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Parametric (theoretical) probability distributions. (Wilks, Ch. 4) 
 
Note: parametric: assume a theoretical distribution (e.g., Gauss) 
Non-parametric: no assumption made about the distribution 
 
Advantages of assuming a parametric probability distribution: 
 Compaction: just a few parameters 
 Smoothing, interpolation, extrapolation 
  

 
 
 
Parameter: e.g.:  µ,σ population mean and standard deviation 
Statistic: estimation of parameter from sample:   x ,s sample mean and 
standard deviation 
 
Discrete distributions:  
(e.g., yes/no; above normal, normal, below normal) 
 
Binomial:   E1 = 1(yes or success);   E2 = 0 (no, fail). These are MECE. 
 

  P(E1) = p           P(E2 ) = 1− p  . Assume  N independent trials. 
 
How many “yes” we can obtain in N independent trials? 
 
  x = (0,1,...N −1, N ) , N+1 possibilities. Note that x is like a dummy variable. 
 
 

  
P( X = x) =

N
x

⎛
⎝⎜

⎞
⎠⎟

px 1− p( )N − x ,       remember that
  

N
x

⎛
⎝⎜

⎞
⎠⎟
=

N !
x!(N − x)!

,  0!= 1 

 
Bernouilli is the binomial distribution with a single trial, N=1: 
  x = (0,1), P( X = 0) = 1− p, P( X = 1) = p  
 
Geometric: Number of trials until next success: i.e., x-1 fails followed by a 
success.  
  P( X = x) = (1− p)x−1 p            x = 1,2,...  
 

x
 

x s+  
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Poisson:  Approximation of binomial for small p and large N. Events occur 
randomly at a constant rate (per N trials) µ = Np . The rate per trial p is low so 
that events in the same period (N trials) are approximately independent.  
 
Example: assume the probability of a tornado in a certain county on a given 
day is p=1/100. Then the average rate per season is: µ = 90 *1 / 100 = 0.9 . 
 

  
P( X = x) =

µ xe−µ

x!
x = 0,1,2...  

 
Question: What is the probability of having 0 tornados, 1 or 2 tornados in a 
season? 
 
Expected Value: “probability weighted mean” 
 

Example: Expected mean: 
  
µ = E( X ) = x.P( X = x)

x
∑  

Example: Binomial distrib. mean   
  
µ = E( X ) = x

x=0

N

∑ N
x

⎛
⎝⎜

⎞
⎠⎟

px (1− p)1− x = Np  

 
Properties of expected value: 

  
E( f ( X )) = f (x).P( X = x);

x
∑ E(a. f ( X ) + b.g( X )) = a.E( f ( X )) + b.E(g( X ))  

 
Example Variance  

  

Var( X ) = E(( X − µ)2 ) = (x − µ)2

x
∑ P( X = x) =

= x2

x
∑ P( X = x) − 2µ x

x
∑ P( X = x) + µ2 P( X = x) = E( X 2 ) −

x
∑ µ2

 

 
E.g.:  Binomial:   Var( X ) = Np(1− p)  

 Geometric: 
  
Var( X ) =

(1− p)
p2

 

 Poisson:   Var( X ) = Np = µ  
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Continuous probability distributions 
 
Probability density function f(x): PDF 
 

  
f (x)dx ≡ 1∫  

  
f (x)dx = P(| X − x |< δ )

x−δ

x+δ

∫           x − δ x x + δ  

 
Cumulative prob distribution function (CDF) 
 

  
F(a) = P( X ≤ a) = f (x)dx

x≤a
∫  

easy to invert:   a(F ) = F −1(P)  
 
 
Note on the use of CDF for empirical functional relationships:  
The cumulative distribution function (CDF) can be easily inverted. This 
allows obtaining functional relationships between variables with different 
PDF’s. For example, if we want to create random numbers with an arbitrary 

PDF p(x) , we obtain first the corresponding CDF F(x) = p(u)du
−∞

x

∫  

(which varies between 0 and 1). We then use computer-generated random 
numbers ri  uniformly distributed between 0 and 1 and invert the CDF to 

obtain create random numbers xi with the desired PDF:  F(xi ) = ri . 
 
 
 
 
 
 
 
 
 
 
 

f(x) 

x 

F(x) 
1 

p 

x a 

F(x) 

1 

0 

ri 

xi 
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As an example, consider an empirical parameterization of the cloud cover 
(CC) as a function of the relative humidity (RH) at a grid point in a model. 
To get a realistic relationship we (scatter) plot (for different latitudes and 
altitudes) the observed joint distribution of RH and CC, for example: 
 
 
 
  
 
 
 
 
 
 
 
 
 
We can get an empirical relationship between RH and CC by computing 
their CDF(RH), CDF(CC). Then we associate to each value RHi the 
corresponding value CCi such that they have the same F:   
CDF(RHi)=CDF(CCi): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CC 

1 

0 
RH 0 100 

F(x) 

1 

0 

ri 

RH=100 
CC=1 

0 

F(RH) 

F(CC) 

RHi CCi 
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Expected value: Probability weighted average
  
E(g( X )) = g(x) f (x)dx

x
∫ . Same 

as for discrete distributions:
  
E = g(xi ) p(xi )

i
∑ . For example, the 

mean
  
µ = E( X ) = xf (x)dx

x
∫ , and the variance 

  

Var( X ) = E(( X − µ)2 ) = (x − µ)2 f (x)dx
x
∫ = (x2 − 2µx + µ2 ) f (x)dx

x
∫ =

= x2 f (x)dx − 2µ xf (x)dx
x
∫ + µ2 f (x)dx

x
∫ = E( X 2 ) −

x
∫ µ2

 

 
 
An excellent resource is the NIST website 
www.itl.nist.gov/div898/handbook/index.htm 
and in particular the “gallery of distributions”  
www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm 
 
The dataplot software seems very nice, but I have not tried it: 
www.itl.nist.gov/div898/software/dataplot/ 
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 Gaussian or normal prob. distribution: 
  
f (x) =

1
σ 2π

e
−

( x−µ )2

2σ 2  

Standard form (z is dimensionless) 
  
z =

x − µ
σ

≈
x − x

s
; f (z) =

e− z2 / 2

2π
 

 
Central limit theorem: the average of a set of independent observations will 
have a Gaussian distribution for a large enough average. 
 
“Well behaved” atmospheric variables (e.g., T): even a one-day average is 
approximately Gaussian. Multimodal or skewed variables (e.g., pp): require 
longer averages to look Gaussian. 
 
 
 
 
 
 
 
 
How to use a table of Gaussian probabilities: Estimate µ andσ  from a 

sample and convert to a standard variable:
  
z =

x − µ
σ


x − x
s

. The table 

gives  F(z) = P(Z ≤ z) .  
The area is  P(z1 ≤ Z ≤ z2 ) = F(z2 ) − F(z1)  
 
 
Example: What is the probability of a January average temperature of 
 T ≤ 0C if   µ  TJan = 4oC and   σ  s = 2oC? 

  
z = T − 4

2
=
−4
2

= −2  (-2 standard deviations) 

  F(−2) = 0.023 . Note that 
   P(| Z |≥ 2σ ) = 2 * F(−2) = 2 *0.023  0.05 = 5%  
 
What are the Gaussian terciles for the temperature distribution? 
 
F(z)=0.666 z=0.43    T = µ ± 0.43σ = 4oC+/-0.86oC 
 

daily averages 

pp monthly 
 average 

monthly averages 

pp 

z2 z1 z 

-2 2 

.023 .023 

0 
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Other probability distributions: 
 
Gamma: for data>0, positively skewed, such as precipitation. 

  
f (x) =

(x / β)α −1e− x /β

βΓ(α )
   β : scale parameter 

     α : shape parameter 
      

 Γ(α ) ≡ (α −1)Γ(α −1) : gamma function 
 
(For integers Γ(n) = (n −1)!) 

  
µ = E( X ) = xf (x)dx = αβ

0

∞

∫ , 

  σ
2 = E( X 2 ) − E( X )2 = αβ 2  

 
 

For  α = 1the gamma distribution becomes the exponential distribution: 
 

  
f (x) =

e− x /β

β
if x > 0, 0 otherwise. The cumulative distribution function is 

  F(x) = 1− e− x /β if x > 0, 0 otherwise.  
 
 
 
 
 
 
 
Beta: For data between 0 and 1 (e.g., RH, cloud cover, probabilities) 
 

f (x) = Γ(p + q)
Γ(p)Γ(q)

⎡

⎣
⎢

⎤

⎦
⎥ x

p−1(1− x)q−1, 0 ≤ x ≤ 1, p,q > 0  

 
This is a very flexible function, taking on many different shapes depending 
on its two parameters p and q. Figure 4.11.  
 

6 8 10 

.5
2 

2 4 

f(x) 

.5α =
 2α =

 4α =
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µ = p / (p + q) ; σ
2 =

pq
(p + q)2 (p + q +1)  

From these equations, the moment estimators (see parameter estimators) 
can be derived:  
 

p̂ =
x 2 (1− x )

s2
− x; q̂ =

p̂(1− x )
x  

 
For the special case p=q=1, the PDF is f(x)=1, the uniform distribution 
(between 0 and 1). 
 
 
 
Distributions arising from the normal pdf: (used for hypothesis testing) 
 
 
 χ

2 chi-square: If   Z1,...,Zn  are standard normal independent variables,  
then 
 

  X = Z1
2 + ...+ Zn

2  
 
has a   χ

2 distribution with n degrees of freedom. 
 
    Table A2 gives the area α  
 
 
 
 
 
  χ

2 ≡ Gamma(β = 2,α = n / 2) ;   X = E( X ) = n; Var( X ) = E( X 2 − X 2 ) = 2n  
 
For example, with n=10, a=5%, from table A2, we can find x=18.307. This 
means that if we have a data set which is the sum of standard normal 
independent variables (e.g., temperature minus the mean divided by the 
standard deviation) the expected value is n=10, and the probability of 
finding a value larger than 18.3 is less than 5%. 
 

X n=
 

2
,nαχ  

2
,( )nArea P X αχ α= ≥ =
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The exponential function is also the same as the chi-square for 2 degrees of 
freedom. For this reason it is appropriate for wind speed  s = (u2 + v2 ) . 
 
 
An important application of the chi-square is to test goodness of fit: 
 
If you have a histogram with n bins, and a number of observations Oi and 
expected number of observations Ei (e.g., from a parametric distribution) in 
each bin, then the goodness of fit of the pdf to the data can be estimated 
using a chi-square test: 
 

X 2 =
(Oi − Ei )

2

Eii=1

n

∑  with n-1 degrees of freedom 

  
The null hypothesis (that it is a good fit) is rejected at a 5% level of 

significance if X 2 > χ(0.05,n−1)
2

. 
 

t-distribution: If Z is normal, and 
  
χ 2

n
=

Z1
2 + ...+ Zn

2

n
then the random variable 

  
Tn =

Z

χ 2 / n
has a t-distribution with n-degrees of freedom (Table A3). If 

n>5, it is very close to a normal: 
 
 
 
 
 
 
For example: 
Normal distribution: (Table A1) Φ(1.96)=0.975, ie.  
T-distribution: (Table A3)   a=0.025  
With    n=10, ta,n  = 2.228 

n=20, ta,n  = 2.086 
n=∞, ta,n  = 1.96 

 
 
 

normal 
t, n=5 

t, n=1 

.025 

0        1.96 
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Parameter estimation (fitting a distribution to observations) 
 

1) Moments fitting: compute the first two moments from a sample and 

then use distribution:
  
x =

xi

ni=1

n

∑ ; s2 =
(xi − x )2

n −1i=1

n

∑ , and then use these 

values in the Gaussian or other distribution. For example, for the 
Gaussian distribution, simply use  µ̂ = x ; σ̂ 2 = s2 , and for the gamma 
distribution, 

  
x = α̂β̂;s2 = α̂β̂ 2 ⇒ β̂ =

s2

x
; α̂ =

x 2

s2  

 
The NIST web site gives the mean and the standard deviation 

relationship to the parameters of the probability distribution. 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm 
 
 

2) Maximum likelihood method: maximize the probability of the 
distribution fitting all the observations  {xi}. The probability of having 
obtained the observations is the product of the probabilities for each 
observation (for a Gaussian distribution), i.e. 

  
I(µ,σ ) = f (xi ) =

i=1

n

∏ 1

σ n (2π )n
e
−

( xi −µ )2

2σ 2
i=1

n

∑

i=1

n

∏ ,  

or maximizing its logarithm: 

  
L(µ,σ ) = ln(I ) = −n lnσ − n ln (2π ) −

(xi − µ)2

2σ 2
i=1

n

∑ . 

Then 
  

∂L
∂µ

= 0,
∂L
∂σ

= 0  gives the maximum likelihood parameters µ,σ . Note 

that for the Gaussian distribution, this gives 
  
µ̂ =

1
n

xi
i=1

n

∑  (same as with the 

momentum fitting), but that
  
σ̂ 2 =

1
n

(xi − x )2

i=1

n

∑ . The most likely value for 

the standard deviation is not the unbiased estimator s. 
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Note: Likelihood is the probability distribution of the truth given a 
measurement. It is equal to the probability distribution of the 
measurement given the truth (Edwards, 1984). 
 
 
 
 
Goodness of fit 
Methods to test goodness of fit: 
 
a) Plot a PDF over the histogram and check how well it fits,  
(Fig 4.14) or  
 
b) check how well scatter plots of quantiles from the histogram 

vs quantiles from the PDF fall onto the diagonal line (Fig 
4.15) 

1) A q-q plot is a plot of the quantiles of the first data set against 
the quantiles of the second data set. By a quantile, we mean the 
fraction (or percent) of points below the given value. That is, 
the 0.3 (or 30%) quantile is the point at which 30% percent of 
the data fall below and 70% fall above that value. 

2) Both axes are in units of their respective data sets. That is, the 
actual quantile level is not plotted. If the data sets have the 
same size, the q-q plot is essentially a plot of sorted data set 1 
against sorted data set 2. 

 

c) Use the chi-square test (see above): X
2 =

(Oi − Ei )
2

Eii=1

n

∑  

The fit is considered good (at a 5% level of significance) if 
X 2 < χ(0.05,n−1)

2
 

 
 
 
Extreme events: Gumbel distribution 
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Examples: coldest temperature in January, maximum daily precipitation 
in a summer, maximum river flow in the spring. Note that there are two 
time scales: a short scale (e.g., day) and a long scale: a number of years.  
 
Consider now the problem of obtaining the maximum (e.g., warmest 
temperature) extreme probability distribution: 

CDF:
  
F(x) = exp −exp −

x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
: this can be derived from the 

exponential distribution (von Storch and Zwiers, p49). The PDF can be 
obtained from the CDF: 
 

PDF: 
  
f (x) =

1
β

exp −exp −
x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥ −

x − ξ
β

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 
Parameter estimation for the maximum distribution 

  
β̂ =

s 6
π

; ξ̂ = x − γβ̂, γ = 0.57721... , Euler constant.  

Note that   x = ξ̂ + γβ̂  indicates that for the maximum Gumbel 

distribution, the mean is to the right of  ξ̂ , which is the mode (value for 
which the pdf is maximum, or most popular value, check the pdf figure). 
Therefore, for the minimum distribution, since the mean is to the left of 
the mode (check the pdf figure), the parameters are: 

  
β̂ =

s 6
π

; ξ̂ = x + γβ̂ (i.e., x = ξ̂ − γβ̂), γ = 0.57721...  

  
 
 
 
 
 
 
 
 
 ξ ξ 

Maximum Gumbel Minimum Gumbel 
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If we take ξ = 0, and β = 1 we get the standard Gumbel maximum pdf, with 
the corresponding standard Gumbel maximum CDF (in parenthesis): 
 

PDF: 
  
f (x) =

1
β

exp −exp −
x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥ −

x − ξ
β

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(= e−e− x − x )  

 

CDF: 
  
F(x) = exp −exp −

x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(= e−e− x

)  

 
 
 
The standard maximum PDF and CDF are plotted below:   
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The horizontal line indicates CDF=0.9, corresponding to a “return time” 
of 10 years, and the vertical line the “10-year return value”, i.e., the value 
of the standardized variable (e.g., temperature) such that on the average 
we have to wait 10 years until we see such a value (or larger) again. A 
CDF=0.99 would correspond to a “100-year return value”.  
 
Once we choose the CDF for a return value, let’s say  

F (x) = exp −exp − x −ξ
β

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭
= 0.99 for 100 year return, we 

can invert it to obtain the 100-year return value itself: 
 

x100 years = F
−1(x) = ξ − β ln(− lnF100 years )  

This can also be obtained graphically from the standard Gumbel CDF. 
 
 
 

Return year: 
For Maximum Gumbel 
distribution  
How many years we 
need wait to see x>=X 
happen again?  
 
P(x>=2.3) 
=1-CDF(x=2.3) 
=1-0.9=0.1 
 
return year= 1/(1-CDF) 

=10YEARS 
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If instead of looking for the maximum extreme event we are looking for 
the minimum (e.g., the coldest) extreme event, we have to reverse the 

normalized 
x − ξ
β to −

x − ξ
β . The Gumbel minimum distributions 

become (with the standard version in parenthesis) 
 

PDF: 
  
f (x) =

1
β

exp −exp
x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥ +

x − ξ
β

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(= e−ex + x )  

The integral of  e−ex + x  is   −e−ex

+ const = 1− e−ex

 so that 

CDF: 
  
F(x) = 1− exp −exp

x − ξ
β

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(= 1− e−ex

)  

 
The PDF and CDF plots follow: 
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The return time of 10 years (marked in blue) is the extreme value that has 
a cumulative probability of 0.1 (for the minimum) or 0.9 (for the 
maximum).  
 

Return year: 
For Minimum 
Gumbel distribution  
How many years we 
need wait to see 
x<=X happen again?  
 
P(x<= -2.3) 
=CDF(x=-2.3)=0.1 
 
return year= 1/CDF 

=10YEARS 
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Example of PDF and CDF for Gumbel (maximum) 
distribution: β = 1, ξ = 1.79= ln6 . 
 
Note: The return time is computed from the CDF. The CDF probability 
0.5 (which means that on the average it happens every other year) 
corresponds to a return time of 2 years, 0.9 to 10 years, etc. The PDF is 
only used to compare with a histogram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multivariate Gaussian distributions 
 
For multivariate problems, Gaussian distributions are in practice used almost 
exclusively… 
 
For one (scalar) variable, the Gaussian distribution can be written as 

  
f (x) =

1
σ 2π

e
−

( x−µ )σ−2 ( x−µ )
2 or       

  
f (z) =

1
2π

e
−

( z )( z )
2

 

 
For two variables 
 

  

f (x1,x2 ) =
1

2π( )2 σ1
2 x1 ' x2 '

x1 ' x2 ' σ 2
2

e
−

x1

x2

⎛

⎝
⎜

⎞

⎠
⎟ −

µ1

µ2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

Σ−1 x1

x2

⎛

⎝
⎜

⎞

⎠
⎟ −

µ1

µ2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 

2 4 6 8 10 0 x 

10 100 1000 2 
Return 
time 

ξ  

.2 

.4 
.6 

.9 
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where 
  

Σ =
σ1

2 x1 ' x2 '

x1 ' x2 ' σ 2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
is the covariance matrix. 

With two standardized variables 
 

  

f (z1, z2 ) =
1

2π( )2 1 ρ
ρ 1

e
−

z1

z2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

R−1 z1

z2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
 

 
 

where 1
1

R
ρ

ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

is the correlation matrix. 

 

For k variables, we define a vector 

   

x =
x1

...
xk

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 

and

   

f (x) =
1

2π( )k
Σ

e
−

x−µ⎡⎣ ⎤⎦
T Σ−1 x−µ⎡⎣ ⎤⎦

2
.  

For standardized variables, 
 

   

f (z) =
1

2π( )k
R

e
−

z⎡⎣ ⎤⎦
T R−1 z⎡⎣ ⎤⎦

2
where  

  

Σ =
σ1

2 ... x1 ' xk '
... ... ...

x1 ' xk ' ... σ k
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and  

  

R =
1 ... ρ1k

... ... ...
ρk1 ... 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

are the covariance and correlation matrices respectively. 
See figure 4.2/4.5 of Wilks showing a bivariate distribution. 


