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Time series models:   Continuous data 
 
Atmospheric variables tend to be persistent, they have a lag-autocorrelation 
  r1 > 0 .  
Simplest time series model:  xt+1 − µ = φ1(xt − µ) + εt+1 , or in terms of the 
anomalies,   x 't+1 = φ1x 't+ εt+1  
This is an autoregressive model of order 1 (AR(1)). Such model can be used 
to: 

a) Fit the time series and derive some of its properties. Similar to fitting 
a theoretical probability distribution to a sample. 

b) To make a forecast:   x̂t+1 − µ = φ1(xt − µ)  
 
We need to determine  φ1 = φ  and the variance of the error  var(ε)  from the 
data that we want to fit with the AR(1) model. 

Since r1 = corr(x 't , x 't+1) =
x 't x 't+1( )
σ x 't
2 σ x 't+1

2
=

x 't x 't+1( )
σ x 't
2 , a linear regression forecast 

is simply   x̂t+1 − µ = r1(xt − µ)  or   φ1 = r1  
 
Note that autocorrelations at longer lags are not zero for AR(1), even though 
we only need the last observation to make an AR(1) forecast: 
 

  
P Xt+1 ≤ xt+1 | Xt ≤ xt , Xt−1 ≤ xt−1,...,1{ } = P Xt+1 ≤ xt+1 | Xt ≤ xt{ }  
 
i.e., just the last observation is enough to make a forecast, but 

  r1 = φ1, r2 = φ1
2 , r3 = φ1

3,...  
 
 In the AR(1)      
 

  x 't+1 = φx 't+ εt+1 . 
 

Multiply this equation by   x 't  and average over a long time series, divide by 

σ x
2 ≈ sx

2 , and use x 't x 't = σ x
2 = x 't+1 x 't+1 , x 't x 't+1 = r1σ x

2 = φσ x
2  and obtain  

 

  x 't εt+1 = 0 , i.e., the error is uncorrelated with the predictor.  
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Multiply   x 't+1 = φx 't+ εt+1 now by   x 't+1  and average over a long time series 
and obtain  
 

  x 't+1 x 't+1 = φx 't+1 x 't + εt+1
2  so that the unexplained variance of the prediction 

is 
 
σε
2 = (1−φ 2 )σ x

2 . 
 
 
The estimate of φ̂ = r1  obtained from a sample can be tested for significance 
(whether it is REALLY different from zero) as in linear regression. Recall 
that in linear regression yt − y = b1(xt − x ) + εt ,  and the variance of b1 is  
 

estimated as σ b1
2 ≈

εt
2

(xt − x)
2

t=1

n

∑
≈

εt
2

nσ x
2 where εt

2 ≈
1
n

yt − ŷt( )2
t=1

n

∑ is the 

forecast error squared (unexplained variance). Then we use a t-test 

T =
b1 − 0
σ b1

. (Note that this is the same type of statistics that we would use to 

estimate the significance of a climate trend b1  if we assume that the trend is 
linear with time,  Temp =  Tempmean  +  b1  time .) 
 
 
As shown above, for  AR(1)   x 't+1 = φx 't+ εt+1 , the variance “unexplained” 

by regression is σε
2 = (1−φ 2 )σ x

2 . 
 
 
Using the same formula for the estimated variance of the linear coefficient 
φ as for linear regression coefficient b1 , the error variance of φ is estimated 
as  

  
σφ

2 =
σε

2

nσ x
2 =

1−φ 2

n .  
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One can then test whether the persistence is significantly different from zero 

using 
  
z = φ̂ − 0

(1− φ̂ 2 ) / n
 (we can use a Gaussian distribution because  φ̂  

determines both the mean and its standard deviation). 
 
The variance of the noise (unexplained variance), when we use 

AR(1):  σε
2 = (1−φ 2 )σ x

2  for the population, and for a sample, 
  

  
sε

2 =
(1− φ̂ 2 )

n − 2
(xt − x )2 =

t=1

n

∑ n −1
n − 2

(1− φ̂ 2 )sx
2  but usually n is large so n −1

n − 2
≈ 1  

 
 
Applications: 
 

a) Create a persistent time series (red noise) that looks like nature: 
 

  x 't+1 = φ̂x 't+ εt+1  
red     white 
noise x’     noise ε  
 

 
 
 
 

b) Make a forecast:   x 't+1 = φ̂x 't  
 
(How would blue noise look like? Hint: for white noise, persistence, r1=0; 
for red noise, r1>0; for blue noise, r1<0, the anomaly changes sign very 
frequently) 
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Higher order autoregressive model AR(K) 
 

  
xt+1 − µ = φk (xt− k+1 − µ)

k=1

K

∑ + εt+1  

 
For example, a 2nd order autoregressive model, AR(2): 
 
  xt+1 − µ = φ1(xt − µ) + φ2 (xt−1 − µ) + εt+1  
 
 
or    x 't+1 = φ1x 't+ φ2x 't−1+ εt+1  (1) 
 
Multiply both sides of (1) by  x 't , take an average over a long time series, 
divide by  sx

2 , and obtain the following relationship: 
 

  r1 = φ̂1 + r1φ̂2  (2) 

Similarly, multiply both sides of (1) by  x 't−1 , take an average over a long 

series, divide by  sx
2

, and obtain the following: 
 

  r2 = r1φ̂1 + φ̂2  (3) 
 

From (2) and (3) can solve for φ̂1,φ̂2 : 
 

  
φ̂1 =

r1(1− r2 )
1− r1

2 , φ̂2 =
r2 − r1

2

1− r1
2  

 
Or , if we know  φ̂1,φ̂2  
 

  
r1 =

φ̂1

1− φ̂2

, r2 = φ̂2 +
φ̂2

2

1− φ̂2

 

 
The expected variance of the error is  
 

  σε
2 = (1− φ̂1r1 − φ̂2r2 )σ x

2
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For an AR(2) series to be stationary (so that it does not drift away), the 
following conditions have to be satisfied: 
 

 −1≤ φ2 ≤ 1, φ1 + φ2 ≤ 1, φ2 −φ1 ≤ 1  
 
(see figures 9.7, 9.8 in Wilks). 
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Variance of a time series 
 
If a time series has zero autocorrelation, the variance of the mean is the 
familiar 
 

  
σ x

2 =
sx

2

n
  which shows that the mean of the time series measured by n time 

steps has a variance n times smaller than the individual measurements. 
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However, if   r1 > 0  then the time mean has a larger variance than indicated by 
this formula! This is because there are fewer independent measurements 
than n: 
 
 
 

 
This effect can be estimated by a variance inflation factor  V  : 
 

  
sx

2 =V
sx

2

n
where 

  
V =

1+ φ1

1−φ1

  for AR(1). In other words, the effective number of 

independent observations in an AR(1) time series is  
 

  
n ' =

1−φ1

1+ φ1

n  

 
This is very important when estimating the number of degrees of freedom 

for, say, daily observations. If φ1 = 0.5 , then
  
n ' ≈

0.5
1.5

n = n / 3. These means that 

we should consider only observations every third day, or conversely, assume 
that the number of degrees of freedom is  n / 3 . 
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Note on the “physical meaning” of autoregression modeling 
(don’t know the author but it is a nice summary) 
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Autoregressive, moving-average models   ARMA(K,M) 
 
In these models we assume that the noise has some persistence, and persist 
the last few observed “noises”: 

  
xt+1 − µ = φk (xt− k+1 − µ)

k=1

K

∑ + εt+1 + θmεt−m+1
m=1

M

∑  

 
The simplest ARMA model is ARMA(1,1): 
 
  xt+1 − µ = φ1(xt − µ) + εt+1 +θ1εt  
 
The lag-1 autocorrelation for this model is 
 

  
r1 =

(1−φ1θ1)(φ1 −θ1)
1+θ1

2 − 2φ1θ1

, 

 
and the expected error variance is given by 
 
 

  
σε

2 =
1−φ1

2

1+θ1
2 + 2φ1θ1

σ x
2 . 

 
So, in practice, to make an ARMA(1,1) forecast, we need to fit the data and 
compute the first two lag autocorrelations  r1, r2 . Then, obtain  φ1  from  
 

  r2 = φ1r1 , and finally  θ1  from
  
r1 =

(1−φ1θ1)(φ1 −θ1)
1+θ1

2 − 2φ1θ1

. 

 
Then the forecast for future data becomes: 

  x̂t+1 − µ = φ1(xt − µ) +θ1εt  
 
where  εt is the last observed forecast error  εt = xt − x̂t . 


