)* (120/300)* 300=62.4.

Since the marginal totals are fixed, the number of dof for each row is
(c-1)=(3-1)=2, and the number of dof for each column is (r-1)=(2-1)=1, so
that the total number of dof in this contingency table is (c-1)(r-1)=2%*1=2.
Here r is the number of rows and ¢ the number of columns.

Consider the first column, democrats. If we accept the null hypothesis that
the value of p=62.4/120 is the gender independent probability that of this
group of people, democrats are equally distributed among women and men,
this 1s a binomial distribution with an expected value np = 62.40. (The

expected value for men isn(1- p)=57.6).

Suggestion of a demonstration of the test of independence:
Only for one column, a binomial distribution, e.g., the probability of being a
woman or a man if you are a democrat:

Consider the test statistic for this binomial distribution:

(68-62.4) (52-57.6) (X, —mp) (X,-n(1-p))

2 2
_ _ . _(Ximm)
62.4 57.6 np n(1- p) np(1-p)

1 1
where we have used X, =n—- X, and —+ =
p 1-p p(-p)

The variance of the binomial distribution is np(1- p).

Therefore,

e (X] —np])2 N (X2 —np2)2 _ (X1 —npl)2
np, np, np,(1-p,)

In other words, T is the mean square of a random (binomial) anomaly
divided by its variance, and for large n, when it approaches a normal
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distribution, this ratio has approximately a X* distribution with one degree of
freedom.

In this case T=1.05, and for X20,05,1=3.841 so just knowing that of a group of
120 democrats 68 were women does not show that women tend to vote
democrat.

For several columns, this generalizes to

2
(0,-E,)
. if i) o2 . .
T en = Z e X e which is the test that we have used above.
i=1,r ij
Jj=le

In this case, T=6.43, whereas X7, , =5.99. This shows that the null

hypothesis of independence between rows and columns can be rejected with
95% confidence, and political affiliation is gender dependent.

End of note

Uses of the Markov chain:
We can use a 2-state, first order Markov chain to:
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a) create an artificial time series for, for example yes/no precipitation:
From a precipitation series, we can estimate Py, P,; , and therefore
Poi> Pio - Then, if we are in state 0, we get a random number x between zero
and 1. If x < p,, , we stay in state 0, otherwise we go to state 1.

b) make a forecast: for example, givenx =0, we can predict

P(x, =0)=p, and P(x  =1)=p, and so on.

We could also check for goodness of fit (Wilks, p104), comparing observed
data histograms with simulated data with Markov chains.

Multistate first-order Markov chain

P2

1
P Py3
3
P13 Ps,
P33



Again, the transition probabilities can be derived from the sample, and
similar rules are valid, e.g., p,, + p, + p,; =1, etc.

Second order Markov chains:

pijk = P(xt+1 =k | X, =X = l) Becomes complicated!...
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