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Hypothesis testing (Chapter 5 of Wilks) 
 
Introduction: 
 
Consider Table A.3 of Wilks, with T, SLP and pp in Guayaquil, Ecuador, for 
June over 20 years, five of which are El Niño years. It is obvious by 
inspection that it seems to rain more in an El Niño year.  It also seems like in 
those years the temperature tends to be higher and the pressure lower, but 
how do we know that it is not just sampling? Hypothesis testing allows us to 
state “during the El Niño years the pressure is below normal” with a 
confidence interval of, for example, 95%, i.e., the probability of having 
obtained this experimental result by sampling fluctuations is less than 5%, or 
one in 20. One does that by creating a probability distribution corresponding 
to the “null hypothesis”, i.e., that El Niño is not related to the surface 
pressure. Then we estimate the probability that we observe as many cases of 
low pressure for El Niño as we actually observed, and if it is less than 5%, 
we reject the null hypothesis. 
 
Parametric testing (theoretical): probabilities of a null hypothesis derived 
from a theoretical PDF. 
Non-parametric testing: No PDF assumed. Data is resampled to derive 
probability of null hypothesis from the sampled data itself. 
Sample statistics: µ and σ are estimated by x , s: they can fluctuate due to 
sampling. 
Hypothesis testing, steps: 

1) Choose the test statistics for a given data, e.g., mean, trend, and a test 
levelα , e.g., 5%. 

2) Define null hypothesis, H0: e.g., two samples belong to the same 
population, or there is no trend. Usually we would like to reject it. 

3) Define alternative hypothesis Ha: that H0 is not true. Can be one-sided 
(there is a warming trend) or two sided (the two samples belong to 
different populations). 

4) Consider or create the null distribution: assume H0 is true, and 
obtain statistics for H0. 

5) Compare the test statistics to the null distribution. Obtain the 
probability p of the test statistic to be observed in the null distribution. 
If the p-value (probability of finding this sample mean or trend within 
the null distribution) is less than the test level, p <α  , then the null 
hypothesis is rejected. 
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The test can give wrong results due to sampling: 
Type 1 error:  p <α but H0, the null hypothesis is true: Ha, the alternative 
hypothesis is accepted but it is not true. Wrong rejection of H0 because the 
sample is biased away from H0! 
Type 2 error: Ho is not rejected, but Ha is true (area β ). Wrong rejection of 
Ha.  
 
One-sided versus two-sided test:  
 

   
P | x − µ |> 2σ{ } = 1.96σ  2σ  
 
The alternative hypothesis determines whether it is a one or two “tailed” 
test: Ha=not null hypothesis2-tail test; Ha: µ > µ0 , one tail. 
 
Example of parametric test: Assume that on a given day P(rain)=0.1= µ . 
It rains 2 days out of 5: is this sample significantly different from the 
assumed population? Null hypothesis: it belongs to the population. 
Alternative hypothesis: it rained too much: the probability of having 2 (or 
more) days of rain out of 5 is too low for the sample to belong to the 
population. 
 

The null population has a Binomial distribution: 
  
P( X ≥ 2) =

5
x

⎛
⎝⎜

⎞
⎠⎟

0.1x0.95− x

x=2

5

∑  

This can be approximated with the Poisson 
  
P( X = x) =

µ xe−µ

x!
, µ = 0.1  

 

H0 
5%α =  

Ha 

β  rejection 

2σ  

2.5% 2.5% 

2σ−  
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P( X = 0) =
1*e-0.1

1
= 0.905

P( X = 1) =
0.1*e-0.1

1
= 0.090

P( X = 2) =
0.01*e-0.1

2
 0.005

P( X = 3,4,5)  0

 

 
Therefore the sample is “different” with a 1% level of significance. 
 
One sample t-test (parametric): Compare a sample mean with a population 

  

tν =
x − µ0

vâr(x )( )1/ 2 ; vâr(x ) =
s2

n
. Here   ν = n −1is the number of degrees of 

freedom (one was used to compute x ). 
Test of the difference between two samples (assuming they are independent, 
not paired): 
 

   

tν  z =
(x1 − x2 ) − E(x1 − x2 )

vâr(x1 − x2 )⎡⎣ ⎤⎦
1/ 2 =

(x1 − x2 )

s1
2

n1

+
s2

2

n2

with   ν = n1 + n2 −1d.o.f. We have used 

the null hypothesis to assume  E(x1 − x2 ) = 0 . 
If the two samples are paired 

 

  
vâr(x1 − x2 ) = vâr(x1) + vâr(x2 ) − 2côv(x1,x2 ) =

s1
2

n1

+
s2

2

n2

− 2ρ1,2

s1
2

n1

s2
2

n2

with n1=n2. 

 

  

z =
x1 − x2

s1
2 + s2

2 − 2ρ12s1s2( ) / n
. The correlation increases the significance of the 

difference between pairs if  x1 ≠ x2 . 
 
 
 
Tests for data with persistence 
 
 
 

time 

Example of a persistent time series with long time 
mean=0. Short time averages have an error larger than 

  s2 / n because the n measurements are not independent 
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Because of persistence the observations are not “independent”. Time 
averages will tend to drift away from the long-term mean (persistent 
anomalies). Therefore the number of degrees of freedom (independent 
observations) is smaller. Estimated as  

   
vâr(x ) 

s2

n '
=

s2

n
1+ ρ1

1− ρ1

⎛

⎝⎜
⎞

⎠⎟
variance inflation. 

n’: the number of effectively independent samples. 
 ρ1 : 1-day lag correlation. 
 
Summary of parametric hypothesis typical tests: 
 
Here we review most cases of hypothesis that appear in practical 
applications and the corresponding test that is applied. 
 
Z: standard normal (Gauss) distribution, used if you know the variance of 
the population 
Tn-1: student t distribution with n-1 d.o.f., used if you estimate the standard 
deviation from the sample 
α : level of significance (e.g., 5%=0.05) 
Ha: the alternative hypothesis that determines whether it is a one-tailed or 
two-tailed problem. 
 

1) Test whether a sample with mean  X  belongs to a population with 
mean µ0 , assuming the sample has the same (known) standard 
deviation σ  (two-tailed problem). 

  
Z =

X − µ0

σ 2 / n
; find the critical value   zα / 2  such that

  
P | Z |≤ zα / 2{ } = 1−α . If  

α =5%, then   zα / 2 = 1.96 ≈ 2  
 

In other words, if      
  
Z =

X − µ0

σ 2 / n
> 2     we reject that the sample mean  X  

belongs to a population with mean  µ0 . 
 
Probability that a result was obtained by chance: “p-value” 
 
If P | Z |≤ zα /2{ } =1−α  then P | Z |≥ zα /2{ } =α . So, 1−α  is the level of 
significance (e.g., 95%) and α is the probability of obtaining  this result 
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by chance (e.g., α = 0.05  or 5%). If P | Z |> zα /2{ }  then the probability of 

getting this value of |Z| by chance (the “p-value”) is p <α  (see table 
below).  
 
 

Level of  
significance  

 

Critical  
value of |Z| 

p-value 

0.80 1.28 p<0.20 
0.90 1.64 p<0.10 
0.95 1.96 p<0.05 
0.99 2.58 p<0.01 
0.999 3.29 p<0.001 
0.9999 3.89 p<0.0001 
0.999999 4.89 p<0.000001 
0.99999999 6.11 p<0.00000001 

 
 
 
2) Test whether a sample with mean  X  belongs to a population with 

mean µ0 , but estimating the unknown standard deviation s from the 
sample (two-tailed problem). 

  
Tn−1 =

X − µ0

s2 / n
         

  
s2 =

( Xi − X )2

i=1
∑

n −1
; find the critical value   tα / 2,n−1  such 

that
  
P | Tn−1 |≤ tα / 2,n−1{ } = 1−α . If α  =5%, then for n-1=10,    tα / 2,10 = 2.2  

 
 
3) Test the equality of means of two samples, assuming the s.d. are 

known 

  

Z =
X1 − X2

σ1
2

n1

+
σ 2

2

n2

. Then look for
  
P | Z |≤ zα / 2{ } = 1−α ; with α  =5%, then 

  zα / 2 = 1.96  
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4) Test whether two samples belong to the same population: by far the 

most common test in practice 

  

Tn1 +n2−2
=

X1 − X2

sp
2 / 1 / n1 +1 / n2( ) ,  

where the “pooled variance” is
  
sp

2 =
(n1 −1)2 s1

2 + (n2 −1)2 s2
2

n1 + n2 − 2  

Then check whether
  
P | Tn1 +n2 −2 |≤ tα / 2,n1 +n2 −2{ } = 1−α . 

 

For n1+n2-2~10,   tα / 2,10 = 2.2 , so that if 
   

Tn1 +n2−2
=

X1 − X2

sp
2 / 1 / n1 +1 / n2( )

> 2.2  we 

reject the hypothesis that the two samples belong to the same population 
with a level of significance of 5%. 
 
 
 
5) Paired tests of two time series: define   wi = x1i − x2i , i = 1,2,...n  

 

  

Tn−1 =
W

sw
2 / n

;
  
P | Tn−1 |≤ tα / 2,n−1{ } = 1−α ; If α  =5%, then   tα / 2,10 = 2.2  

6) Test whether the variance of a sample 
  
s2 =

( Xi − X )2

i=1
∑

n −1
is equal to the 

population variance σ 0
2 . The variable 

  
χ 2 =

(n −1)s2

σ o
2  has a chi-square 

distribution with n-1 d.o.f. 
 
Example:  n=11. From Table 3, if 3.247 ≤ χ 2 ≤ 20.48 , values corresponding to 
 α = 0.975  and  α = 0.025 respectively, then the null hypothesis is accepted 
with a significance level of 5%. 
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7) To check whether the variances of two populations are equal, we use 

the F-test (Table 4): 
  
Fn1 −1,n2 −1 =

sx1

2

sx2

2 and compare with the value 

  
F0.05,n1 −1,n2 −1     from Table 4. 

 
 
Non-parametric tests based on resampling (bootstrapping) 
 
Example 1: Determine the limits of confidence with which a statistic 
(e.g., mean x , s.d. s. median, Inter Quartile Range IQR, trends, anything!) 
is estimated from a sample of size n.  
 
We resample the batch of data by choosing a datum randomly and 
replacing it (without replacement we would only obtain the original n 
values). Easy way to sample: rank the data  xi , i = 1,...n . Pick random 
numbers r uniformly distributed between 0 and 1. If  j −1< nr ≤ j , pick the 
datum

 
x j . Create a large set of n samples (e.g., 1000 n-sized samples), and 

compute for each of them the statistic of interest. Plot a histogram, and 
the boundaries of 25 samples on both tails give the limits of confidence 
of the statistic s.   
 
 
 
 
 
 
 
 
 
 
 
 
Example 2: test whether two samples of size n1 and n2 belong to the same 
population. Null hypothesis: they are from the same population. So we 
create a “null population” by pooling the two samples, and create 
samples of size n1, n2 from the pooled n1+n2 sample. Since the number of 
possible choices increases fast with n1, n1+n2, we have the luxury of 
creating samples without replacement (i.e., each combination n1, n2 is 

25 samples 

25 samples 950 samples 

Limits of confidence 
for the statistic s at 5% 

s 
“bootstrapping” 
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picked only once). For example if
  
n1 = n2 = 5,

10
5

⎛
⎝⎜

⎞
⎠⎟
= 112 , 

if
  
n1 = n2 = 10,

20
10
⎛
⎝⎜

⎞
⎠⎟
= 923,780 . Then we can test any statistic that compares 

the original two samples (e.g., 
  
x1 − x2 ,| x1 − x2 |,

s1
2

s2
2 ,

IQR1

IQR2

, anything) and find 

its probability from the pooled sample (corresponding to the null 
hypothesis). 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

2.5 % 

2.5% 95% of the samples 

f(x1-x2) 

In this case we would 
accept the null hypothesis 
at 5% level of significance 
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Wilcoxon-Mann-Whitney non-parametric test 
 
This is a test developed before computers made the bootstrapping tests 
described above possible. It estimates whether the ranking of the values 
of two groups of data are significantly different, rather than the values 
themselves, so it can be applied to any type of data, without requiring a 
parametric distribution of the data.  
 
There are two groups of size n1and n2 and a total of n = n1 + n2  
For the null hypothesis (that the two groups would have similar ranks) we 
pool the two groups and compute a total rank 
R = 1+ 2 + ...+ n = n(n +1) / 2  
 
We add up the rank of the elements of group 1 and group 2 when pooled 
together in the null hypothesis pool and get R1 , R2 , with R1 + R2 = R  
It turns out that the statistic  

U = R − n(n +1) / 2  is Gaussian, with a mean µU =
n1n2
2  and standard 

deviation σU =
n1n2 n1 + n2 +1( )

12
⎡

⎣
⎢

⎤

⎦
⎥ . So one computes the probability of 

getting 
U1 = R1 − n1(n1 +1) / 2  

within the null hypothesis distribution, checking on Z =
U1 − µU
σU

. If the 

probability is less than 5% (or 2.5% for a two tailed problem) we reject 
the null hypothesis. 
 
Example 1: Assume the rankings for group 1 are 1,3,5,7,9, and for group 
2 they are 2,4,6,8,10. What are their probabilities? Can we reject the null 
hypothesis?µU = 5 *5 / 2 = 12.5;σU = 5 *5 *11 /12 = 4.79 ; Z1 = 0.48 Z2 = 0.52 . 
Obviously, values only 0.2 σ from the mean have high probability under 
the null hypothesis, which therefore cannot be rejected. 
 
Example 2: Assume the rankings for group 1 are 1,2,3,4,5, and for group 
2 they are 6,7,8,9,10. What are their probabilities? Can we reject the null 
hypothesis?Z1 = −2.61 Z2 = +2.61 . Obviously, values 2.61σ  away from 
the mean have low probability under the null hypothesis, which therefore 
has to be rejected. 
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Hypothesis testing and Multiplicity Problem  
 
Example: We make 20 independent tests at 5% level of significance, and 
two of them result positive, i.e., reject H0. Should H0 then be rejected, 
since 10% of the tests are positive? Actually not! Let’s look at the 
probability of finding positive results in 20 independent tests if each one 
has only a 5% probability: 
 

  

P( X = 0) =
20
0

⎛
⎝⎜

⎞
⎠⎟

0.0500.9519 = 0.358

P( X = 1) =
20
1

⎛
⎝⎜

⎞
⎠⎟

0.0510.9519 = 0.377
  P( X ≥ 2) = 1− .358 − .377 = 0.265 > 0.05! 

 
If the tests are not independent (e.g., grid points in the model) the 
multiplicity problem is even worse! One needs to do non-parametric tests 
for field significance (see section 5.4). 
 
 
Exercise: Consider again the Guayaquil Table and test the hypotheses: 
a) It’s warmer during an El Niño 
b) Pressure is lower during an El Niño 
c) It rains more during an El Niño 
Check level of significance p with which you can reject the null 
hypothesis. 
Which of a), b), c) would be better to do with a nonparametric test? 


