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TIME SERIES (Chapter 8 of Wilks) 
 
In meteorology, the order of a time series matters! 
We will assume stationarity of the statistics of the time series. If there is 
non-stationarity (e.g., there is a diurnal cycle, or an annual cycle) we will 
subtract the climatological mean and standardize the 

anomalies:
  
z(t) =

x(t) ! µ(t)
" (t)

. Otherwise, we can stratify the data (e.g., consider 

all winters together as a single time series). 
Time series can be analyzed in time or in frequency domains. 
 
Time series models 
Example of a simple time series model 

  xt+1 ! µ = "1(xt ! µ) + #t+1 . This is an autoregressive model of order 1 
(AR(1)). Such model can be used to: 

a) Fit the time series and derive some of its properties. Similar to fitting 
a theoretical probability distribution to a sample. 

b) To make a forecast:   x̂t+1 ! µ = "1(xt ! µ)  
For discrete time series, the equivalent of autoregressive models are Markov 
chains.  
 
Discrete time series (Markov chains) 
 
We have a discrete number of states (e.g., 2 or 3 states). For example, rain:1, 
no rain: 0. At a given time, the chain can remain in the same state or change 
state (MECE). 
 
Example: 2-state first order Markov chain 
 

 
 
 
 

p00 p11 

p10 

0 1 

P01 
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For example: a periodic time series        0 0 0 1 1 1 0 0 0 0  
 
 
 

Transition probabilities:   p01 = P(xt+1 = 1| xt = 0) etc. 
 

In the example above: 
  
p01 =

1
7

; p00 =
6
7

; p10 =
1
3

; p11 =
2
3

 

 

Note that 
  

p01 + p00 = 1;
p10 + p11 = 1 both are MECEs. 

We can also define unconditional probabilities: 
  

!0 = P(xt+1 = 0)
!1 = P(xt+1 = 1)  

 

  

!0 =
7

10
=

p10

p01 + p10

=
1 / 3

1 / 7 +1 / 3

!1 =
3

10
=

p01

p01 + p10

=
1 / 7

1 / 7 +1 / 3

     

 
These represent  

 
probability of being in state 0 (or 1)=

probability to change to 0 (or 1)
probability to change  

(See demonstration later) 
We can also define 

  Persistence = lag-1 autocorrelation = r1 = corr(xt+1,xt )  
 

  r1 = p11 ! p01 = probability of being in 1 coming from 1, minus probability of 
being in 1, coming from 0. 
 

  
r1 =

2
3
!

1
7
=

14 ! 3
21

=
11
21          We can also compute it as   r1 = p00 ! p10 :  

 

  
r1 =

6
7
!

1
3
=

18 ! 7
21

=
11
21
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Note: persistence implies that  p01 + p10 ! 1, p00 + p11 " 1 , i.e., there is a 
stronger tendency to remain in a state than to change states 
(  p00 + p11 > p01 + p10 ). 
 

Then from 
  
!1 =

p01

p10 + p01

, we get that  p01 ! "1 , and similarly  p10 ! "0   

(i.e., if there is persistence, the probability of transitioning into a state from 
the other is smaller than the unconditional probability of being in that state). 
 
Furthermore,   p10 = 1! p11 " #0 = 1! #1 , or  !1 " p11 .  
 

In summary, if there is persistence,   p01 ! "1 ! p11 and  p10 ! "0 ! p00 . 
 

Exercise: show that 
  
!1 =

p01

p01 + p10

=
n1

n1 + n0

 

 
Proof of this: 
 

  
!1 =

p01

p01 + p10

=
n01 / n0

n01 / n0 + n10 / n1

=
n01n1

n01n1 + n10n0

=
n1

n1 + n0

since   n01 = n10 because on 

the long run, there have to be as many changes from 0 to 1 as the other way 
around. 
 

Actually 
  
!1 =

n1

n1 + n0

 is a more natural definition of unconditional probability, 

so the proof really shows that 
  
!1 =

p01

p01 + p10

 as defined before. 

 
 
 
Exercise: compute r1 from the lag-1 autocorrelation.  
 
 
 
Hypothesis testing for the presence of persistence in the time series: 
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   xt+1 = 0    xt+1 = 1  

  xt = 0      6    1    7 

  xt = 1     1    2    3 
     7    3  10 
Actual numbers from the series               0 0 0 1 1 1 0 0 0 0 
 
Now the null hypothesis is that there is no persistence, so we create the table 
corresponding to no persistence:  
 
   xt+1 = 0    xt+1 = 1  

  xt = 0      4.9    2.1    7 

  xt = 1     2.1    0.9    3 
     7    3  10 
 
 
So, to test whether a series really has   r1 ! 0 (and it’s not just sampling), we 
can use the  !2 distribution with 1 degree of freedom, since the marginal 
totals are given from the sample, so that given a single value on the table, the 
others are determined. 
 
Null hypothesis  r1 = 0 .     The hypothesis of independence (columns are 
independent of the rows) is tested with  

  
!2 =

(# observed " #expected)2

#expectedclasses
#  (see note below), so that 

 

 
!2 =

(6 " 4.9)2

4.9
+

(1" 2.1)2

2.1
+

(1" 2.1)2

2.1
+

(2 " 0.9)2

0.9
= 2.74  

 
Since the 5%  !2 for 1 d.o.f is 3.84, the persistence of the time series we 
created is not significant at a 95% level: we could have obtained a size 10 
sample with such apparent persistence even though the population has no 
persistence with a probability greater than 5%. 
 
 
Note: Reminder from class 3: 
 

Marginal 
totals 

Marginal 
totals 

For example 

  
4.9 = !0!0n =

7
10

"
7

10
"10  
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An important use of the chi-square is to test goodness of fit: 
 
If you have a histogram with n bins, and a number of observations Oi and 
expected number of observations Ei (e.g., from a parametric distribution) in 
each bin, then the goodness of fit of the pdf to the data can be estimated 
using a chi-square test: 
 

X 2 =
(Oi ! Ei )

2

Eii=1

n

"  with n-1 degrees of freedom 

  
The null hypothesis (that it is a good fit) is rejected at a 5% level of 

significance if X 2 > !(0.05,n"1)
2

. The table above has 4 bins but only one 
d.o.f. 
 
The table above is known as contingency table. 
   xt+1 = 0    xt+1 = 1  

  xt = 0      6    1    7 

  xt = 1     1    2    3 
     7    3  10 
We were checking whether the Markov chain has persistence, i.e., whether 
the value at t+1 is dependent on the value at t. 
 
Example of a test of independence in a contingency table.  
 
 democrat republican  independent  
Women     68    56 32   156 
Men     52    72 20   144 
     120   128 52  300 
  
A test of independence checks whether the null hypothesis that political 
affiliation is independent of gender is valid. The null hypothesis would 
generate a table like 
 
 democrat republican  independent  
Women     62.40    66.56 27.04   156 
Men     57.6    61.44 24.96   144 
     120   128 52  300 

Marginal 
totals 

Marginal 
totals 

Marginal 
totals 
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where, for example, the number of democratic women is obtained as “prob. 
of being a woman* prob. of being a democrat (gender independent)* number 
of people surveyed” = (156*300)* (120/300)* 300=62.4. 
 
Since the marginal totals are fixed, the number of dof for each row is         
(c-1)=(3-1)=2, and the number of dof for each column is (r-1)=(2-1)=1, so 
that the total number of dof in this contingency table is (c-1)(r-1)=2*1=2. 
Here r is the number of rows and c the number of columns. 
 
Consider the first column, democrats. If we accept the null hypothesis that 
the value of p=62.4/120 is the gender independent probability that of this 
group of people, democrats are equally distributed among women and men, 
this is a binomial distribution with an expected value  np = 62.40 . (The 
expected value for men is  n(1! p) = 57.6 ).   
 
Suggestion of a demonstration of the test of independence: 
Only for one column, a binomial distribution, e.g., the probability of being a 
woman or a man if you are a democrat:  
 
Consider the test statistic for this binomial distribution: 
 

  
T =

68 ! 62.4( )2

62.4
+

52 ! 57.6( )2

57.6
=

X1 ! np( )2

np
+

X2 ! n(1! p)( )2

n(1! p)
=

X1 ! np( )2

np(1! p)
 

 

where we have used   X2 = n ! X1  and 
  

1
p
+

1
1! p

=
1

p(1! p)
 

 
The variance of the binomial distribution is  np(1! p) .  
 
Therefore, 
 

  
T =

X1 ! np1( )2

np1

+
X2 ! np2( )2

np2

=
X1 ! np1( )2

np1(1! p1)
 

 
In other words,  T  is the mean square of a random (binomial) anomaly 
divided by its variance, and for large n, when it approaches a normal 
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distribution, this ratio has approximately a X2 distribution with one degree of 
freedom.  
 
In this case T=1.05, and for X2

0.05,1=3.841 so just knowing that of a group of 
120 democrats 68 were women does not show that women tend to vote 
democrat.  
 
 
For several columns, this generalizes to 
 

  

T(r!1)(c!1) =
Oij ! Eij( )2

Eiji=1,r
j=1,c

" ~ #(r!1)(c!1)
2 , which is the test that we have used above. 

In this case, T=6.43, whereas !.05,2
2 = 5.99 . This shows that the null 

hypothesis of independence between rows and columns can be rejected with 
95% confidence, and political affiliation is gender dependent. 
 
End of note 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Uses of the Markov chain: 
We can use a 2-state, first order Markov chain to: 
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a) create an artificial time series for, for example yes/no precipitation: 
From a precipitation series, we can estimate  p00 , p11 , and therefore 
p01, p10 . Then, if we are in state 0, we get a random number x between zero 

and 1. If x ! p00 , we stay in state 0, otherwise we go to state 1. 
b) make a forecast: for example, given  xt = 0 , we can predict 

  P(xt+1 = 0) = p00  and   P(xt+1 = 1) = p01  and so on. 
We could also check for goodness of fit (Wilks, p104), comparing observed 
data histograms with simulated data with Markov chains. 
 
 
 
 
 
 
 
 
 
 
Multistate first-order Markov chain 
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Again, the transition probabilities can be derived from the sample, and 
similar rules are valid, e.g.,   p11 + p12 + p13 = 1 , etc. 
 
 
 
 
Second order Markov chains: 
 

  
pijk = P(xt+1 = k | xt = j,xt!1 = i)      Becomes complicated!... 


