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Methods for finding coupled patterns in climate data 
 
References: Bretherton, C., C. Smith and J.M. Wallace, 1992, J. of Climate, 
Danforth, Kalnay and Miyoshi (2007), MWR March. vandenDool (2007) 
 
1) The EOF approach (aka Principal Component Analysis or PCA) is ideal 
for estimating dominant patterns in a single field (e.g., 500hPa) versus time: 
 

  X (s,t) gridded maps anomalies, with   s = 1,..., N X , t = 1,...,T  
 
 
If we have two fields   X (s,t) and   Y (s,t)  (e.g., SLP and SST), we can 
still use PCA by constructing the EOFs of  Z(s,t) = X (s,t) | Y (s,t) , i.e., the 
vector that concatenates the two fields. Then the covariance of Z, or 
combined covariance has a size  (N X + NY ) ! (N X + NY ) . As indicated 
before, it may be preferable to use a correlation matrix to avoid the problem 
of different units. This approach will give EOFs that do not necessarily 
represent the best coupled patterns. 
 
2) Another approach is to generate correlation maps: take a time series (PC) 
from the EOFs of the first set of fields (or any other time series) and 
correlate it with the second field. 
 
3) Canonical correlation analysis (CCA): it is designed to identify the linear 
combination of variables in one field most strongly correlated with linear 
combinations of variables of the second field. (See Barnett and Preisendorfer, 
MWR 1987). 
 
4) Singular Value Decomposition. The cross-covariance matrix between 

  X (s,t) and   Y (s,t) is 

  CXY =< X (t)Y T (t) > of elements: 
  
cij =

1
T !1

X (i,t)Y ( j,t)
t=1

T

"  

It has size   (N X ! NY )  and is a non-square matrix if  N X ! NY . 
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The properties of a non-square are made apparent by Singular Value 
Decomposition (SVD, Golub and van Loan, 1996), an extension of the 
diagonalization of a square matrix Musing the matrix of the eigenvectorsQ : 
QTMQ = diag(!1,...,!m )   
 
SVD:  Given a matrix  C  of size  (N X ! NY ) , there exist two square 

orthogonal matrices   
U = [u1 | u2 | ... | uN X

]and   
V = [v1 | v2 | ... | vNY

]  such 
that 
 

  
U TCV = diag(!1,...,! p ) ,  (denoted SVD decomposition of C ) 
 
is a diagonal matrix of the positive singular values ! i . Here p is the smaller 

of  N X  and NY . The orthonormal vectors   
u1,...,up  are the left singular 

vectors of C , and   
v1,...,vp the right singular vectors of  C , and correspond to 

the X and Y fields respectively. 
 
The left and right singular vector have the properties that 
 

 Cvi = ! iui  and  C
Tui = ! ivi .  

 
From these properties we can show that 
 

  C
TCvi = ! i

2vi  and   CCTui = ! i
2ui , so that  ui and  vi are the orthonormal 

eigenvectors of  CCT and  CTC respectively, with the same eigenvalues  ! i
2 . 

They are also the “coupled EOFs” of the two fields: 
 

   
!X (s,t) = ak (t)

k=1

p

! uk (s)  

   
!Y (s,t) = bk (t)

k=1

p

! vk (s)  

 
where the time-dependent coefficients or “coupled PCs” can be computed by 
projection of the original fields on the “coupled EOFs”: 
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ak (t) = X (s,t)

s=1

N X

! uk (s)   and   
  
bk (t) = Y (s,t)

s=1

NY

! vk (s)  

The covariance between these time series is given by the singular values: 

  
ak (t),bk (t) = ! k , indicating the relative strength of the different coupled 

modes. 
 
If we use only the K leading singular values, then the “coupled explained 
variance”, i.e., the cumulative squared covariance fraction explained by 
these coupled modes, is given by 
 

  

CSCFK =
! i

2

i=1

K

"

! i
2

i=1

p

"
. 

 
Minimalist example: 
 

  
X =

sin t + cos t
0

!
"#

$
%&

; Y =
2sin t
cos t

!
"#

$
%&

; C = XY T
t
=

1 0.5
0 0

!
"#

$
%&  

 

(Note that 
  
CCT =

1.25 0
0 0

!
"#

$
%&

; CTC =
1 0.5

0.5 0.25
!
"#

$
%& are different 

symmetric matrices, and u, v are their corresponding eigenvectors). 
 
 
The MATLAB instruction [U,S,V]=svd(C) yields 
 

  
U =

1 0
0 1

!
"#

$
%&

; S = 1.25 0
0 0

!

"#
$

%&
=

1.180 0
0 0

!
"#

$
%&

; V =
.8944 '.4472
.4472 .8944
!
"#

$
%&  
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which satisfy Cvi = ! iui ,  C
Tui = ! ivi ,   C

TCvi = ! i
2vi , and  

  CCTui = ! i
2ui  .  

Only the first singular value  !1 = 1.25 is different from zero, and yields 
the first mode that dominates the covariance between X and Y. The spatial 
patterns that covary are respectively the first left and right singular vectors,  

  
u1 =

1
0

!
"#

$
%&

; v1 =
.8944
.4472
!
"#

$
%& . 

 
The “coupled PCs” or expansion coefficients are 
 

  
a1(t) = X (s,t)

s=1

2

! u1(s) = sin(t) + cos(t)  

and 
  
b1(t) = Y (s,t)

s=1

2

! v1(s) =
4sin(t) + cos(t)

5
= 1.7889sin(t) + .4472cos(t)  

and their covariance is
  

a1(t),b1(t) = !1 =
2.5

5
= 1.1180 . 

The covarying component of the original fields can be represented by 
 

   
!X (s,t) = a1(t)u1(s) =

sin(t) + cos(t)
0

!
"#

$
%&  

and 

   
!Y (s,t) = b1(t)v1(s) =

1.6sin(t) + 0.4cos(t)
0.8sin(t) + 0.2cos(t)

!
"#

$
%&  

Recall that the original fields were 

  
X =

sin t + cos t
0

!
"#

$
%&

; Y =
2sin t
cos t

!
"#

$
%&  
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A more realistic example is in Danforth et al (2007) who found the 
systematic forecast errors that are dependent on the state of the model by 
doing SVD of the covariance of 6 hour forecast errors and model state 
anomalies. The figure shows the coupled forecast state anomalies (contours) 
and corresponding forecast errors, with their corresponding time correlations 
in color. It shows that the errors indicate for each of the features whether 
they are too strong, too weak, or shifted East or West. The numbers 
correspond to the leading three coupled EOFs. 
 
 

 
Figure 1: Three leading coupled SVD’s of the covariance of 6 hr forecast 
errors and corresponding model state anomaly for T at sigma=0.95. 
Contours: state anomaly, colors: heterogeneous correlation with forecast 
errors. Note that over land, the corrections suggest the anomalous 
temperatures are too strong, and over ocean too weak and too far to the west. 
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Use of coupled SVDs for forecasting: 
 
Assume that we have computed the SVD expansion using a training period 
and we want to estimate the field of X explained by it covarying component, 
given a new field of Y valid at time T. We would compute the 
(heterogeneous) correlation between the X field and the b(t) for the 
dependent sample, which is given by 

  

! X (s,t),bk (t)"# $% =
& k

bk
2 (t)

1/ 2
X 2 (s,t)

1/ 2

'

(

)
)

*

+

,
,

uk (s) , and is proportional to the 

singular value and to the spatial pattern of the k singular vector 
corresponding to X. 
 
In order to predict the field X(s,T) given a new Y(s,T), we compute the new 
expansion coefficient of Y(S,T) 

  
bk (T ) = Y (s,T )

s=1

NY

! vk (s)  

Then the estimated field of X(s,t) corresponding to the first K singular values 
will be given by 
 

  

X pred (s,T ) = ! X (s,t),bk (t)"# $%
k=1

K

&
X 2 (s,t)

bk
2 (t)

bk (T ) =
' k

bk
2 (t)

uk (s)bk (T )
k=1

K

&
where t refers to the training period and T to the forecast time.  
 
The following figure is an example of the correction that the SVDs would 
suggest (it takes place only in areas in which the forecast anomaly projects 
strongly on the coupled forecast SVDs, elsewhere there is no correction).  
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Figure 2: Top right: contours: coupled anomalous state singular vector and 
colors: corresponding correlation map with the error (from the training 
period). Bottom left: New forecast (contours) and actual forecast errors 
(colors). Bottom right: in the area where the forecast field projects on the 
forecast SVD, it is possible to substantially correct the forecast errors.   
 
 
 

 


