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Time series models: Continuous data

Atmospheric variables tend to be persistent, they have a lag-autocorrelation
r>0.
Simplest time series model: x —pu=¢,(x, —p)+¢, , orin terms of the
anomalies, x' =¢x'+¢€
This is an autoregressive model of order 1 (AR(1)). Such model can be used
to:

a) Fit the time series and derive some of its properties. Similar to fitting

a theoretical probability distribution to a sample.
b) To make a forecast: % —u=¢ (x —u)

We need to determine ¢, =¢ and the variance of the error var(e) from the
data that we want to fit with the AR(1) model.

(x| X ) (x| X )
t t+1 t t+1
Since 1, = corr(x',,x',,,) = = >, a linear regression forecast
02 02 (o2
X

' I
xT 'x)‘+| !

is simply £ —p=r(x —u) or ¢, =r,

Note that autocorrelations at longer lags are not zero for AR(1), even though
we only need the last observation to make an AR(1) forecast:

| X <x,X_ <x_,..1}=P{X,  <x

t [ t+ t+1

|Xtht}

1.e., just the last observation is enough to make a forecast, but

n=6, n=0) =0
In the AR(1)

1 _— '
X +1 (px t+ gt+l .

Multiply this equation by X 't and average over a long time series, divide by

2 1ol 2 ] ! ! _ 2 _ 2 .
O'fzsx,anduse XX =0, =X X s X X _rIGx _¢Gx and obtain

x' €., =0,i.e., the error is uncorrelated with the predictor.
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Multiply x'  =¢x' +¢€
and obtain

' . N
., now by X' | and average over a long time series

x' o x' =ex' x' + g’ so that the unexplained variance of the prediction

t t+1

ol=(1-¢")o>.

The estimate of ¢ =r, obtained from a sample can be tested for significance
(whether it is REALLY different from zero) as in linear regression. Recall
that in linear regression ¥, —y = b,(x, — X) + &, , and the variance of b, is

) g g’
estimated as O = — T e Where _2 z 1s the
(x, — x)° g
t=1
forecast error squared (unexplained variance). Then we use a t-test

b, -0

I'= . . (Note that this is the same type of statistics that we would use to
bl

estimate the significance of a climate trend b] if we assume that the trend is
linear with time, Temp = Temp,, + b, time.)

As shown above, for AR(1) x',, =¢x'+ €, , the variance “unexplained”

t+1>

by regression is 0'5 =(- (Pz )O'f :

Using the same formula for the estimated variance of the linear coefficient

¢ as for linear regression coefficient b] , the error variance of ¢1is estimated
as
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One can then test whether the persistence is significantly different from zero
. 90 ( Gaussian distribution b :
using Z = === (we can use a Gaussian distribution because ¢
V(1-9%)/n

determines both the mean and its standard deviation).

The variance of the noise (unexplained variance), when we use

AR(1):0 z =(1- ¢2 )O i for the population, and for a sample,

n—1

=1

2_(1_(32) C —2_”_1 ) .
s —Z(xl -X) = (1-¢7)s_ but usually n is large so

P n—2 n—2

Applications:

a) Create a persistent time series (red noise) that looks like nature:

VA
X = ¢x t+81+1

red white
noise x’ noise €

)\ o
- \j\JV V4 \]\
NNa

b) Make a forecast: x'  =g¢x'

(How would blue noise look like? Hint: for white noise, persistence, r;=0;
for red noise, r;>0; for blue noise, r;<0, the anomaly changes sign very
frequently)
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Higher order autoregressive model AR(K)
K

xt+l - 'u = z¢k('xt—k+l - ‘U) + gt+l
k=1

For example, a 2™ order autoregressive model, AR(2):

xt+1 U= ¢1(xz _lu)+¢2(x,_1 - ‘U)+ €t+1

or x' =¢x'+¢x' +¢€ (1)

Multiply both sides of (1) byx' , take an average over a long time series,
divide bys’, and obtain the following relationship:

r=¢+rd, (2)

Similarly, multiply both sides of (1) by X ',_1 , take an average over a long

2
series, divide by S , and obtain the following:

~ A

1”2 = r1¢1 + ¢2 (3)
From (2) and (3) can solve for ¢1 ,¢2 :

~ r(d-r) ~ r-r

¢ -5 (P =2 :
1 1—1”12 2 1_,,12
Or , if we know (/31,432
A 22
}"1 — ¢1A , 7"2 — ¢’52 + ¢2A
1-9, 1-9,

The expected variance of the error is

05 =(1- (231”1 N (]327’2)033
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For an AR(2) series to be stationary (so that it does not drift away), the
following conditions have to be satisfied:

-1<¢, <1, ¢,+¢,<1, ¢, —¢ <1
(see figures 9.7, 9.8 in Wilks).
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9.7 The allowable parameter space for stationary AR(2) processes, with insets showing autocorrelation functions fc
AR(2) models. The horizontal ¢, = 0 line locates the AR(1) models as special cases, and autocorrelation functions fc
1ese are shown. AR(2) models appropriate to atmospheric time series usually exhibit ¢, > 0,
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- $1=0.9, $2=0.11

Variance of a time series

If a time series has zero autocorrelation, the variance of the mean is the
familiar

2
S . . . .
o2 =—= which shows that the mean of the time series measured by n time
n

steps has a variance n times smaller than the individual measurements.



58

However, if » >0 then the time mean has a larger variance than indicated by

this formula! This is because there are fewer independent measurements
than n:

~ Iaandii N
W

This effect can be estimated by a variance inflation factor V :

2

s 1+
s. =V =where V = i
n 1-¢

for AR(1). In other words, the effective number of

1
independent observations in an AR(1) time series is

' 1 ;1
n =
1 ¢1

n

This 1s very important when estimating the number of degrees of freedom
. . 0.5
for, say, daily observations. If¢, =0.5, thenn'~ 15"=" /3. These means that

we should consider only observations every third day, or conversely, assume
that the number of degrees of freedom isn/3.
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Note on the “physical meaning” of autoregression modeling
(don’t know the author but it is a nice summary)

Autoregression Modeling:

e mathematical model used to try and explain a time series of
observations: {yja:$, 1=1,2,...,N.

AR(p) process:

Ve = Ve ATV 2T TV par T %0V
A

. . L .
Gaussian white noise

e an AR(p) model is a discretized pth-order ordinary differential
equation:
d

. y(t) _ Gaussian
e.g AR(L): —p(H) +=—= =0 . o

0 = syl

T = characteristic timescale, or ‘memory’
~ (heat capacity) / (cooling rate)

AR(1), aka ‘red noise” = simplest self-consistent model for a
geophysical system (e.g., Hasselman, 1976).

AR(2+): combination of oscillations/growing and decaying
exponentials.
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Autoregressive, moving-average models ARMA(K,M)

In these models we assume that the noise has some persistence, and persist
the last few observed “noises”:

K M
xt+l - ‘LL = zq)k(xt—kﬂ - ,Ll) + £t+l + zemgt—mﬂ
k=1

m=1

The simplest ARMA model is ARMA(1,1):
Xa—H=0(x,—p)+e,  +0g

The lag-1 autocorrelation for this model is

. _1-96,)(9,-6)
'o1+67 296,

and the expected error variance is given by
. g o’.
146 +2¢06, *

So, in practice, to make an ARMA(1,1) forecast, we need to fit the data and
compute the first two lag autocorrelations7;, 7,. Then, obtain ¢, from

(1-¢,6,)(¢, - 6)

rL=0r 0 r=
L, = @1, and finally U, from?, 1+912_2¢191

Then the forecast for future data becomes:
)ez+l —u=¢,(x, )+ 0¢

where ¢ 1s the last observed forecast error €, = X, — X, .



